
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI), pages 160 - 172
December 7, 2022 ©2022 Association for Computational Linguistics

How Long Is Enough? Exploring the Optimal Intervals of
Long-Range Clinical Note Language Modeling

Samuel Cahyawijaya1∗, Bryan Wilie1∗, Holy Lovenia1∗, MingQian Zhong2,3,4,
Huan Zhong2,3, Nancy Y. Ip2,3,4, Pascale Fung1

1Center for Artificial Intelligence Research (CAiRE), Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China

{scahyawijaya, bwilie, hlovenia, pascale}@ust.hk

2Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center,
The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

{mzhongac,dorothyzhong,boip}@ust.hk

3Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
{mzhongac,dorothyzhong,boip}@ust.hk

Abstract
Large pre-trained language models (LMs) have
been widely adopted in biomedical and clini-
cal domains, introducing many powerful LMs
such as bio-lm and BioELECTRA. However,
the applicability of these methods to real clin-
ical use cases is hindered, due to the limita-
tion of pre-trained LMs in processing long
textual data with thousands of words, which
is a common length for a clinical note. In
this work, we explore long-range adaptation
from such LMs with Longformer, allowing
the LMs to capture longer clinical notes con-
text. We conduct experiments on three n2c2
challenges datasets and a longitudinal clinical
dataset from Hong Kong Hospital Authority
electronic health record (EHR) system to show
the effectiveness and generalizability of this
concept, achieving 10% F1-score improvement.
Based on our experiments, we conclude that
capturing a longer clinical note interval is ben-
eficial to the model performance, but there are
different cut-off intervals to achieve the optimal
performance for different target variables. Our
code is available at https://github.com/
HLTCHKUST/long-biomedical-model.

1 Introduction

Clinical note is one of the most abundant data
available in EHR systems, which records most
of the patient interaction with the hospital ser-
vices, such as consultation with doctors, procedure
note, laboratory report, discharge summary, etc.1

Despite retaining rich clinical information, clini-
cal notes are highly unstructured and composed

∗These authors contributed equally.
1https://www.healthit.gov/isa/

uscdi-data-class/clinical-notes

of non-standardized information, which curbs the
potential practicality of such information. Large
pre-trained LMs, such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2020), GPT-2 (Rad-
ford et al., 2019), etc., have been shown to work
well in extracting crucial information from clinical
notes by utilizing transfer learning and attention
mechanism (Ji et al., 2021; Alsentzer et al., 2019;
Lewis et al., 2020). The adaptation of these mod-
els to biomedical and clinical domain emphasizes
this success, establishing many new state-of-the-art
performances on multiple biomedical and clinical
benchmarks (Peng et al., 2019; Gu et al., 2021;
Zhang et al., 2022).

While the attention mechanism embedded in
the pre-trained models enables them to achieve
great performance, it is to be noted that it also
causes a quadratic growth in computation cost
with respect to input sequence length (Tay et al.,
2022; Wang et al., 2020; Cahyawijaya et al., 2022).
This makes efficiently processing long documents
with pre-trained LMs difficult, especially in clini-
cal note modeling, in which a single clinical note
tends to consist of hundreds or even thousands of
words (Uzuner et al., 2008; Uzuner, 2009; Stubbs
et al., 2015; Gehrmann et al., 2018; Johnson et al.,
2019; Stubbs et al., 2019). Current approaches to
this problem commonly involve truncation, chunk-
ing, or windowing of the long input sequence, pre-
venting the models from acquiring an entire medi-
cal record information provided by a whole clinical
note. Considering that clinical note modeling re-
quires capturing and understanding the underlying
long-term dependencies in the clinical notes, this
certainly puts a limit on their predictive capability.
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For this reason, to maximize the models’ capabil-
ity without sacrificing a part of the input clinical
notes, we explore the application of long-range
adaptation through linear attention mechanism (Dai
et al., 2019; Beltagy et al., 2020; Wang et al., 2020;
Choromanski et al., 2021), which reduces the com-
putation cost of attention from quadratic to linear
in regards to input sequence length.

In this work, we focus on assessing the benefit of
capturing longer clinical notes on large pre-trained
LMs to n2c2 (National Clinical NLP Challenges)2

clinical tasks by adapting a linear attention mecha-
nism, i.e., Longformer (Beltagy et al., 2020). Fur-
thermore, to test the generality of this approach, we
evaluate it on a longitudinal clinical note corpus
from Hong Kong Hospital Authority EHR system,
which covers records from 43 hospitals in Hong
Kong. Lastly, we hypothesize that modeling longer
interval of clinical notes improves the prediction
quality of the models on any clinical task. To prove
our hypothesis, we conduct our experiment using
different context-length, allowing the model to ac-
cess various intervals of clinical notes. Our result
suggests that a longer interval of clinical notes in-
creases the prediction quality of the models in most
cases, but there is a limit of context length required
depending on the target variable.

Our contributions in this work can be summa-
rized in three-fold:

• We assess the effectiveness of capturing
longer interval of clinical notes on biomedical
and clinical large pre-trained LMs on three
n2c2 challenges which increase the perfor-
mance by ∼10% F1-score,

• We evaluate the generalization of this ap-
proach using longitudinal clinical note data
gathered in Hong Kong Hospital Authority
EHR system on two clinical tasks, i.e., dis-
ease risk and mortality risk predictions, which
improve the performance by ∼5-10 F1-score,

• We observe that each target variable has a dif-
ferent optimal clinical notes cut-off interval
and we conclude that the optimal cut-off in-
terval for mortality risk prediction is ∼2-3
months, while for disease risk prediction, it
requires 3.5 years or even longer interval to
achieve the optimal performance.

2https://n2c2.dbmi.hms.harvard.edu/

2 Related Works

Clinical Note Modeling Clinical notes have been
utilized for various applications in healthcare. Text
mining methods for analyzing pharmacovigilance
signals using clinical notes have been explored and
yield promising results (Haerian et al., 2012; LeP-
endu et al., 2012, 2013). Clinical notes with other
EHR data are also employed for estimating the
readmission time and mortality risk of the next
patient encounter (Hammoudeh et al., 2018; Ra-
jkomar et al., 2018). Clinical note data is also
effective for analyzing disease comorbidity, such
as mental illness (Wu et al., 2013), autoimmune
diseases (Escudié et al., 2017), and obesity (Pan-
talone et al., 2017). Predicting disease risk using
clinical note data has also been explored (Miotto
et al., 2016; Choi et al., 2018; Liu et al., 2019, 2018;
Koleck et al., 2019). Despite all the efforts in clin-
ical note modeling, to the best of our knowledge,
how clinical note interval impacts the performance
of pre-trained LMs has never been studied.

Biomedical and Clinical Pre-trained LMs
Self-supervised pre-training LMs employing
transformer-based architectures (Vaswani et al.,
2017), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2020), and ELECTRA (Clark
et al., 2019), have thrived in various general domain
NLP benchmarks (Wang et al., 2018; Rajpurkar
et al., 2016; Ladhak et al., 2020; Lai et al., 2017;
Wilie et al., 2020; Cahyawijaya et al., 2021; Park
et al., 2021). To extend the understanding of these
LMs to the linguistic properties in biomedical and
clinical domain, a generation of LMs exploiting
biomedical and clinical corpora emerges.

In 2019, Alsentzer et al. (2019) introduce
BioBERT, an extended version of BERT pre-
trained on large-scale biomedical data (i.e.,
PubMed abstracts and PMC full-text articles)
which surpasses off-the-shelf BERT in three fun-
damental downstream tasks in biomedical do-
main. Due to the linguistic differences exhib-
ited by non-clinical biomedical texts and clinical
texts, Alsentzer et al. (2019) introduce Clinical-
BERT by fine-tuning BERT and BioBERT on the
MIMIC-III corpus, and improve the performance
over five clinical NLP tasks.

Unlike prior works, PubMedBERT (Gu et al.,
2020) performs biomedical pre-training from
scratch, which offers larger performance gains
over various biomedical downstream tasks in the
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BLURB benchmark. Similarly, bio-lm (Lewis
et al., 2020) employs recent pre-training advances,
utilizes various biomedical and clinical corpora
for pre-training, and achieves the highest perfor-
mance on 9 biomedical and clinical NLP tasks. In
2021, BioELECTRA (Kanakarajan et al., 2021),
a general domain ELECTRA (Clark et al., 2019)
pre-trained on biomedical corpora, sets the new
state-of-the-art performance for all datasets in the
BLURB benchmark and 4 datasets in the BLUE
benchmark (Peng et al., 2019).

Long Sequence Language Modeling Recent
progress in language modeling is dominated by
transformer-based models which shows a remark-
able results on numerous tasks. Nevertheless, these
models have limited capability to process long-
range clinical notes data due to its quadratic at-
tention complexity. Various approaches have been
introduced to reduce this complexity problem, such
as recurrence approach (Dai et al., 2019; Rae et al.,
2020), sparse and local attention patterns (Kitaev
et al., 2020; Qiu et al., 2020; Child et al., 2019;
Zaheer et al., 2020; Beltagy et al., 2020), low-rank
approximation (Wang et al., 2020; Winata et al.,
2020), and kernel methods (Katharopoulos et al.,
2020; Choromanski et al., 2021). Adaptation from
existing pre-trained models to some of these meth-
ods have also been explored and show the potential
for knowledge transfer (Beltagy et al., 2020; Choro-
manski et al., 2021). In this work, we utilize Long-
former (Beltagy et al., 2020) to enable the model
to capture long-range clinical note information.

3 Methodology

3.1 Problem Definition

Clinical notes are narrative patient data relevant
to the context identified by note types3. There are
multiple types of clinical notes, e.g., discharge sum-
mary, consultation note, progress note, lab report,
etc. In general, a single clinical note consists of a
text narrative and additional metadata defining the
clinical note, e.g., note identifier, recording times-
tamp of the note, etc. In n2c2 challenges, a single
clinical note is presented in a textual format with
the metadata written on top of the text narrative,
while a longitudinal clinical note is presented as a
concatenation of several clinical notes with a sepa-
rator text placed between two clinical notes. This

3https://www.healthit.gov/isa/
uscdi-data-class/clinical-notes

clinical note is usually long, ranging from several
hundreds to thousands words, while most existing
biomedical and clinical pre-trained LMs can only
capture up to 512 subwords, which is insufficient
to capture the whole content of most clinical notes.

3.2 Long-Range Clinical Note LMs

We increase the capacity of LMs to process longer
clinical notes by adapting Longformer (Beltagy
et al., 2020) to the existing biomedical and clinical
pre-trained LMs. Longformer enables linear atten-
tion mechanism by dividing single quadratic all-to-
all attention into two attention steps, i.e., sliding-
window and global attentions. Sliding-window at-
tention allows each token to attend to neighboring
tokens, while global attention allows some, usu-
ally a few, tokens to attend to all tokens, hence has
a better computation complexity compared to the
quadratic attention mechanism. It is to be noted
that when extending an original transformer-based
model into a Longformer, some new parameters are
introduced, i.e., the new positional embeddings, the
sliding-window projection parameters, and global
attention projection parameters. For the positional
embeddings, following (Beltagy et al., 2020), we
copy the weights of the pre-trained positional em-
beddings to initialize the new positional embed-
dings. For the sliding-window and global attention
parameters, we initialize both projection parame-
ters with the pre-trained projection parameters.

4 Long-Range Clinical Note LMs on n2c2
Challenges

We assess the effectiveness of long-range clinical
note LMs on US-based clinical note datasets from
three n2c2 challenges. Additionally, we also eval-
uate six different pre-trained LMs without long-
range adaptation to benchmark the performance of
the biomedical and clinical LMs.

4.1 Dataset

We use three clinical datasets concentrating on clas-
sifying diverse clinical problems from n2c2. These
datasets are: 1) n2c2 2006 smoking challenge, fo-
cusing on predicting smoking status of patients
based on their discharge summary; 2) n2c2 2008
obesity challenge, focusing on recognizing obe-
sity and its comorbidities of patients through their
discharge summary; and 3) n2c2 2018 cohort selec-
tion challenge, focusing on determining if a patient
meets selection criteria of certain clinical trials co-
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Dataset |Train| |Test|
Word count

Longitudinal? #Label #Class
Median Q3 95% Max

2006 Smoking 398 104 677 1096 1775 3023 No 5 1
2008 Obesity (Textual) 730 507 1084 1425 2094 4280 No 16 4
2008 Obesity (Intuitive) 730 507 1084 1425 2094 4280 No 16 4
2018 Cohort Selection 202 86 2550 3235 4578 7070 Yes 13 1

Table 1: The overall statistics of the n2c2 datasets used in our experiment.

horts through longitudinal clinical notes. We uti-
lize BigBIO framework (Fries et al., 2022)4 to load
the n2c2 datasets. We provide overview of these
datasets in Table 1.

n2c2 2006 Smoking Challenge We utilize the
smoking prediction subtask from n2c2 2006 chal-
lenge (Uzuner et al., 2008), where each data in-
stance consists of a de-identified discharge sum-
mary annotated by two pulmonologists with smok-
ing status. This smoking status can be either past
smoker" (when it is explicitly stated that the pa-
tient is a past smoker or that the patient used to
smoke but has stopped for at least a year), "current
smoker" (when it is explicitly stated that the patient
is a current smoker or that the patient has smoked
within the past year), "smoker" (when there is not
enough temporal information to classify whether
a patient is a "past smoker" or "current smoker"),
"non-smoker" (when a patient’s discharge summary
indicates an absence of smoking habit), or "un-
known" (when there is no mention of smoking).

n2c2 2008 Obesity Challenge The n2c2 2008
obesity challenge (Uzuner, 2009) consists of 1027
pairs of de-identified discharge summaries and
16 disease labels. The disease labels include
obesity and its 15 comorbidities, e.g., asthma,
atherosclerotic cardiovascular disease (CAD), con-
gestive heart failure (CHF), depression, diabetes
mellitus (DM), gallstones/cholecystectomy, gas-
troesophageal reflux disease (GERD), gout, hy-
percholesterolemia, hypertension (HTN), hyper-
triglyceridemia, obstructive sleep apnea (OSA),
osteoarthritis (OA), peripheral vascular disease
(PVD), and venous insufficiency.

The annotation for each discharge summary is
done by providing each disease label with either
"present", "absent", "questionable", or "unmen-
tioned". The dataset has two types of annotations,
i.e., textual judgement (only based on related ex-

4https://github.com/bigscience-workshop/
biomedical

plicit statements) and intuitive judgement (based
on everything written in the discharge summaries).
We use both annotations in our experiments and
report the evaluation scores for each annotation.

n2c2 2018 Cohort Selection Challenge The
2018 Shared Task 1: Clinical Trial Cohort Selec-
tion (Stubbs et al., 2019) reuses 288 patient records
from the 2014 n2c2 shared task dataset (Stubbs
et al., 2015) and reframes it as a cohort selection
task, which requires an automatic evaluation of
whether a patient fits or does not fit in certain co-
horts according to their longitudinal de-identified
clinical notes, ranging between 2-5 clinical notes.

The cohorts or selection criteria used in the
dataset as labels are: DRUG-ABUSE (current or
past usage of drugs), ALCOHOL-ABUSE (current
alcohol intake over weekly recommended limit),
ENGLISH (English-speaking patient), MAKES-
DECISIONS (patients required to make their
own medical decisions), ABDOMINAL (history
of related surgery), MAJOR-DIABETES (major
diabetes-related complication), ADVANCED-CAD
(advanced cardiovascular disease), MI-6MOS (my-
ocardial infarction in the past 6 months), KETO-
1YR (diagnosis of ketoacidosis in the past year),
DIETSUPP-2MOS (dietary supplement intake in
the past 2 months, excluding vitamin D), ASP-
FOR-MI (usage of aspirin to prevent MI), HBA1C
(any hemoglobin A1c value between 6.5% and
9.5%), and CREATININE (serum creatinine above
the upper limit of normal). Two annotators with
medical expertise classify each label of a patient’s
set of clinical notes as either "met" or "not met".

4.2 Models

In this experiment, we compare several pre-trained
LMs, covering two variants of BERT model repre-
senting general domain LMs, i.e., uncased BERT5

and cased BERT6, two variants of biomedical do-

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/bert-base-cased
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2006 Smoking 2008 Obesity (Text.) 2008 Obesity (Intui.) 2018 Cohort Selection

micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1
Baseline

Top-5 scorer 88.00% 69.00% 97.04% 77.18% 95.58% 63.44% 90.30%
Top-10 scorer 86.00% 58.00% 96.39% 61.40% 95.08% 62.87% 87.70%

Pre-trained Language Model
BERT-cased 61.63% 31.79% 82.47% 38.73% 81.69% 51.71% 72.80% 48.45%

BERT-uncased 65.63% 41.12% 85.73% 40.83% 83.46% 53.28% 74.86% 51.32%
clinicalBERT 56.59% 39.34% 85.64% 40.64% 85.20% 54.88% 72.83% 49.99%

PubMedBERT 69.38% 41.65% 88.98% 46.27% 87.11% 56.47% 74.78% 49.94%
bio-lm 71.44% 49.43% 86.57% 43.15% 84.92% 54.73% 75.03% 52.18%

BioELECTRA 70.72% 48.26% 86.71% 48.26% 85.31% 55.00% 74.32% 49.10%

Long-range Pre-trained Language Model
bio-lm (1024) 82.12% 55.72% 92.52% 50.36% 90.36% 59.13% 77.03% 53.94%
bio-lm (2048) 86.01% 62.30% 96.44% 55.99% 94.76% 62.61% 76.76% 52.93%
bio-lm (4096) 84.52% 57.76% 97.11% 55.68% 95.48% 63.19% 79.42% 57.85%
bio-lm (8192) 84.66% 59.49% 97.07% 55.08% 95.48% 63.20% 81.43% 61.95%

BioELECTRA (1024) 82.98% 63.35% 93.54% 54.47% 90.40% 59.12% 74.95% 51.69%
BioELECTRA (2048) 82.84% 61.09% 96.03% 56.08% 91.69% 60.21% 77.59% 54.39%
BioELECTRA (4096) 80.40% 57.22% 95.81% 56.06% 92.88% 61.12% 79.10% 56.38%
BioELECTRA (8192) 85.21% 64.32% 96.20% 59.59% 92.78% 61.09% 81.63% 58.44%

Table 2: Evaluation results of our experiments on the n2c2 datasets. Top-5 and Top-10 scorers are retrieved from the
submission benchmark of corresponding challenge. The number inside the bracket denotes the length of context
that can be captured by the model. Bold and underline denotes the first and second best scores within a group.

main LMs, i.e. PubMedBERT (Gu et al., 2021)7

and BioELECTRA (Kanakarajan et al., 2021)8,
one variant of clinical domain LM, i.e., Clinical-
BERT (Alsentzer et al., 2019)9, and one variant of
mixed biomedical and clinical domains LM, i.e.,
bio-lm (Lewis et al., 2020)10.

To enable longer context clinical note modeling,
we adapt Longformer (Beltagy et al., 2020) with the
initialization strategy specified in §3.2. We conduct
experiments with four different context lengths, i.e.,
{1024, 2048, 4096, 8192} on two pre-trained LMs
variants, i.e., BioELECTRA and bio-lm.

4.3 Training and Evaluation
Following BERT, RoBERTa, and bio-lm experi-
ments, we tune the learning rate for all BERT
and RoBERTa models from [1e-5, 2e-5, 3e-5].
While for the BioELECTRA model, following
ELECTRA (Clark et al., 2019) and BioELEC-
TRA (Kanakarajan et al., 2021), we tune the learn-
ing rate from [5e-5, 1e-4, 2e-4]. In all experiments,
we use a batch size of 8, and a linear learning rate

7https://huggingface.co/microsoft/
BiomedNLP-PubMedBERT-base-uncased-abstract

8https://huggingface.co/kamalkraj/
bioelectra-base-discriminator-pubmed

9https://huggingface.co/emilyalsentzer/Bio_
ClinicalBERT

10https://huggingface.co/EMBO/bio-lm

decay. For the n2c2 2006 and n2c2 2008 tasks, we
train the models for 50 epochs, while for the n2c2
2018 task, we train the models for 80 epochs. For
the evaluation, we incorporate the official evalu-
ation metrics defined for each challenge. All of
them report micro-F1 and macro-F1 scores.

4.4 Result and Analysis

As shown in Table 2, in general, domain-specific
LMs yield higher performance compared to general
domain LMs, except for ClinicalBERT which per-
forms on a par with the general domain BERT mod-
els. PubMedBERT, bio-lm, and BioELECTRA pro-
duce comparable evaluation performances across
all tasks, with ∼2-5% higher F1-score compared
to the general domain BERT and ClinicalBERT.
Nevertheless, the scores are much lower compared
to the Top-10 scorer on the challenge benchmark
since the models can only capture partial informa-
tion of the clinical note data.

By increasing the context length of the model,
the performance rises significantly. Comparing
with the original pre-trained versions of the mod-
els, the best performing long-range pre-trained LM
improves the evaluation performance by ∼10% F1-
score in all datasets. As shown in Figure 1, models
with longer context length tend to perform better,
but the performance gain is limited to the length of
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Figure 1: Effect of capturing longer clinical notes context to the evaluation performance, i.e., on micro-F1 (Left)
and macro-F1 (Right), averaged over the context length across the evaluated n2c2 tasks.

the clinical notes in the dataset. For instance, on
the n2c2 2006 dataset, the performance improve-
ment of both bio-lm and BioELECTRA models
are steeper from context length 512 to 1024 rather
than from context length 1024 to 2048, 2048 to
4096, and 4096 to 8192. This is because a huge
portion of the notes in the datasets can be suffi-
ciently captured within 1024 subwords. In contrast,
the performance improvement on the n2c2 2018
dataset is more linear per context length step since
most of the length of the clinical notes is much
longer than the other two datasets. Every step of
extending the context length provides more infor-
mation to the model, which is likely to improve the
model performance considerably.

On the n2c2 2006 and 2008 challenges, our best
performing models mostly achieve a comparable
score to the Top-10 or Top-5 scorer of the corre-
sponding challenge benchmark. This is a remark-
able feat since our models neither utilize any en-
semble method, incorporate any clinical expert, nor
exploit external data–common practices used by the
top scorers in the challenge benchmarks.

5 Long-Range Clinical Note LMs on
Hong Kong Longitudinal Dataset

We assess the generalization and effectiveness of
long-range clinical notes LMs on Hong Kong lon-
gitudinal clinical note data. We construct a longitu-
dinal dataset with two target variables, i.e., disease
risk and mortality risk, and evaluate long-range
LMs on the dataset. In addition, we add a baseline
model, which takes high-level features extracted
from the corresponding tabular data provided by
the EHR system as the input, to assess the effec-
tiveness of clinical note modeling.

Split # Patients # Seen patient # Unseen patient
records records

Train 278,253 2,027,561 -
Valid 3,621 3,177 -
Test 17,903 15,541 2,362

Total 299,777 2,046,279 2,362

Table 3: The overall statistics of our Hong Kong longi-
tudinal dataset. # Seen patient records and # Unseen
patient records indicate the number of records on the
seen and unseen test set respectively.

5.1 Dataset Construction

We construct a longitudinal clinical note dataset
for disease risk and mortality risk predictions from
anonymized cancer cohort patient records gathered
in the Hong Kong Hospital Authority EHR sys-
tem covering 43 hospitals in Hong Kong. The
patient records span across the year 2000 and
2018. We exclude all patients having less than
two clinical notes and gather a total of ∼300,000
patients. To construct labelled data for the su-
pervised learning, from patient Pi with T clinical
records, we build T−1 labelled autoregressive data
DPi = {{CPi

k }tk=1, Y
Pi
t+1}T−1

t=1 , where {CPi
k }tk=1

denotes t prior clinical notes of the patient Pi, and
Y Pi
t+1 denotes the target criterion retrieved from the

t+ 1th clinical record of the patient Pi. We collect
over ∼2M labelled clinical notes from all patients
with two targets: disease risk and mortality risk.

We take the last two health records from all pa-
tient records in the year 2018 as the validation and
test sets. To assess the generalization to new patient
data, we omit some patient data from the training
set and only used the last labelled record of those
patients as the unseen test set. The remaining test
data becomes the seen test set. The dataset statistics
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Test set Models
Diagnosis Mortality

Top-1 Top-3 Top-5 F1 F1 AUC

Seen

EHR-FFN 64.3% 75.7% 80.3% 40.6% 49.5% 78.1%
BioELECTRA (512) 76.2% 88.6% 91.8% 51.6% 61.5% 92.0%
BioELECTRA (2048) 79.8% 91.5% 94.3% 54.2% 65.3% 91.9%
BioELECTRA (8192) 81.3% 92.9% 95.5% 55.7% 64.9% 91.8%

Unseen

EHR-FFN 17.8% 32.9% 43.1% 9.5% 49.6% 73.9%
BioELECTRA (512) 63.4% 78.6% 83.7% 43.1% 52.2% 84.8%
BioELECTRA (2048) 66.3% 81.2% 85.9% 45.1% 52.0% 85.8%
BioELECTRA (8192) 69.1% 84.0% 88.2% 46.8% 52.3% 88.1%

Table 4: Evaluation results of our experiments on the seen patient test set and the unseen patient test set. Bold and
underline denotes the first and the second best score on each test set, respectively.

is shown in Table 3. For the disease risk estima-
tion, we take the final disease diagnosis on the next
clinical record as the label. For cancer diseases,
we group the diagnosis based on the cancer site
categorization from the Hong Kong Cancer Reg-
istry11, while for other diseases, we take the first
three digits of the ICD-10 codes. In total, there are
79 classes for disease risk estimation. For the mor-
tality label, we retrieve the mortality status from
the discharge code from the next clinical record of
the corresponding patient. The label distribution of
the dataset is shown in Appendix A.

5.2 Models

We experiment using Longformer with three vari-
ants of sequence length, i.e., {512, 2048, 8192}.
We initialized all models with the same pre-trained
BioELECTRA (Kanakarajan et al., 2021) check-
point as in §4.3. To assess the effectiveness of clin-
ical note modeling, we employ another baseline
using a 4-layer feedforward model (∼5M parame-
ters), which takes an input of 3,942 dimension high-
level features from the EHR database (EHR-FFN).
Similar to DeepPatient (Miotto et al., 2016), we
extract high-level features from the diagnoses, med-
ications, procedures, and laboratory test records by
counting the occurrence of each feature type. In
addition, we also add other features such as length
of stay, the indicator for emergency unit admission,
age group, etc. The details of EHR-FFN and the
extracted features are shown in Appendix B.

5.3 Training and Evaluation

We train all of the models with an initial learning
rate of 5e-5, batch size of 48, and a linear learning

11https://www3.ha.org.hk/cancereg/allages.asp

rate decay. We train the model for 3 epochs and
test the model with the best validation score. For
evaluating the diagnosis label, we incorporate the
F1-score along with the Top-1, Top-3,and Top-5
accuracy scores. For the mortality label, we in-
corporate F1-score and AUC. The evaluation is
conducted on two different test sets: (i) the seen
patient test set and (ii) the unseen patient test set.

5.4 Results and Analysis

Effect of Clinical Note Modeling We show our
experiment results for the seen and the unseen test
sets in Table 4. All BioELECTRA models yield
higher results than the EHR-FFN for both test sets,
showing the effectiveness of clinical note modeling
for disease risk and mortality risk predictions using
EHR data. From the comparison between different
clinical notes interval of the BioELECTRA model,
we found that modeling longer clinical note interval
will likely increase the performance on both tasks.
This behavior aligns with the results reported in §2.
Nevertheless, this behavior does not apply to the
mortality risk prediction on the seen test set. We
describe this phenomenon further in §5.4.

Generalization to New Patient Data We ob-
serve that there is a huge gap of performance for the
baseline EHR-FFN model, especially in the diag-
nosis predictions of seen and unseen test set (∼40
p.p.). In this case, utilizing clinical note modeling
closes the performance gap on the seen and unseen
test sets to be much narrower (∼10 p.p.) on either
label, especially for the BioELECTRA model with
longer context length. This suggests that longer
clinical notes interval not only improves the perfor-
mance of the model on the similar patient record
distribution, but also improves the performance on
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Figure 2: (Left) and (Right) show the clinical notes time importance of the disease risk prediction and mortality
risk prediction, respectively.

the out-of-distribution patient records.

Optimal Cut-off Interval for Disease Risk and
Mortality Risk Prediction We measure the num-
ber of clinical notes that can be processed by the
models to analyze the optimal cut-off interval. Us-
ing the length statistics on our dataset, we find that
our BioELECTRA (512), BioELECTRA (2048),
and BioELECTRA (8192) models can encode 4,
17, 66 clinical notes on average, which correspond
to the average clinical note intervals of 2-3 months,
∼1 year, and 3.5 years, respectively. As shown in
Table 4, for the disease risk prediction label, the
utilization of longer clinical notes intervals always
yields better performance, while the same trend
is not observed for the mortality risk label. This
evidence suggests that there are different optimal
interval of clinical notes required to infer the cor-
rect prediction for different target labels.

To verify this phenomenon, we analyze the input
fractions considered to be important by the models.
Specifically, we retrieve 1,000 correctly-predicted
samples with the highest confidence values from
each of the models and collect the clinical note
timestamps corresponding to the high-magnitude
(>5% of the total input gradient magnitude) input
gradient with respect to the output prediction by us-
ing saliency map (Simonyan et al., 2014; Yosinski
et al., 2015; Wallace et al., 2019). The timestamps
from all samples are then aggregated with yearly
granularity. We denote the number of year occur-
rences divided by the total number of timestamps
collected as time importance to show how likely
the model attends to the clinical note from the cor-
responding year given the label prediction in 2018.

As shown in Figure 2, for the disease risk label,
the slope of the time importance curves over the

years become more flattened as the utilized clini-
cal note interval widens, indicating that the time
importance spreads more uniformly on longer clin-
ical note intervals. Whereas for the mortality risk
label, the time importance curve has a similar
slope over different clinical notes intervals. This
evidence supports that for modeling an accurate
disease risk prediction, a long clinical note interval
(≥ 3.5 years) is required. While for mortality risk
prediction, a shorter clinical note interval (∼2-3
months) is sufficient to reach optimal performance.

6 Conclusion

In this paper, we show the importance of capturing
longer clinical notes for biomedical and clinical
large pre-trained LMs on 6 clinical NLP tasks on
the United States and Hong Kong clinical note data.
Our result suggests that utilizing longer clinical
notes can significantly increase the performance
of LMs by ∼5-10% F1-score without the loss of
generalization to the unseen data. We also observe
that incorporating a longer interval of clinical notes
does not always entail performance improvement
and there is an optimal cut-off interval depending
on the target variable. Based on our analysis, we
conclude that an interval of ∼2-3 months is the
optimal cut-off for mortality risk prediction, while
3.5 years or an even longer interval of clinical notes
is required to achieve the optimal performance for
disease risk prediction. Future work in long-range
clinical note modeling would open up opportunities
towards a general solution in clinical NLP.

7 Limitation

Although there are many linear attention mecha-
nisms that have been proposed (Dai et al., 2019; Ki-
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taev et al., 2020; Beltagy et al., 2020; Zaheer et al.,
2020), the exploration of linear attention in our ex-
periments is currently limited to Longformer (Belt-
agy et al., 2020). Furthermore, the constructed lon-
gitudinal clinical note dataset from the Hong Kong
Hospital Authority EHR system cannot be made
public due to the data-sharing policy. Lastly, due
to the limited computational power, we only con-
duct the long-range clinical notes experiment for
bio-lm and BioELECTRA for the n2c2 experiment
and BioELECTRA for the Hong Kong longitudi-
nal dataset. We conjecture that the performance of
the long-range versions of other pre-trained models
will follow similar trends to the result on existing
biomedical and clinical benchmarks.
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A Label Distribution

Our Hong Kong longitudinal clinical notes dataset
is extracted from Hong Kong Hospital Authority
EHR system which covers records from 43 hospi-
tals in Hong Kong. For the diagnosis, to reduce
the dimensionality, we group the diagnosis labels
into 79 classes. For cancer diseases, we group the
diagnosis based on the cancer site categorization
from the Hong Kong Cancer Registry12. While for
other diseases, we take the first three digits of the
ICD-10 codes as the grouping. We show the label
distribution of our Hong Kong longitudinal clinical
notes dataset in Figure 3.

B Detail of EHR-FFN Model

We derive 3,942 features from the tabular data for
each encounter. We derive these features from 4
data tables: diagnosis, procedure, prescription, and
inpatient data. Specifically, we generate one-hot
representations for each derived feature and con-
catenate all the one-hot representation into a sin-
gle vector . The detail of each one-hot feature is
shown in Table 5. We extract the feature vectors per
patient encounter. To aggregate all the historical
tabular feature vectors, we aggregate the vectors
into a single feature vector by summing up all the
vectors producing a single high-level feature vector
per patient. To learn the high-level feature vector,
we employ a feed forward network with 3 hidden
layers with a total size of ∼5M parameters. The hy-
perparameters of the feed forward model is shown
in Table 6.

Feature Name Length Description

Diagnosis Type 1699 Diagnosis type based on ICD-
10 code

Procedure Type 127 Procedure type based on ICD-
9 code

Prescription Type 1271 Type of presribed drug based
on regional standard

Prescription BNF 73 Type of presribed drug based
on BNF Therapeutic Classifi-
cation

Emergency Indicator 1 Indicator for emergency unit
admission

Length of Stay 5 Length of stay in the hospital
Age Group 5 Age of the patient during ad-

mission to the hospital
Ward Type 4 Type of hospital ward
Ward Sub-Care Type 6 Sub-type of hospital ward

Table 5: Details of the tabular features

12https://www3.ha.org.hk/cancereg/allages.asp
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Figure 3: Label statistics of our dataset. (Left) shows the aggregated distribution of diagnosis based on the cancer
ICD-10’s site grouping13. Unspecified denotes all cancer diagnoses with unspecified site. Others denotes diseases
other than cancer. (Right) shows the distribution of the discharge status (discharged/death) gathered from all
inpatient records, which is used to define the mortality label.

Hyperparameter settings Value

Tabular Encoder
#hidden layers 3
hidden size [1024, 512, 256]
input size 3942
layer activation ReLU
drop out 0.1

Table 6: Details of the model hyperparameters
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