
Proceedings of the 29th International Conference on Computational Linguistic, pages 56–63
October 12–17, 2022.

56

HFT: High Frequency Tokens for Low-Resource NMT

Edoardo Signoroni and Pavel Rychlý
Faculty of Informatics
Masaryk University
Brno, CZ, 602 00

e.signoroni@mail.muni.cz, pary@fi.muni.cz

Abstract

Tokenization has been shown to impact the
quality of downstream tasks, such as Neural
Machine Translation (NMT), which is suscep-
tible to out-of-vocabulary words and low fre-
quency training data. Current state-of-the-art al-
gorithms have been helpful in addressing the is-
sues of out-of-vocabulary words, bigger vocab-
ulary sizes and token frequency by implement-
ing subword segmentation. We argue, however,
that there is still room for improvement, in par-
ticular regarding low-frequency tokens in the
training data. In this paper, we present "High
Frequency Tokenizer", or HFT, a new language-
independent subword segmentation algorithm
that addresses this issue. We also propose a new
metric to measure the frequency coverage of a
tokenizer’s vocabulary, based on a frequency
rank weighted average of the frequency values
of its items. We experiment with a diverse set
of language corpora, vocabulary sizes, and writ-
ing systems and report improvements on both
frequency statistics and on the average length
of the output. We also observe a positive impact
on downstream NMT.

Introduction

Tokenization is a fundamental preprocessing step
for NMT and it was shown to impact the quality
of the final output (Domingo et al., 2018; Gowda
and May, 2020; Sennrich et al., 2016) . It involves
splitting a longer text in smaller parts called tokens,
separating punctuation from words, with current
algorithms also implementing subword segmenta-
tion. These methods enable NMT models capable
of open-vocabulary translation by encoding rare
and unknown words as sequences of subword units.
This is even more relevant for languages that pro-
duce words by agglutination or compounding. Sub-
word segmentation, while usually not adhering to
morphological constraints, mimics these processes
by learning the most optimal segmentation from
training data, thus generating vocabularies of sub-

word tokens capable of generating new words not
seen at training time.

For training of an NMT system, the frequency
of tokens in the training data is vital. The more fre-
quent the token, the better its representation. While
still performing better than Statistical MT, NMT
still shows weakness in translating low-frequency
words (Koehn and Knowles, 2017). Therefore it
is desired that a vocabulary contains a series of
well represented, and so, high-frequency tokens. In
this regard, some metrics have been proposed in to
determine the best settings for training a NMT sys-
tem (Gowda and May, 2020): i. Frequency at the
95th percentile F95%; ii. Mean Average Sequence
length µ. These metrics can be used as an index
of the performance of a tokenization algorithm.
In our evaluation, we compare different tokeniza-
tion algorithms against these metrics. Nonetheless,
we argue that F95% is not optimal to measure the
frequency coverage of the vocabulary: due to its
punctual nature it does not represent the whole
vocabulary. Thus, we propose to use a weighted
average of the frequencies. All these metrics will
be discussed in Section 2.

Usually the tokenization process involves some
normalization, often in the form of lower casing
or true casing, to handle the difference in spelling
in real data and reduce the low-frequency prob-
lem. This is even more relevant for small datasets,
in which the tokens are inherently less well repre-
sented. We argue that this solution is not optimal,
as in some cases retaining explicit information re-
garding uppercase, lowercase, white spaces, and
caps lock text can be useful for downstream tasks.

To address these issues, we present "High Fre-
quency Tokenizer", or HFT, a new language-
independent subword tokenization algorithm aimed
at improving the frequency of the tokens in the vo-
cabulary.

Thus our contributions are the following:

• High Frequency Tokenizer, or HFT, a new



57

language-independent subword segmentation
algorithm to improve the frequency coverage
of tokens;

• a new metric to evaluate the performance of
tokenizers in this regard, which improves on
the Frequency at the 95th percentile proposed
by (Gowda and May, 2020)

This paper is structured as follows: Section 1 de-
tails the HFT segmentation algorithm; Section 2
relates our evaluation, its experimental setup and
results, Section 3 relates to some limitations to be
addressed in the future; Section 4 gives an overview
of some related work; Section 5 outlines our con-
clusions.

1 High Frequency Tokenizer

HFT uses the advantage of pretokenization, where
sentences are split into tokens on the borders of al-
phanumeric and non-alphanumeric characters. The
current prototype uses the regular expression \b of
the Unix sed1 command . Both the beginning and
the end of each token is explicitly annotated.

HFT subwords are learnt from these tokens, they
never cross the token boundaries, each token from
the pretokenization is handled independently from
other tokens. It speeds up both vocabulary learning
and actual subword tokenization.

We also use case normalization for characters
with both uppercase and lowercase. A single upper-
case letter is changed to a special <uppercase-next>
character and lowercase version of the given let-
ter. A sequence of uppercase letters is changed to
lowercase with a special <all-uppercase> and <end-
of-uppercase> characters attached to the beginning
and the end of the sequence. Figure 2 gives the
special characters hft uses in pretokenization and
tokenization.

The learning algorithm starts from a vocabulary
containing all characters from the training text as
possible subwords. The vocabulary contains the
number of occurrences of the given subword (char-
acter). Then it gradually increase the vocabulary in
the following steps:

1. it processes all the words (tokens) from the
pretokenized text to find the best subword
segmentation using only subwords from the
current vocabulary, counts the frequencies of
each subword and of all possible subword can-
didates (pairs of succeeding subwords);

1https://www.gnu.org/software/sed/manual/sed.html

2. selects the top K candidates with the highest
frequency and adds them as new subwords to
the vocabulary (K is 5% of the target vocabu-
lary size as default);

3. removes from the vocabulary all non-single-
character subwords with frequency lower than
the last added candidate;

4. repeat from 1. until the requested vocabulary
size is reached

The best subword tokenization (in step 1)
searches in all possible subword segmentation se-
quences the one with the lowest number of tokens
and (for same number of tokens) the highest mini-
mum frequency.

2 Evaluation

We train and compare hft with the sentence
piece (Kudo and Richardson, 2018) implementa-
tion of bpe (Sennrich et al., 2016) and unigram
(Kudo, 2018) on two of the metrics presented by
Gowda and May (2020). We use portions of dif-
ferent bilingual and monolingual datasets: The En-
glish section of the English-Marathi and the Irish
part of the English-Irish from the LoResMT 2021
shared task2; a sample of the Hindi half of the
English-Hindi IITB parallel corpus (Kunchukuttan
et al., 2018) and of the Lithuanian portion of the
Lithuanian-English of Europarl (Koehn, 2005) used
in the WMT19 News Translation Shared Task3. As
for monolingual corpora, we used different transla-
tions of the Bible4 (Christodoulopoulos and Steed-
man, 2014) in a diverse range of languages and
writing systems retrieved from OPUS (Tiedemann
and Nygaard, 2004). Figure 3 gives an overview of
the size of the datasets.

2.1 Experimental Setup
Following Gowda and May (2020), we evaluate
our tokenizer on two statistics: Frequency at 95%
Class Rank(F95%), defined as the least frequency
in the 95th percentile of most frequent tokens, and
Mean Sequence Length(µ), which is computed
as the arithmetic mean of the lengths of the tok-
enized sequences. We also propose and test a new
metric, Frequency Rank Weighted Average ν, to
improve on the intuition of F95%.

2https://github.com/loresmt/loresmt-2021
3https://www.statmt.org/wmt19/translation-task.html
4We are aware of the shortcomings of the Bible as a NLP

dataset



58

Figure 1: A sample of pretokenized text from the English dataset.

<token-delimiter>

<single-uppercase>
<explicit-whitespace>

<all-uppercase>

<end-of-uppercase>

Figure 2: Special characters in the pretokenization and
tokenization.

FP% is a way to quantify the minimum number
of training examples for at least the Pth percentile
of tokens, while the bottom (1-P) is discarded to
account for noise inherent in real-world data. An
higher value of F95% reflects the presence of many
training examples per token, and thus is the desired
setting for ML methods.

We argue that this metric is not optimal to cap-
ture the frequency coverage of a tokenizer’s vo-
cabulary, since it considers just one value, and not
the whole structure of the vocabulary. Instead, we
propose a Frequency Rank Weighted Average
ν. Assuming a vocabulary ranked according to
descending frequencies, we compute ν as:

ν =

∑n
i=1(i · fxi)∑n

i=1 i
(1)

where fxi is the frequency of the token x at the
vocabulary index i, and n is the length of the vocab-
ulary. We improved on the intuition of F95%, which
purpose is to assure good token coverage even at
lower frequency ranks. Following this objective,
our metric gives more weight to lower frequency
tokens in the vocabulary, all the while considering
all of its length.

Gowda and May (2020) cast NMT as a classi-
fication task in an autoregressive setting, where
the total error accumulated grows proportionally
with the length of the sequence, altering the predic-
tion of subsequent tokens in the sentence. Thus, a
smaller sequence length is preferred.

We compare hft with bpe and unigram,
the latter two being trained with the sentence
piece module. We train models separately for
each language and for different vocabulary sizes.
Following previous work (Gowda and May, 2020;
Sennrich et al., 2016; Sennrich and Zhang, 2019),

we limit our investigation between vocabulary sizes
of 500 and 8k tokens, since it was shown that big-
ger vocabulary sizes for small datasets harm the
quality of the translation. Other parameters for the
sentence piece trainer are left in the default
setting.

We compute F95%, µ, and ν on the same train
portion of the data, since these metrics do not in-
volve any downstream task or validation on exter-
nal data.

Figure 4 gives a sample of the results of our ex-
periments regarding the metrics mentioned above.

We also report on some preliminary evaluation
of the impact of HFT against BPE on downstream
NMT. We train BPE and HFT tokenizers for both
source and target language separately and then
we tokenize the data with BPE (Sennrich et al.,
2016), as implemented in subword-nmt5, and
HFT, with our implementation. We used a vocab-
ulary size of 2000 for en-ga and 3000 for en-mr.
The size of the vocabulary is set at the same value
for both tokenization methods for the same dataset.
For this evaluation, we do not optimize any other
hyperparameter nor we employ techniques such as
backtranslation.

2.2 Results

The following sections detail our results: Section
2.3 relates to the metrics explained in Section 2.1,
while Sections 2.4 and 2.5 report some preliminary
results on downstream NMT.

2.3 Metrics

hft’s performance on both F95% and the Aver-
age Length µ seems promising, improving on both
bpe and unigram in most of the cases. Recall
that according to Gowda and May (2020) a higher
value of F95% and a lower value of µ is the desired
outcome. For each vocabulary size, a higher value
of ν means a better frequency coverage.

In the case of F95%, it starts at lower values, and
then picks up the pace after some vocabulary size
threshold. From our qualitative evaluation of the
models, we deduce that this is due to the choice of
storing every character occurring in the data at least

5https://github.com/rsennrich/subword-nmt



59

Language Dataset Sent. Script Sample
Amharic Afro-Asiatic am Bible 30.580 Ge’ez
Arabic Afro-Asiatic ar Bible 31.102 Arabic
Cherokee Iroquian chr Bible-NT 7.957 Cherokee
Czech Indo-Eur. cs Bible 38.116 Latin(Czech) Na počátku stvořil Bůh
English Indo-Eur. en LoResMT 20.933 Latin It is also doubtful whether
Finnish Ugro-Finnic fi Bible 38.613 Latin Alussa loi Jumala taivaan
Irish Indo-Eur. ga LoResMT 8.112 Latin Cén chaoi a n-oibríonn
Hindi Indo-Eur. hi IITB 20.000 Devanagari
Italian Indo-Eur. it Bible 38.536 Latin In principio Dio creò il
Japanese Japonic ja Bible 31.087 Kana/Kanji
Jakaltek Mayan jak Bible-NT 12.509 Latin(Jak.) Ha’ icham Abraham yeb naj
Lithuanian Indo-Eur. lt Europarl 20.000 Latin(Lith.) Tačiau balsavau prieš prane
Marathi Indo-Eur. mr LoResMT 20.933 Devanagari
Burmese Sino-Tibetan my Bible 30.928 Burmese
Ojibwe Algic ojb Bible-NT 7.945 Ojibwe
Swedish Indo-Eur. sv Bible 38.879 Latin I begynnelsen skapade Gud
Syriac Afro-Asiatic syr Bible-NT 7.954 Syriac
isiZulu Niger-Congo zu Bible-NT 9.095 Latin(Zulu) Incwadi yokuzalwa kukaJesu

Figure 3: Overview of the datasets. From left to right, the table gives: the name of the language and its family, the
name of the dataset, its size, the name of the writing system used, and a sample of the text.

once. This is done to prevent out-of-vocabulary
tokens, similarly to both bpe and unigram, but
leads to a bigger portion of smaller vocabularies
being made up of characters. This is particularly
evident in the Japanese dataset, which contains a
larger amount of ideograms. This issue will be
addressed in future research.

Regarding the Average Length µ of the seg-
mented output, we find bigger improvements on
some of the datasets, such as Jakaltek, isiZulu, and
Lithuanian. In other cases, the performance in-
crease is smaller, depending on the dataset. Con-
versely, we observe a significant increase of µ for
other languages, such as Burmese and Japanese.
The reason of this behavior is worthy of further
investigation.

When looking at the Frequency Rank Weighted
Average ν, hft outperforms bpe slightly and
unigram by a bigger margin on each vocabulary
size. However, a more in-depth analysis is need for
specific datasets, such as Japanese, which are more
problematic than others.

Taking a look at the frequency distribution of
a vocabulary’s elements, plotted in Figure 5, it is
noticeable that our algorithm trades off frequency
values between the most frequent elements, which
are better represented in bpe and unigram, and
the tokens with lower frequency, which frequency

counts in hft are higher. In fact, we can see that
hft consistently has higher values for the bottom
part of the vocabulary. We argue that this is in fact
a very good trade: while the higher ranking tokens
are still very well represented, we also achieve
better frequencies and representations on the lower
occurring tokens.
hft often achieves better performance than

other methods with regards to F95% and µ. Nev-
ertheless, our segmentation algorithm is not free
from issues. We will discuss these in section 3.

2.4 Downstream NMT

We also report on a preliminary evaluation of the
impact of hft against bpe on downstream NMT.
We train bpe and hft tokenizers for both source
and target language separately and then we tok-
enize the data with bpe (Sennrich et al., 2016), as
implemented in subword-nmt6, and hft, with
our implementation. We used a vocabulary size
of 2000 for en-ga and 3000 for en-mr. The size
of the vocabulary is set at the same value for both
tokenization methods for the same dataset. For
this evaluation, we do not optimize any other hy-
perparameter nor we employ techniques such as
backtranslation.

6https://github.com/rsennrich/subword-nmt



60

Figure 4: F95% (higher is better), µ (lower is better), and ν weighted average (higher is better) plotted against
vocabulary size on the Lithuanian, Amharic, Ojibwe, and Irish datasets.

We use Fairseq (Ott et al., 2019) to train 5 de-
fault Transformers (Vaswani et al., 2017) for both
directions and tokenizer type for 30 epochs with
dropout of 0.1, label smoothing of 0.1, and 4096
maximum tokens for each training batch. We use
adam as optimizer, a learning rate of 0.0005 and
the inverted square root scheduler.

We optimize for BLEU during training on
the validation set at each epoch, with detok-
enized text for bpe (obtained with the Fairseq
-remove-bpe argument) and tokenized text for
hft, since we currently do not have a custom
Fairseq plugin to allow detokenized training on
hft. These preliminary results are summarized in
Table 1.

Training the Transformer on data tokenized with
hft leads to a better average NMT performance
on both datasets we experimented on, with an in-
crement in BLEU from +0.82 to +2.15. The overall
low BLEU scores can be explained by the fact that
we did not optimized neither the architecture nor
the parameters of the Transformer to the specific
low-resource dataset.

2.5 Qualitative Evaluation

We conduct some preliminary analysis of the trans-
lation systems’ output. To obtain our candidates
for manual evaluation, we compute sentence-level
sacreBLEU score on the output of both bpe- and
hft-based systems, against a reference translation.
We then compute the difference in BLEU score
between the two different outputs, and list them by
decreasing size of the gap, that is the most changed
first. This is done to observe where hft has the
biggest impact. We consider the first 50 candidates
for both en-ga and en-mr parallel corpora. Due
to linguistic constraints, however, we are able to
manually analyze only the ga-en and the mr-en.

While more in-depth examination is warranted
in this regard, we can already see that hft provides
some benefits, such as the one shown in Figure 6.
In this case, the named entity Naxals7 was correctly
generated by the hft-based model, while the bpe-
based one gives an almost nonsensical translation.

7A group of Maoist communists currently leading an in-
surgency against the Indian Government in the so-called "Red
corridor" area of east and central India.



61

Figure 5: Frequency distribution of tokens in a sample of the 0.75k vocabularies. We do not plot the first 100 most
frequent tokens to obtain cleaner plots and to focus on the bottom of the vocabulary.

3 Limitations and Future Work

As we mentioned in section 2.2, we opted to in-
clude in the final vocabulary each character seen
in the training data at least once to avoid out-of-
vocabulary tokens. This, however, has the side-
effect of saturating and inflating the vocabulary
with low-frequency tokens. At lower vocabulary
sizes, these entries make up a bigger percentage
of the overall vocabulary, becoming less and less
relevant as the size increases. This explains why
our method becomes effective over a threshold in
the size of the vocabulary, which varies depending
on the size and, more importantly, on the amount
of unique characters in the dataset.

The presence of these character may be due to
the inherent complexity of the writing system. This
is the case of Japanese, which uses two sets of
syllabic characters, hiragana and katakana (collec-
tively referred to as kana), and a huge amount of
Chinese-derived ideograms, called kanji.

The other source for unique characters in the
data is noise, in the form of non-standard orthog-
raphy, special characters, non-linguistic text, and
so on. If present in the dataset, these sections can
quickly saturate our vocabulary. This issue makes
the method somewhat susceptible to noise, and
must be addressed in future work.

Another aspect to investigate further is the rela-
tionship between µ and different writing systems.
From our evaluation, we have seen that hft im-
proves the performance on this metric for most of
the data and writing systems we included in our
evaluation. However, for Japanese and Burmese, µ
is higher than other methods. It is worthwhile to
investigate this matter in the future.

While the preliminary evaluation of hft’s im-
pact on downstream NMT seems to show promis-
ing results, we acknowledge that the testing sample
is not vast. Moreover, using an unoptimized Trans-
former does not completely reflect real-world appli-



62

DATASET MODEL BLEU INCREMENT
1 2 3 4 5 avg

en-ga
t-bpe 4.46 4.54 4.06 4.69 4.73 4.50
t-hft 5.34 5.49 5.95 5.69 5.59 5.61 +1.11

ga-en
t-bpe 5.57 5.48 5.12 5.80 5.51 5.50
t-hft 6.09 6.49 6.57 6.10 6.33 6.32 +0.82

en-mr
t-bpe 7.49 7.21 6.88 6.57 6.12 6.85
t-hft 7.33 7.99 8.80 8.31 8.31 8.14 +1.29

mr-en
t-bpe 9.58 8.56 10.15 8.58 9.56 9.29
t-hft 11.05 12.09 12.19 11.06 10.82 11.44 +2.15

Table 1: Results of the evaluation on NMT given in sacreBLEU scores, for each dataset and trained model. The last
column reports the increment of hft models over the bpe baseline.

cations, where the NMT system would be carefully
tuned to the specific dataset. We plan to undertake
a more comprehensive evaluation on downstream
translation in the future, by enlarging the testing
sample and employing hft in settings closer to
real applications.

Lastly, we report that hft has longer training
time than other algorithms in the current imple-
mentation, which are however still in the range of
minutes for the bigger datasets we used. We plan
to work on this shortcoming in the next implemen-
tation of the tokenizer.

4 Related Work

Before Sennrich et al. (2016), MT coped with the
problem of out-of-vocabulary words by backing
off to a dictionary with sub-optimal assumptions
regarding morphological identities and transliter-
ations. bpe addressed this issue by adapting a
compression algorithm to the task of word segmen-
tation. The methods initializes the symbol vocab-
ulary with the character vocabulary, plus a special
end-of-word symbol. Then it iteratively counts
all symbols pairs and replaces every occurrence
of the most frequent pair (’A’, ’B’) with the new
symbol ’AB’. These character n-grams are then
merged together in a similar fashion. They do not
consider pairs that cross word boundaries. Follow-
ing these steps, bpe allows for open-vocabulary
NMT, which better handles out-of-vocabulary and
rare words, by representing them as a sequence of
subword units.

The unigram method by Kudo (2018) is based
on a unigram language model. This makes the as-
sumption that each subword occurs independently,
thus formulating the probability of a subword se-
quence X = (x1, ..., xM ) as the product of the

subword occurrence probabilities p(xi). To find
the vocabulary set and their probabilities, they em-
ploy an iterative algorithm which starts by creating
a seed vocabulary of unique characters and most
frequent substrings, without considering those that
cross word boundaries. Then the following steps
are repeated until the vocabulary reaches the de-
sired size: i. fixing the set of vocabulary, optimize
p(x) with the Expectation Maximization (EM) al-
gorithm; ii. compute the lossi, for each subword
xi, as the amount the likelihood L is reduced when
removing xi from the vocabulary; iii. sort the sym-
bols by loss, and keeping the top n% of subwords,
while always keeping single characters to avoid out-
of-vocabulary. Thus unigram can output multi-
ple segmentations and their probabilities, making
it more flexible than bpe.

In sentence piece (Kudo and Richardson,
2018) both these segmentation algorithms are im-
plemented in a way that removes the need for
preprocessing steps, such as pretokenization, and
trains subword models directly from the raw sen-
tences. This allows for the creation for a purely
end-to-end and language-independent system.

5 Conclusions

In this paper we present High Frequency Tok-
enizer, or HFT, a new language-independent sub-
word tokenization algorithm to improve on the fre-
quency coverage of tokens in the vocabulary of
NMT systems. We demonstrate its performance on
a diverse dataset of languages and writing systems,
and show that our approach can be beneficial to
downstream NMT.

However, some issues still remain to be investi-
gated, such as the frequency coverage for smaller
vocabularies and the mean output length for some



63

Figure 6: Example from the mr-en translation systems. The first line gives the reference translation, the second
gives the translation from a bpe-based system, while the last gives the translation from an hft-based system. The
named entity Naxals is preserved by hft.

languages. This will be the matter for future re-
search. We also plan to further evaluate hft’s
impact on downstream NMT.

The hft scripts are available on GitHub,8 to-
gether with the evaluation’s data and results.9

Acknowledgements

We thank the reviewer for their useful inputs. This
work was partly supported by the Internal Grant
Agency of Masaryk University, Lexical Comput-
ing, and the Ministry of Education of the Czech Re-
public within the LINDAT-CLARIAH-CZ project
LM2018101.

References
Christos Christodoulopoulos and Mark Steedman. 2014.

A massively parallel corpus: the bible in 100 lan-
guages. Language Resources and Evaluation, 49:1–
21.

Miguel Domingo, Mercedes Garcıa-Martınez, Alexan-
dre Helle, Francisco Casacuberta, and Manuel Her-
ranz. 2018. How much does tokenization affect neu-
ral machine translation?

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28–39, Vancouver. Association for Computa-
tional Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational

8https://github.com/pary42/hftoks
9https://github.com/edoardosignoroni/hftoks-eval

Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-
resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 211–
221, Florence, Italy. Association for Computational
Linguistics.

Jörg Tiedemann and Lars Nygaard. 2004. The OPUS
corpus - parallel and free: http://logos.uio.
no/opus. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’04), Lisbon, Portugal. European Lan-
guage Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

https://doi.org/10.1007/s10579-014-9287-y
https://doi.org/10.1007/s10579-014-9287-y
https://doi.org/10.48550/ARXIV.1812.08621
https://doi.org/10.48550/ARXIV.1812.08621
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/L18-1548
https://aclanthology.org/L18-1548
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://logos.uio.no/opus
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://logos.uio.no/opus
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

