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Abstract
Event identification in technical logbooks poses challenges given the limited logbook data available in specific technical
domains, the large set of possible classes, and logbook entries typically being in short form and non-standard technical
language. Technical logbook data typically has both a domain, the field it comes from (e.g., automotive), and an application,
what it is used for (e.g., maintenance). In order to better handle the problem of data scarcity, using a variety of technical
logbook datasets, this paper investigates the benefits of using transfer learning from sources within the same domain (but
different applications), from within the same application (but different domains) and from all available data. Results show
that performing transfer learning within a domain provides statistically significant improvements, and in all cases but one the
best performance. Interestingly, transfer learning from within the application or across the global dataset degrades results in
all cases but one, which benefited from adding as much data as possible. A further analysis of the dataset similarities shows
that the datasets with higher similarity scores performed better in transfer learning tasks, suggesting that this can be utilized to
determine the effectiveness of adding a dataset in a transfer learning task for technical logbooks.
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1. Introduction
Estimating downtime and performing timely main-
tenance is a key step in reducing costs, increasing
safety, and improving operational efficiency in var-
ious branches of engineering. Predictive mainte-
nance systems use machine learning to estimate when
maintenance operations should occur by using many
sources of information, including historical mainte-
nance records in the form of event logbooks (Carvalho
et al., 2019).
Event logbooks often contain short text fields that de-
scribe an issue or a solution taken to address a safety
problem (e.g., replacing a part). They also often in-
clude issue type labels manually assigned by domain
experts, making it possible to train systems to classi-
fying maintenance issues automatically according to
similarity (McArthur et al., 2018). The issue type
and descriptions include domain-specific technical lan-
guage, abbreviations, and non-standard orthography,
which off-the-shelf NLP models are unable to process.
This has led to development of domain-specific text
pre-processing pipelines for logbook entries (Deléger
et al., 2010; Akhbardeh et al., 2020b).
Another import challenge when processing logbook
datasets is data scarcity. Logbooks are proprietary
and not widely available making it difficult to train ro-
bust predictive maintenance systems that require large
amounts of data, for example, when using deep neural
networks. One exception is MaintNet, an open repos-
itory of predictive maintenance datasets from multiple
domains, such as automotive and aviation (Akhbardeh
et al., 2020a). As evidenced in Section 3, these techni-
cal logbook datasets are, nonetheless, relatively small–

ranging from a few hundred instances for automotive
maintenance to nearly 75, 000 instances for facility
maintenance.
To address the limitation of data size, we explore
the use of transfer learning for domain adaptation in
technical event classification. Transfer learning tech-
niques have been applied with great success to non-
standard (e.g., social media posts) text-based classifi-
cation tasks such as sentiment analysis and offensive
language identification (Tao and Fang, 2020; Ranas-
inghe and Zampieri, 2020) suggesting that these tech-
niques can also be successfully applied to technical log-
books. To the best of our knowledge, however, transfer
learning techniques have not been yet applied to techni-
cal logbook datasets and our work addresses this gap.
This work contributes with a comprehensive study of
domain adaptation under three conditions: (1) transfer
within a domain, (2) transfer within an application, and
(3) transfer over a global dataset.
We address the following research questions:

• RQ1: Which transfer learning approaches are
better suited for classifying technical events for
predictive maintenance across heterogeneous log-
book datasets?

• RQ2: How does the level of similarity between
corpora impact the performance of transfer learn-
ing approaches for technical event classification?

2. Related Work
Transfer Learning Transfer learning strategies have
been applied in various NLP tasks such as sentiment
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Inst. Example Instance of Technical Logbook Entry Technical Event Type Domain Terms & Abbr.
1 LANDING AIRCRAFT LOST ALTITUDE WHILE TURNING BASE TO FINAL SUBSTANTIAL DAMAGE ALTITUDE

1 AIRCRAFT RIGHT GEAR CATCH FIRE ON RWY DALLAS TX MINOR DAMAGE GEAR, RWY, TX

2 R/H FWD UPPER BAFF SEAL NEEDS TO BE RESECURED BAFFLE DAMAGE R/H, FWD, BAFL

2 LEFT ENG I/B BAFFLE INTERCONNECT ROD BROKEN BAFFLE LOOSE ENG, I/B, ROD

3 ABNORMALITES NOTE FAN BLAD BEND OUTWARD POST FLIGHT INSP CAUSED DAMAGE FAN, BLAD,INSP

3 ENG PARAMETERS NORMAL, BUT NEEDS INSP NO DAMAGE ENG, INSP

4 CHECK L/R OUTER TIRE, AND GAS PADDLE PM SERVICE L/R, GAS, PADDLE

4 CHECK OIL OR TRANS LEAK SPINNER LIGHT ADJ CONV CHAIN PLOW DRIVER REPORTED OIL, SPINNER, CONV

4 PLOW DONT WORK ROAD CALL CK BATTERY BREAKDOWN PLOW, CK, BATTERY

5 BRAKE FAILURE OR DEFECTIVE NON-INCAPACITATING BRAKE

5 DISREGARDED THE SIGNAL OR REGISTRAR SIGN UNKNOWN SIGNAL, SIGN

6 CLEANED AROUND THE EXTERIOR OF THE BLDG SERVICE BLDG

7 PRETTY CONSISTENT SPEEDING ALL HOURS OF THE DAY SPEEDING SPEEDING

7 EXCESSIVE SPEEDING ALONG ARKANSAS SPEEDING SPEEDING

7 CARS TRYING TO GET TO THIS INTERSECTION ON THE REGULAR BLOCKING CROSSWALK CARS

Table 1: Instances of technical logbook entries by domain experts spanning aviation accident (1), aviation mainte-
nance (2), aviation safety (3), automotive maintenance (4), automotive accident (5), facility maintenance (6), and
automotive safety (7). Instances have domain-specific terminology (Terms.), abbreviations (Abbr.), and nonstan-
dard forms. Details are in Section 3.

analysis to address a deficit of labeled data. Stud-
ies have shown that training a model on one task or
dataset (the source) and using transfer learning meth-
ods to transfer the knowledge to another task or dataset
(the target) can improve performance compared to the
model trained only on the target task with less data
(Pan and Yang, 2010). Tao and Fang (2020) pro-
posed a transfer learning approach to overcome lim-
ited annotated data for aspect-based sentiment analy-
sis tasks. Their analysis includes applying sentiment
datasets from different domains to evaluate perfor-
mance on sentence-level multi-label classification us-
ing the XLNet (Yang et al., 2019) and BERT (Devlin et
al., 2019) models, improving over baseline methods.
Terechshenko et al. (2020) took advantage of transfer
learning in political data analysis to overcome a lim-
ited dataset. They employed the XLNet model to trans-
fer learned knowledge to political science texts. Their
experiment identified improvement on using a small
source of a labeled dataset for transfer learning.
Transfer learning has also been used in healthcare to
address the bottleneck of large labeled datasets and en-
able generalization capability. Romanov and Shivade
(2018) proposed a transfer learning technique to utilize
the open-source Stanford Natural Language Inference
dataset and medical terminologies in expert-annotated
clinical data. They experimented with sequential in-
ference using an LSTM in multiple layers. Their ap-
proach improved over previously reported methods on
Natural Language Inference benchmarks. Dirkson and
Verberne (2019) proposed a transfer learning method
to Twitter data associated with health to classify drug
effects. They utilized a recurrent neural network archi-
tecture by Flair (Akbik et al., 2019) having 512 hid-
den layers, yielding performance improvements over a
baseline support vector classifier (SVC). Their finding
was further that it can be beneficial to apply various

domain-specific domain adaptation strategies.

Domain Adaptation Employing domain adaptation
to transfer learned knowledge of a source domain and
improve performance in a target domain has also shown
success in NLP problems. Axelrod et al. (2011)
investigated domain adaptation in statistical machine
translation by utilizing instances from a general do-
main translation corpus of English and Chinese. They
employed Moore and Lewis (2010)’s domain-specific
models. The approach was successful with just a small
subset of in-domain data. Heilman and Madnani (2013)
utilized Daumé III (2007)’s domain adaptation in auto-
matic short answer scoring and combined n-gram fea-
tures and corpus similarity measures in the educational
domain. Their results had high accuracy which ap-
proached human scores on the Beetle dataset that con-
sists of student short answers to numerous questions.
Furthermore, several cross-domain adaptation ap-
proaches have been developed to leverage the knowl-
edge learned in one domain to another. Peng and
Dredze (2017) studied transferring multi-task learn-
ing representations for sequence tagging using news
and social media texts. They proposed a multi-task
framework based on the BiLSTM model, which was
capable of sharing the learner representation across
tasks or domain datasets. The proposed framework
achieved higher accuracy when applied to social media.
El Mekki et al. (2021) proposed an unsupervised do-
main adaption approach utilizing pre-trained language
models for cross-dialect sentiment analysis. They ex-
amined incorporating the Arabic dialects’ fine- and
coarse-grained taxonomies. In comparison to the zero-
shot transfer using the BERT model, their approach
showed roughly 20% performance improvement using
the cross-dialect domain adaptation approach.
The many applications of transfer learning in NLP con-
firm that transfer learning approaches are a promising
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strategy to overcome data scarcity. However, the use of
transfer learning to predictive maintenance datasets has
not yet been explored. Our work fills this important gap
providing empirical evidence of the feasibility of these
methods when applied to technical logbook data.

3. Technical Event Datasets
In this work we used 7 technical logbook datasets in
English, presented in Table 2. These datasets are from
three domains of aviation, automotive, and facilities,
available at MaintNet (Akhbardeh et al., 2020a). Three
datasets are from the aviation domain: aviation mainte-
nance (Avi-Main) featuring 7 years of historical mainte-
nance logbook, aviation accidents (Avi-Acc) contains 4
years of aviation accident and reported damages, and
aviation safety (Avi-Safe) contains 11 years of avia-
tion safety. Three other datasets are from the auto-
motive domain: automotive maintenance (Auto-Main)
contains a single year report of car maintenance, the au-
tomotive accident (Auto-Acc) contains 12 years report-
ing about car accidents and crashes, and automotive
safety (Auto-Safe) contains 4 years of driver’s noted
hazards and incidents on the roadway. And finally, we
also used a single dataset of facility maintenance (Faci-
Main) that contains 6 years of logbook reports collected
for building maintenance.

Dataset Description The instances in the technical
logbook dataset consist of a compact and brief sum-
mary of a problem that occurred. This problem descrip-
tion is mainly composed of domain-specific abbrevia-
tions, vocabularies, and terminologies. As shown in
Table 1, these instances are single sentences that usu-
ally contain short text. The instances such as “eng light
on, remoev hyd lines, leak note” in aviation mainte-
nance data (Avi-Main) or “ckd fire ext throughout bldg”
in facility maintenance (Faci-Main) contain domain-
specific abbreviations (eng, hyd, bldg), or misspelling
(remoev) that briefly forms the description regarding
specific event type. Further, technical logbook datasets
in these different domains contain terms and abbre-
viations that are similar or identical but with differ-
ent meanings when appearing in a different domain,
and are non-standard to typical pre-processing pipeline
packages. For example, in the instance “while in fl, af-

Domain Dataset Instance Class Code

Aviation Maintenance 6,169 39 Avi-Main

Accident 4,130 5 Avi-Acc

Safety 17,718 2 Avi-Safe

Automotive Maintenance 617 5 Auto-Main

Accident 52,707 3 Auto-Acc

Safety 4,824 17 Auto-Safe

Facility Maintenance 74,360 70 Faci-Main

Table 2: The number of different instances with various
size in each technical domain dataset.

Figure 1: Top 10 frequency of words used in the avia-
tion maintenance (Avi-Main) datasets representing the
nature of such technical logbook data.

ter performing a few high power man” where fl refers to
the flight level and man refers to manual, rather than to
their typical expansion (Florida) or lexical sense (male
individual). Further highlighting the non-standard lexi-
con of these datasets, Figure 1 provides the top 10 most
frequent words in aviation domain datasets.

Dataset Challenges In addition to these previously
discussed challenges, there are additional key chal-
lenges related to technical logbook data that make it
difficult for off-the-shelf NLP pipelines to handle. In
a general language corpus (e.g., news text, Wikipedia
text), the instance usually follows standard formatting
and structure that current NLP models (e.g., pre-trained
language models) can process properly. However, the
written description in the technical logbook lacks such
a standardized structure due to the different writing for-
mats that domain experts use while describing the ob-
served issue during an inspection. Furthermore, the
aforementioned non-standard format of technical log-
books poses various challenges to the machine learning
model. The challenges that need to be considered are:
1) Utilizing various domain-specific abbreviations and
acronyms that might be specific to each domain (e.g.,
AGL – Above Ground Level) and dropping or substi-
tuting any character can alter the meaning (e.g., AGL
to AL – Approach Lights or ALS – Approach Light-
ing System); 2) Using uncommon syntax and parts of
speech sequences (e.g., tires, lights testing showed mul-
tiple issues) or contractions (e.g., needn’t – need not);
3) Using misspelling or dropped words in the descrip-
tion which can be inaccurately seen as abbreviations
(e.g., fast where dropped to: fas – final approach seg-
ment); and 4) Using problem descriptions of varying
length that can consist of a few tokens that describe
the same issue (e.g., engine failed, engine not working
properly).
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Figure 2: Process of transfer learning methods for technical logbooks by representing the three various approaches
of transferring within the domain, transferring within an application, and transferring over the global dataset. The
black color (A) represents to application, blue (D) represents the domain, and brown (G) represents the global
transferring method. As an example of transferring within an application, we train the model on aviation mainte-
nance (Avi-Main) and automotive maintenance (Auto-Main) source datasets and then take the trained model and
transfer it to the facility maintenance (Faci-Main) data as the target dataset to perform further training and classi-
fication.

4. Methods and Models
To quantify the impact and success of transfer learn-
ing on the technical datasets, we first performed event
identification using a classifier on a single source do-
main dataset to serve as our baseline results, and then
we utilized the same model to perform transfer learning
with the following proposed strategies. In this experi-
ment, both the source and target datasets are labeled
which enables the use of supervised learning methods.

4.1. Transfer Learning of Technical
Logbooks

Text classification using a modest, small technical
dataset, such as the automotive maintenance data, can
limit the model’s generalization capacity and perfor-
mance. One potential solution could be to utilize a data
augmentation approach to increase the dataset size by
generating synthetic data. However, domain-specific
datasets where each domain captures domain-specific
lexical semantics – the case for technical logbooks as
illustrated previously – prevents the use of techniques
such as domain-discriminative data selection applied
to the smaller domain data class (Ma et al., 2019).
Furthermore, these technical datasets are highly imbal-
anced.
Therefore, we studied four different methods of trans-
fer learning (domain adaptation) using the seven
domain-specific datasets and analyzed their effects on
the performance of technical event classification on
the target datasets: (1) a baseline strategy which sim-
ply trains the model on a single dataset, and then
also strategies that (2) transfer to a dataset from other
sources within the domain (but different applications),
(3) transfer to a dataset from sources with the same ap-
plication (but different domains), and (4) transfer from

all other sources in the global dataset. Figure 2 pro-
vides an overview of the process of transferring from
the source to the target dataset utilizing three transfer
learning methods in this work.

Transferring within a Domain Transferring a
learned model within a domain dataset can benefit the
target domain dataset by utilizing knowledge learned
from various domain datasets, as these corpora should
have similar vocabularies. In this approach, we train
the model on selected datasets within the domain, and
then transfer the model to a different target dataset,
where we continue to train the model to perform event
classification. As an example, we can train the model
on the aviation maintenance (Avi-Main) and aviation
safety (Avi-Safe) source datasets and then take the
trained model and transfer it to the aviation accident
(Avi-Acc) data as the target dataset, to perform further
training and classification.

Transferring within an Application While datasets
within a domain stand to share similarities between
their corpora, datasets that share an application may
also stand to benefit in a similar manner, however with
a different set of potential vocabulary. This strategy
evaluates the impact of the shared knowledge within an
application, where the model is first trained on source
datasets from other domains which share the same ap-
plication, and then transferred to the target dataset. For
example, the model can be first trained on the source
dataset of aviation accidents (Avi-Acc) and then trans-
fer to the target domain of automotive accidents (Auto-
Acc) for further training and classification.

Transferring over the Global Dataset Finally, to
provide another option to address the potential that
transfer learning may be improving performance sim-
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Figure 3: Heat maps of similarity scores for 4 algorithm including Levenshtein, Jaro-Winkler, Universal Sentence
Encoder, and Word2vec applied on 500 random instances from each domain. The various color types shown in
these figures describe when the similarities between a pair of datasets are lower or higher where the higher value
(with lighter color) defines higher similarity, and lower value (with darker color) define low similarity.

ply because the model had more data to train on (Mela-
mud et al., 2019), a global transfer strategy is investi-
gated. In this strategy, given the seven datasets avail-
able, we considered every single dataset as a target,
and then initially train the model on every other dataset
available.

4.2. Model Architecture and Training

For the event identification task, we considered a su-
pervised machine learning method to classify the is-
sue type (e.g., cylinder damage, intake gasket leak).
As mentioned above, the event description in a dataset
contains short text and has a single event category. The
machine learning model used in this study is a con-
volutional neural network (CNN) (Kim, 2014) model
that has shown success in several NLP tasks such as
question classification (Shen et al., 2018) or sentiment
analysis (Wang et al., 2016), and that further is capa-
ble of providing suitable performance while applying
it on various sequence types. Furthermore, we also
evaluated it using the pre-trained ALBERT (Lan et al.,
2020) for English and we fine-tuned the model on the
downstream task of event identification. We used the
ALBERT transformer model in this work as has previ-
ously been shown to achieve high performance in var-
ious NLP tasks and benchmarks using less parameters
than other transformers models, and that it also benefits
from a cross-layer parameter sharing property (Kung et
al., 2020).

We trained the CNN architecture proposed by Kim
(2014) which consists of 100 one-dimensional convo-
lutional filters with the size of multi n-gram lengths fol-
lowed by ReLU activation, dropout layer, max-pooling
layer with the size of 2 by the length of the input se-
quence and followed by a fully connected dense layer
and output layer set to class size with SoftMax activa-
tion function.
As discussed in Section 4.1, the technical dataset
classes are highly imbalanced in general. These char-
acteristics can cause the classification model to over-
generalize the majority class. To address this issue, we
utilized the feedback loop strategy initially proposed
by Bowley et al. (2019) in computer vision and which
has since been successfully adapted to the NLP domain
(Akhbardeh et al., 2021). This approach not only miti-
gates the problem of the classifier preferring larger ma-
jority classes but also adjusts the training data such that
the model keeps training on the worst performing train-
ing instances.

4.3. Datasets and Baselines
To address the issues with technical logbook datasets
noted in Section 3, we utilized the text pre-processing
pipeline developed by Akhbardeh et al. (2020a) which
is capable of domain-based abbreviation expansion,
noise entity removal, lexical normalization, dictionary-
based standardization, part of speech tagging, and
domain-specific lemmatization. The dataset is divided
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into 80% for training and 20% for testing, and 100
dimensional word embeddings (Mikolov et al., 2013)
were used for feature extraction.

Baseline The baseline strategy for training the mod-
els consists of training the model on a single dataset
(e.g., Auto-Safe), and then perform the classification
task on the 7 datasets. The baseline strategy does
not contain any transfer learning approaches and solely
uses the source dataset.

Technical Logbook Similarity Technical logbooks
contain different instance sizes and token sizes, how-
ever as described in Section 3, they contain usually
short instances, as well as specific words, terms, and
abbreviations, where they have less ambiguity. These
instances in the logbook dataset also share similar or
dissimilar characteristics that would be used in specific
terms or abbreviations. Each domain dataset has sim-
ilar terminologies that are shared with other domains
(e.g., ft - feet), however, some can share similar abbre-
viations by different semantics (a/c - in aviation do-
main: aircraft, in automotive and facility domain: air-
conditioner). These shared similarities and features
in the datasets could bring useful information when
training the model on a specific dataset(s) and trans-
ferring the learned knowledge between within domains
or dataset(s).

Instances in datasets such as those in the aviation do-
main, contain descriptions regarding problem types
that are semantically similar to other domain’s dataset
such as the automotive domain (e.g., engine not start,
cylinder compression issue). Evaluation of instance
similarity within the logbook dataset can help to in-
terpret how data are semantically similar in either a
word or sentence level. This can be done by mea-
suring the inter-corpus similarity and identifying cor-
pus homogeneity (Cavaglià, 2002). We experimented
with applying four similarity measures including Lev-
enshtein (Konstantinidis, 2007), Jaro-Winkler (Wang
et al., 2017), Universal Sentence Encoder (Cer et al.,
2018), Gensim Word2vec (Rehurek and Sojka, 2011)
to compare and extract key relations between instances
in the dataset. In both the Universal Sentence Encoder
and Word2vec model, we utilized the cosine similarity
(Manning et al., 2008) for computations.

The corpus similarity experiment in this study has been
done using random sets of 500 instances from each of
seven dataset and we calculated the similarity measure-
ments between instances in an inter-document form.
This means every instance from a selected dataset was
compared to the instances in the other remaining se-
lected datasets to compute the distance. Figure 3 shows
the findings of these analyses in heat maps and further
discussion regarding the relationship between corpus
similarity and domain adaptation is provided in Sec-
tion 5.

5. Results
This section provides a performance analysis of trans-
fer learning between varying dataset types using the
previously described CNN and ALBERT (transformer-
based) model. Table 3 presents an evaluation of train-
ing only on the source dataset to transferring models
trained on other datasets (either within the domain,
within the application, or all other datasets) to that
source dataset.

Experimental Settings In the experimental process,
we used the coarse to fine learning approach for op-
timizing parameters and hyperparameters (Lee et al.,
2018). Hyperparameters for training set by investigat-
ing batch sizes of 32, 64, and 128 (Masters and Luschi,
2018), with an initial learning rate of 0.01 for CNN and
1e-5 for fine-tuning ALBERT model. Further, dropout
regularization ranging from 0.2 to 0.4, and ReLU and
SoftMax as an activation function (Nair and Hinton,
2010), and Adam optimizer (Kingma and Ba, 2015),
and categorical cross-entropy (Zhang and Sabuncu,
2018) for the loss function were selected. Based on the
experiment and model performance, dropout regulation
with a rate of 0.2 and batch size of 32 were selected for
the training.

Experimental Design First, the CNN and ALBERT
(fine-tuned) model was trained 10 times on each source
dataset, with the baseline (source) column reporting the
average precision (P), recall (R) and F1 scores of those
runs. Following this, 10 CNN and ALBERT (fine-
tuned) models were trained on the other domains, and
then each of those 10 models were transferred to the
source dataset for further training (layer freezing was
not used). These results are reported in the domain,
application and global columns. Additionally, Mann-
Whitney U-Tests of statistical significance were per-
formed comparing the populations of final losses across
the 10 repeated experiments of the source data, to the fi-
nal losses of the 10 repeated experiments for each of the
transferred runs, which are reported in the S columns.
Based on these experiments, we observed performance
improvements for each dataset.

6. Discussion
All the datasets in the aviation domain had improved
performance when being transferred to from within the
domain with statistical significance, while their perfor-
mance was degraded when transfer learning was per-
formed across applications and from the global dataset.
Similar results were found in the automotive domain,
where the model performance improved across all
datasets when using the within-domain transfer learn-
ing approach, however, interestingly, the automotive
accident (Auto-Acc) dataset also achieved better model
performance while transferring over the application
and global datasets, with the best performance com-
ing from the global dataset. For the other two datasets,
within-domain transfer learning found the best results,
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Dataset Model Baseline (%) Domain (%) Application (%) Global (%)

P R F1 P R F1 S P R F1 S P R F1 S

Avi-Main CNN 0.91 0.89 0.89 0.92 0.89 0.90 0.0003 0.89 0.88 0.88 0.1510 0.87 0.87 0.87 0.0472
ALBERT 0.89 0.87 0.88 0.90 0.91 0.90 0.0014 0.88 0.87 0.87 0.1918 0.86 0.85 0.85 0.0040

Avi-Safe CNN 0.88 0.85 0.86 0.89 0.87 0.88 0.0336 0.89 0.82 0.85 0.0066 0.88 0.82 0.85 0.0028
ALBERT 0.87 0.84 0.85 0.88 0.86 0.87 0.0124 0.86 0.82 0.84 0.0092 0.85 0.85 0.84 0.0163

Avi-Acc CNN 0.49 0.51 0.49 0.50 0.51 0.50 0.0056 0.48 0.51 0.48 0.0293 0.48 0.50 0.49 0.2982

ALBERT 0.44 0.48 0.46 0.45 0.50 0.47 0.0094 0.42 0.48 0.45 0.0187 0.41 0.47 0.44 0.0170

Auto-Main CNN 0.64 0.70 0.67 0.67 0.71 0.69 0.0344 0.64 0.68 0.66 0.0246 0.65 0.68 0.67 0.4548

ALBERT 0.59 0.64 0.62 0.61 0.67 0.64 0.0077 0.58 0.61 0.60 0.0170 0.59 0.62 0.60 0.0169
Auto-Safe CNN 0.50 0.45 0.46 0.53 0.49 0.50 0.0002 0.42 0.39 0.40 0.0011 0.44 0.40 0.41 0.0171

ALBERT 0.48 0.46 0.46 0.50 0.48 0.48 0.0026 0.46 0.44 0.44 0.0104 0.47 0.42 0.43 0.0029
Auto-Acc CNN 0.48 0.67 0.49 0.47 0.69 0.50 0.0242 0.47 0.68 0.50 0.0372 0.49 0.69 0.52 0.0084

ALBERT 0.45 0.65 0.47 0.45 0.68 0.47 0.0513 0.46 0.67 0.48 0.0291 0.48 0.67 0.48 0.0285

Faci-Main CNN 0.5 0.70 0.56 - - - - 0.47 0.66 0.51 0.0001 0.45 0.65 0.49 0.0001
ALBERT 0.55 0.69 0.57 - - - - 0.51 0.67 0.54 0.0187 0.49 0.68 0.53 0.0016

Table 3: A performance comparison of the various transfer learning experiments. The average of the final models’
performance across 10 repeated experiments is shown as precision (P), recall (R), F1 score, as well as statistical
significance (S) using the Mann-Whitney U test. Results which outperform only training on the source dataset are
in bold, and the best for a dataset are in bold and italics. Experiments which showed statistical significance with a
p value of 0.05 are also in bold.

also with statistical significance (which answers re-
search question 1). For the facilities maintenance
dataset (Faci-Main), within-domain transfer learning
was not possible as there were no other datasets in the
domain, and similar to the aviation dataset, transferring
from the application and global datasets also reduced
performance with statistical significance.

The transfer learning results provide some interesting
insights into how transfer learning can be performed
across varying technical logbook datasets. While in all
cases, keeping the training data within a domain pro-
vided a statistically significant improvement, in the au-
tomotive accident dataset, utilizing all other training
data provided the overall best results. This suggests
that while for the majority of our datasets, adding in ad-
ditional training data from outside of the domain only
served to confuse the models, but that this is not always
the case. Some datasets may still benefit from simply
having more training data due to the nature of the clas-
sification problem, or perhaps due to a wider variety of
tokens allowing for more dataset similarity.

Furthermore, to address research question 2, we exam-
ined similarity measurement techniques to identify the
key relationships in the aviation, automotive, and fa-
cilities domains, as well as investigating the similar-
ity of these corpora that might lead to lowering or im-
proving the performance of event classification model.
For this reason, we applied the Levenshtein and Jaro-
Winkler similarity methods to compare the similarity
of these corpora. However, to further extract the key at-
tributes between these datasets, we employed the Uni-
versal Sentence Encoder and Word2vec model to se-
mantically evaluate the instances based on their se-

mantic meanings. Based on the outcomes, we noticed
the high inter-corpus similarity for within the aviation
safety (Avi-Safe) and aviation maintenance (Avi-Main)
datasets. The reason for this high inter-corpus simi-
larity score could be the common domain terms and
abbreviations that have been used in these datasets for
instance “eng was shut down and noticed slight vibra-
tion” and “right eng vibration with increasing power”
where the domain abbreviated word “eng” appeared in
both aviation safety and aviation maintenance dataset
respectively. Furthermore, Universal Sentence Encoder
provided outcome more relates to the performance of
transfer learning compared to the other methods.

7. Conclusion and Future Work
This work compared transfer learning approaches for
domain adaptation for event classification in logbook
datasets. We acquired seven logbook datasets from
three technical domains containing short instances with
non-standard grammar and spelling, and many abbre-
viations. We evaluated three domain adaption meth-
ods including (1) transferring within the domain, (2)
transferring within the application, and (3) transfer-
ring over the global dataset compared to the base-
line approach of training classification model on the
single (source) domain dataset. Our results indicate
that transferring within the domain dataset delivers
the best performance across both CNN and ALBERT
(transformer-based) models. Finally, we applied cor-
pus similarity techniques to investigate shared charac-
teristics among these technical datasets, using Leven-
shtein, Jaro-Winkler, Universal Sentence Encoder and
the Gensim Word2vec models.
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In future work, we will explore other methods to cope
with data scarcity. This includes data augmentation
techniques (Feng et al., 2021) (including rule-based
and model-based), as well as zero-shot and few-shot
learning classification approaches. Finally, we would
also like to explore transformer-based cross-lingual
methods (Ranasinghe and Zampieri, 2020) to trans-
fer information from the English datasets available in
MaintNet to low-resource languages in which there are
even less predictive maintenance datasets available.
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