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Abstract

The medical codes prediction problem from
clinical notes has received substantial inter-
est in the NLP community, and several re-
cent studies have shown the state-of-the-art
(SOTA) code prediction results of full-fledged
deep learning-based methods. However, most
previous SOTA works based on deep learn-
ing are still in early stages in terms of pro-
viding textual references and explanations of
the predicted codes, despite the fact that this
level of explainability of the prediction out-
comes is critical to gaining trust from profes-
sional medical coders. This raises the impor-
tant question of how well current explainabil-
ity methods apply to advanced neural network
models such as transformers to predict cor-
rect codes and present references in clinical
notes that support code prediction. First, we
present an explainable Read, Attend, and Code
(xRAC) framework and assess two approaches,
attention score-based xRAC-ATTN and model-
agnostic knowledge-distillation-based xRAC-
KD, through simplified but thorough human-
grounded evaluations with SOTA transformer-
based model, RAC. We find that the support-
ing evidence text highlighted by xRAC-ATTN
is of higher quality than xRAC-KD whereas
xRAC-KD has potential advantages in produc-
tion deployment scenarios. More importantly,
we show for the first time that, given the cur-
rent state of explainability methodologies, us-
ing the SOTA medical codes prediction system
still requires the expertise and competencies of
professional coders, even though its prediction
accuracy is superior to that of human coders.
This, we believe, is a very meaningful step to-
ward developing explainable and accurate ma-
chine learning systems for fully autonomous
medical code prediction from clinical notes.

1 Introduction

Within current medical systems, the prediction of
medical codes from clinical notes is a practical and
essential need for every healthcare delivery organi-

zation (Dev, 2021). A human coder or health care
provider scans medical documentation in electronic
health records, identifying important information
and annotating codes for that specific treatment
or service. With a diverse range of medical ser-
vices and providers (primary care clinics, specialty
clinics, emergency departments, mother-baby units,
outpatient and inpatient units, etc.), the complexity
of human coders’ tasks grows, while productivity
standards fall as charts take longer to review. Thus,
even partial automation of the annotation work-
flow will save significant time and effort that hu-
man coders currently spend. The biggest challenge,
however, is directly identifying appropriate medical
codes from thousands of high-dimensional codes
from unstructured free-text clinical notes (Dong
et al., 2022).

Lately, advanced deep learning-based meth-
ods for predicting medical codes based on clini-
cal notes (Kim and Ganapathi, 2021; Sun et al.,
2021; Liu et al., 2021; Yuan et al., 2022) have
achieved state-of-the-art prediction performance
and even reached parity with human coders’ perfor-
mance (Kim and Ganapathi, 2021). However, most
current works on medical code prediction based on
deep learning models do not provide the end-user
with references from the clinical notes to explain
why the predicted codes were presented/chosen.
There have been some related works that provide
the rationales or text highlights from clinical notes
to explain why the predictions were made to sup-
port humans clinical decision making (Taylor et al.,
2021; Cao et al., 2020; Mullenbach et al., 2018;
Wood-Doughty et al., 2022). However, to the best
of our knowledge, there is still a gap in studies
that have thoroughly analyzed explainability to ex-
tract supporting text for code prediction, especially
made by state-of-the-art (SOTA) transformer-based
models such as the RAC model (Kim and Ganap-
athi, 2021).

Two examples are the attention score-based ap-
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proach first introduced in Mullenbach et al. (2018)
and the model-independent knowlege-distillation
based method recently initiated in Wood-Doughty
et al. (2022). The first approach utilizes the per-
label attention mechanism to select key sentences
for prediction decisions; however, if the model does
not have the per-label attention layer, it cannot gen-
erate text snippets, and even worse, applying this
method to transformer-based architecture and de-
ploying it to production comes with a range of com-
pute and memory challenges (Vaswani et al., 2017).
In the second knowledge-distillation approach, a
large neural network is distilled into linear student
models in a post-hoc manner without sacrificing
much accuracy of the teacher model while retain-
ing many advantages of linear models including
explainability and smaller model size, which is
beneficial for deployment.

This paper makes two primary contributions:

• First, we present a general and explainable
xRAC framework that generates evidentiary
text snippets for a predicted code, which are
oriented towards the needs of a deployment
scenario of the RAC model. Then, to better
assess the explainability of our xRAC frame-
work, human-grounded evaluations is con-
ducted with two groups of internal annota-
tors, one group with and one group without
medical coding expertise. We find that the
proposed xRAC framework can benefit pro-
fessional coders but not lay annotators who
lack relevant expertise and competencies.

• Second, we propose code-prior matching and
text-prior matching losses to augment the orig-
inal binary cross-entropy (BCE) loss used
to train the RAC model. Because trained
models with BCE loss typically tend to fo-
cus more on the frequent medical codes and
their associated clinical notes portions of the
dataset, these new losses are to help distribute
the gradient update evenly across all of the
codes and note tokens, regardless of code’s
frequency and token’s relevance to codes, so
as to improve the xRAC model’s prediction as
a whole.

2 xRAC Framework

2.1 xRAC-ATTN
The original RAC architecture is built on the code-
title guided attention module that considerably im-

proves the per-label attention mechanism first intro-
duced in Mullenbach et al. (2018). This enhanced
attention module is to address the extreme spar-
sity of the large code output space with so called
code-title embedding. Because code titles (or de-
scriptions) contain important semantic information
and meaning of the codes, the RAC model obtains
its embedding from its textual description as shown
in the Table 2 examples. Specifically, the code de-
scription is fed into an embedding layer, which is
then followed by a CNN and Global Max Pooling
layer to learn the code embedding.

Therefore, the first xRAC-ATTN directly lever-
ages the attention scores learned in the RAC
model to generate the evidence text for each code
i. In particular, the attention scores wATTN

i =
(wATTN

i,1 , ..., wATTN
i,nx

) on the input tokens for code-
i is computed as follows:

wATTN
i = Softmax

(
eiU

T
x√
d

)
, (1)

where ei ∈ R1×d is one row of Et ∈ Rny×d which
is the code embeddings from the code descriptions,
Ux ∈ Rnx×d is the text representation outputted by
the Reader, d is the dimension of code embedding,
nx is the number of tokens in the input document,
and ny is the number of codes in the dataset.

2.2 xRAC-KD

The application of the original idea of knowledge
distillation (Hinton et al., 2014) requires specific
adjustments to the problem setting of medical codes
prediction. Knowledge distillation is typically used
to train a compact neural network from a large or
ensemble of neural network models. Unlike those
standard approaches, xRAC-KD transfers the large
RAC-based “teacher” model into a set of reliable
and explainable “student” linear models by dis-
tilling the predictions made by the large teacher
model.

Assume that we have a trained “teacher”
neural network fteacher(xt) and training data.1

xRAC-KD approximates fteacher(xt) with a col-
lection of student linear models fstudent(xs) =
(fs,0(xs), ..., fs,ny(xs)) defined as

fs,i(xs) = wKD
i xs, (2)

1Note that because there is flexibility in using different
representations for the same clinical note, we use different
notations xt and xs to denote a tokenized clinical note. We
use Word2Vec for xt and bag of words for xs.
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where wKD
i = (wKD

i,1 , ..., w
KD
i,nx

). fteacher(xt)
produces predicted probability vector ŷt =
(ŷt,1, ..., ŷt,ny). First xRAC-KD converts ŷt to
qt = (qt,1, ..., qt,ny) which is defined as

qt,i = T logit(ŷt,i) = T log

(
ŷt,i

1− ŷt,i

)
, (3)

where a temperature parameter T is to adjust the
logit values and set it to 1 for convenience.

Then, as a distillation loss to train the student
models fstudent(xs), xRAC-KD uses the L1 regular-
ized regression loss between qt and the student’s
predicted output vectors qs written as follows

||qt − qs||2 + λ||wKD
i ||1, (4)

with λ parameter. xRAC-KD does not use any
additional loss term with respect to the training
data’s hard labels (either 0 or 1). Once the distilled
student models fstudent(xs) are ready, xRAC-KD
finally transforms the output vector qs back to the
prediction vector ŷs = (ŷs,0, ..., ŷs,ny) easily as
follows:

ŷs,i = expit
(
qs,i
T

)
=

1

1 + exp(−qs,i/T )
. (5)

The logit and expit transforms defined in Eq. (3)
and (5) pairs that are inverse to each other are a
fundamental improvement over the initial method
presented in Wood-Doughty et al. (2022). Previ-
ously, the distilled models showed consistently low
precision scores and it was hypothesized for the
independence of the distilled linear models. How-
ever, by comparing the first and last rows of Table 1,
it turns out that this new pair has resulted in a clear
outperformance across the board over the logistic
regression baseline unlike the initial approach.

2.3 Supporting Text Extraction

Lastly, the evidence text of the xRAC-ATTN and
xRAC-KD models is constructed by first locating
the n-gram with the highest average weight score
for each code i calculated as

argmax
j

∑

n−gram

wi,j , (6)

then m tokens on either side of the n gram are in-
cluded to obtain the final subsequence of evidence
with length of n+ 2m. We set n to 4 and m to 5.

2.4 xRAC with Augmented Losses
The RAC model utilizes a transformer encoder and
an attention-based architecture to attain SOTA per-
formance. It also makes use of code descriptions
to obtain code embeddings. Although the code
embeddings obtained from the code description
capture the semantic meaning of each code, due to
the natural characteristics of medical coding, most
of the codes appear just a few times compared to
other common codes associated with common dis-
eases.

Similarly, not all tokens in a given piece of text
can be learned sufficiently and equally during the
training process; therefore, frequent code embed-
ding (as well as token embeddings) will receive
more updates than infrequent codes (and tokens).
In other words, trained models with BCE loss tend
to focus more on the frequent codes and their asso-
ciated clinical notes portions in the dataset; there-
fore, we propose code-prior matching and text-
prior matching losses to supplement the BCE loss
to encourage the models better handle imbalance
issues and improve the model’s overall prediction.

Code Prior Matching (CPM): To alleviate the
issue of frequent codes receiving more updates than
infrequent codes during training, CPM is applied
to the second to the last output of the Coder, Vx ∈
Rny×d defined as

Vx = Softmax
(
EtU

T
x√

d

)
Ux. (7)

The CPM can help the model learn evenly across
all codes, regardless of frequency, by imposing
constraints on the learned Vx. This prior matching
module is implemented by a discriminator Dcpm,
which shares the same structure as Dlpm in Deng
et al. (2021) and introduces a regularization loss
for each code as

lic = −(Ecp∼Q[logDcpm(cp)]+

Evi∼P[log(1−Dcpm(vi))]),
(8)

where vi ∈ R1×d is one row of Vx which is the
vector for one code in the dataset, P is the code
embedding distribution learned by the model, cp
is a prior vector of the same size as vi for the
given code generated by a uniform distribution Q
in the interval of [0, 1), and lic is the prior matching
loss for code-i.2 We take the average of lic losses

2We chose a compact uniform distribution on [0, 1) as the
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from all codes to obtain the final CPM loss LC as
follows:

LC =
1

ny

ny∑

i=1

lic. (9)

Text Prior Matching (TPM): In the RAC
model, not all tokens in a particular clinic text note
can be learned equally, as the Reader focuses more
on tokens related to frequent codes in the data set.
To help the model’s gradient be updated equally
for all tokens in the input, a TPM loss is applied on
Ux output of the Reader. The TPM is also imple-
mented by a discriminator Dtpm similar to Dcpm,
where it introduces another prior matching loss LT
shown as

lit = −(Etp∼Q[logDtpm(tp)]+

Eui∼P[log(1−Dtpm(ui))]),
(10)

LT =
1

nx

nx∑

i=1

lit, (11)

where ui is one row of Ux that is the embedding
of a token in the input document, P is the distribu-
tion of text embedding learned by the model, tp
is the prior embedding vector for the given token
in the input document also generated by a uniform
distribution Q in the interval of [0, 1), and lit is the
TPM for a token in the input; we then use the av-
erage loss for all tokens in the input document as
the final TPM loss LT, similar to Eq. (9). This loss
can make the model evenly learn the embeddings
for all tokens in the input, which will be fed to the
Coder for code prediction.

Overall Training Loss: Finally, the total aug-
mented loss is written as

Ltotal = LBCE + α ∗ LC + β ∗ LT, (12)

where α and β are parameters to balance LC and
LT respectively. The updated RAC model trained
with Ltotal instead of BCE loss, is first used for
xRAC-ATTN and its performance is shown in the
third row of Table 1. Although we used the original
RAC model as a teacher model to distill from in
xRAC-KD, this updated RAC model can also be
used. Comparing the second (RAC model trained
with BCE loss) and third rows (updated RAC model
trained with Ltotal) in Table 1 shows modest im-
provements in both standard and hierarchical micro
F1 scores, indicating that prior matching modules
modestly help to address the imbalanced issues.

prior, which worked better in practice than other priors, such
as Gaussian, unit ball, or unit sphere as shown in previous
works (Deng et al., 2021; Hjelm et al., 2019).

3 Experimental Results

3.1 MIMIC-III Dataset

The MIMIC-III Dataset (MIMIC v1.4 Johnson et al.
(2016)) is a freely accessible medical database
that contains de-identified medical data from over
40,000 patients who visited the Beth Israel Dea-
coness Medical Center between 2001 and 2012.3

We extract the discharge summaries and the corre-
sponding medical codes, for this study. For a direct
comparison with previous works, we use the same
data processing, and data split described in (Mul-
lenbach et al., 2018). This processing results in
47,724 samples for training, 1,632 and 3,373 sam-
ples for validation and testing, respectively, with
an average number of 16 codes assigned to each
discharge summary. More dataset statistics, can be
found in Table 2 of (Mullenbach et al., 2018).

3.2 Training Details

The xRAC models follow the same training de-
tails as the RAC model, which can be found in the
original RAC paper (Kim and Ganapathi, 2021).
The xRAC-ATTN model is also trained with the
same hyperparameters as the RAC model.4 The
xRAC-ATTN model’s extra hyperparameters in-
clude α and β in Eq. (12), with values of 0.5 and
0.8 respectively. The temperature for the xRAC-
KD model is set to 1, λ to 1e-3, and the maximum
iteration for the training is set to 800.5

3.3 xRAC Model Performance

In addition to the same standard flat metrics used
in previous RAC model evaluations, recently in-
troduced hierarchical metrics (e.g. CoPHE (Falis
et al., 2021), set-based metrics (Kosmopoulos et al.,
2015)) are used. These two metrics take the hierar-
chical structure of the ICD codes tree into consider-
ation for evaluating codes prediction. The CoPHE

3One reason for using the MIMIC-III dataset for this study
is that it has been used as standard benchmark in previous
studies (Kim and Ganapathi, 2021; Mullenbach et al., 2018),
allowing meaningful head-to-head comparisons with our work.
We believe that the proposed xRAC model is not limited to the
MIMIC-III dataset and will also work well with a MIMIC-IV
dataset, but MIMIC-IV-Note is currently not available to the
public.

4The maximum sequence length is 4096, and there are four
stacks of attention layers with single attention head. The code
and text embedding dimensions are 300 and the batch size is
16.

5For the choices of hyper-parameters, we fine-tuned the
model by running a linear search of these hyper-parameters to
find the best value at which the model’s performance peaks.
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Table 1: Medical codes prediction results (in %) by ML systems on the MIMIC-III-full-label testing set as described
in Kim and Ganapathi (2021). The bold value shows the best (and highest) value for each column metric. The
logistic regression results are taken from Mullenbach et al. (2018), and the RAC results come from Kim and
Ganapathi (2021). All numbers are the results of a single run with fixed random seeds, as practiced in the previous
literature (Kim and Ganapathi, 2021; Mullenbach et al., 2018) for apples-to-apples comparisons. Note that our
baseline is the most recent SOTA model RAC, and our xRAC-ATTN outperforms RAC in most metrics.

.
Model AUC Standard F1 Precision@n Hierarchical F1

Macro Micro Macro Micro 5 8 15 CoPHE Set-Based

Logistic Regression 56.1 93.7 1.1 27.2 54.2 41.1
RAC 94.8 99.2 12.7 58.6 82.9 75.4 60.1 62.7 64.0

xRAC-ATTN (ours) 94.8 99.1 12.6 58.8 82.9 75.6 60.1 62.9 64.3
xRAC-KD (ours) 93.6 98.7 7.4 46.0 69.4 61.6 48.6 51.8 54.5

metric further utilizes depth-based hierarchical rep-
resentation and the count of codes at different an-
cestral levels of the tree to evaluate model’s predic-
tion, providing more meaningful evaluation in this
context.

The results of the xRAC-ATTN and the xRAC-
KD are shown in the last two rows of Table 1 re-
spectively. First, when compared to the prior RAC
model trained with BCE loss, the xRAC-ATTN
model improves both standard and hierarchical
micro F1 scores, as noted by comparing the sec-
ond and third rows of Table 1, suggesting that the
prior matching modules modestly help and effec-
tively improve the SOTA scores. Second, while the
xRAC-KD student model (shown in the last row)
performs slightly worse than that of the RAC-based
teacher model (shown in the second row), it still
significantly outperforms the logistic regression
baseline (shown in the first row, which was trained
from scratch and has the same level of model com-
plexity) across the board, which was not the case
in Wood-Doughty et al. (2022).

3.4 Human-Grounded Evaluation
Human Evaluation Design: Human-grounded
evaluation is important for evaluating the explain-
ability. Because medical code annotation involves
domain knowledge specific to medical coding,
human evaluation is challenging; thus, we con-
ducted a human evaluation with two groups of in-
ternal annotators. Group A had two annotators
without medical coding experience and Group B
had six certified professional coders. While both
groups followed the same annotation instructions
and guidelines, Group A was supervised by one
manager and Group B was supervised by two man-
agers with professional coder management experi-

ence to ensure annotation consistency (i.e., inter-
annotator agreement) within each group. Group
A worked full-time for two weeks to finish all the
annotation, while Group B worked part-time for
three weeks. Because the two groups of annotators
involved in the human evaluation process are well
aware that the task involves the medical notes of
anonymized patients, the study does not require
IRB approval and does not raise any ethical con-
cerns.

Annotation Task Design: We select the over-
lap of codes predicted between the xRAC-ATTN
and xRAC-KD models on the MIMIC-III-full-label
testing set and combine the code descriptions and
the corresponding textual explanations generated
by each model together in a question sheet 6. We
then provide the sheet to Groups A and B for eval-
uation. Specifically, the question sheet contains six
columns which are Question ID, Code and Descrip-
tion, Explanation Text Snippet, Highly Informative,
Informative, and Irrelevant (see Table 2 for sample
questions). Each code has two different text snip-
pets extracted by two models, respectively. The
annotators need to assign one of the three choices,
which are highly informative, informative, and ir-
relevant to every explanation text snippet extracted
to support the appearance of the predicted code.

Highly informative is defined as if the text snip-
pet provides an accurate explanation for the pre-

6The MIMIC-III dataset’s entire test set is used for human
evaluation. Specifically, both the xRAC-ATTN and xRAC-KD
models take clinical note from each example in the test set
as input and predict multiple codes associated with this note.
Because each model can predict differently for each example
in the test set, we select all the test examples from the two
models that are predicted with the same codes to compare
their explainability. As a result, there are a total of 3,813 test
examples predicted with the same codes by the xRAC-ATTN
and xRAC-KD models.
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Table 2: Two example questions provided for human evaluation: The codes in these two questions are the same,
“521.00, Dental caries, unspecified", however, the two explanation text snippets classified as A) and B) are extracted
by two different models, xRAC-ATTN and xRAC-KD. The information about the models is hidden from human
annotators, and the order of text snippets for the same code is permuted to prevent the annotators from guessing
the models based on the order. Note that HI, I, and IR stand for Highly Informative, Informative, and Irrelevant,
respectively.

Question
ID

Code and
Description

Explanation Text Snippet HI I IR

1
521.00, Dental caries,

unspecified

A) surgical or invasive procedure left
**and right heart catheterization**

coronary angiogram multiple dental extractions

1
521.00, Dental caries,

unspecified

B) balloon s p dental extractions
**s p exploratory laparotomy**

and cholecystectomy fungal sepsis discharge

Table 3: The overall informativeness of xRAC-ATTN and xRAC-KD retrieved explanatory text snippets. The left
half represents the outcome of Group A’s annotation, while the right half represents the outcome of Group B’s
evaluation. HI, I, and IR stand for Highly Informative, Informative, and Irrelevant, respectively. Percent denotes
the ratio of informative text snippets (HI and I) to the total extracted snippets, which is 3,813 (in %).

Model Group A (Lay Annotators) Group B (Professional Coders)
HI I IR Percent HI I IR Percent

xRAC-ATTN 1652 1389 772 79.75 1283 1094 1436 62.34
xRAC-KD 865 1318 1630 57.25 145 212 3456 9.36

Table 4: The evaluation agreements on Highly Informative and Informative text snippets between Groups A and B
as measured by Jaccard Similarity (in %). Note that we evaluated the annotation consistency between two groups as
described in Section 3.4, and the annotation consistency (or correctness) of lay annotators (Group A) is lower than
40% even provided with the same textual references as for professional coders (Group B).

Model Jaccard Similarty
HI I

xRAC-ATTN 39.2 18.5
xRAC-KD 7.0 5.0
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dicted code. Otherwise, it is informative as long
as the annotators believe that the text snippet ad-
equately explains the presence of the given code,
is related to the code’s description, or has a close
meaning to the code’s description. Because the
medical note contains domain knowledge, it is diffi-
cult for annotators to assign a finer-grained scale to
the textual evidence when deciding between highly
informative, informative, and irrelevant.

The final question sheet has a total of 3,813
codes predicted with different supporting text snip-
pets. Unlike all previous studies, which typically
collect less than 100 samples from clinicians (e.g.,
Mullenbach et al. (2018)), the task design of our
study is quite unique, as is the volume of questions
to our knowledge.

Human Evaluation Results: The results of
human evaluation for the explainability of xRAC
framework are shown in Tables 3 and 4. Table 3
shows the overall result of the informativeness of
the text snippets extracted by xRAC-ATTN and
xRAC-KD. The percentage column in Table 3 rep-
resents the percentage of explanations annotated as
highly informative or informative, excluding irrele-
vant explanations. Thus, the irrelevant explanations
generated by our model are about 20-40% as shown
in Table 3.

One can see that there is a much larger gap in
xRAC-KD between Group A and Group B than
between xRAC-ATTN. Each group of annotators
adhered to use the same standard to evaluate the tex-
tual explanation and was monitored by managers
with professional coder management experience
to ensure that there was no annotation variation
among annotators in the same group. However, the
large deviation between the two groups (Groups A
and B) is understandable due to the domain knowl-
edge gap between professional coders and lay anno-
tators. Because of their limited medical knowledge
and understanding, lay annotators tend to assign
more highly informative and informative to the ex-
tracted textual explanation. Whereas, professional
coders are much stricter on the informativeness of
textual explanations.

In other words, this implies that xRAC-ATTN
is a more viable choice than xRAC-KD to extract
a text snippet from clinical notes to support code
prediction. However, Table 4 shows that the con-
sistency score measured by Jaccard Similarity be-
tween two groups is lower than 40% even with
xRAC-ATTN. This suggests that the automated

extraction system must continue to rely on profes-
sional coders’ feedback and domain experience,
and that text snippets alone are insufficient to re-
place them. In other words, there is still room to
improve explainability for a lay person without
expertise to appropriately code.

4 Conclusion

In this paper, a xRAC framework is presented to
obtain supporting evidence text from clinical notes
that justify the predicted medical codes from med-
ical code prediction systems. We have demon-
strated that the proposed xRAC framework may
help even complex transformer-based models (e.g.,
RAC model) to attain high accuracy with a decent
level of explainability (which is of high value for
deployment scenarios) through quantitative exper-
imental studies and qualitative human-grounded
evaluations. It was also shown for the first time that,
given the current state of explainability methodolo-
gies, using the proposed explainable yet accurate
medical codes prediction system still requires pro-
fessional coders’ expertise and competencies.

Limitations

The current human-grounded evaluation studies
only a simplified scenario: the impact of clinical-
text-based explanations provided alongside predic-
tions on explainability as judged by humans with
and without professional coding backgrounds. This
exercise sheds light on a key element that is neces-
sary for these AI coding-based models to be useful
in real-world deployment scenarios, but does not
definitively ascertain that these coding predictions
provided alongside explanations of the prediction
would enable a transition to AI-driven coding au-
tonomously. First, we have not studied how to
incorporate the proposed xRAC framework into
a human-in-the-loop situation with human coder
feedback, which may be a very common scenario of
deployment in practice. Second, we have not com-
pared a full AI-driven coding model with humans-
in-the-loop to a human-only process, in terms of
speed, manpower needed, and accuracy. Limita-
tions of the prediction model may become relevant
in these situations, as human coders must occa-
sionally combine disparate pieces of information
together (Dong et al., 2022). Third, while the
MIMIC-III dataset provides a useful benchmark
for evaluating approaches, it is not representative
of the wide range of clinical notes, so it would be
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beneficial to expand to other data sets with a wider
range of codes.

Ethics Statement

First and foremost, an automated and explainable
machine learning system for medical code predic-
tion aims to streamline the medical coding work-
flow, reduce the backlog of human coders by in-
creasing productivity, and assist human coders
quickly navigating complex and extended charts
while reducing coding errors (Crawford, 2013).
Second, an automated and explainable system is
designed to lessen the administrative burden on
providers, allowing them to focus on providing care
rather than mastering the complexities of coding.
Furthermore, better automated and explainable soft-
ware can improve clinical documentation, enhance
the overall picture of its quality, and eventually
redirect lost healthcare dollars to more meaningful
purposes (Shrank et al., 2019).
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