
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 165 - 172
May 26-27, 2022 ©2022 Association for Computational Linguistics

BOS at LSCDiscovery: Lexical Substitution for Interpretable Lexical
Semantic Change Detection

Artem Kudisov∇ Nikolay Arefyev♢,∇,△

∇Lomonosov Moscow State University / Moscow, Russia
△National Research University Higher School of Economics / Moscow, Russia

♢Samsung Research Center Russia / Moscow, Russia
dark.artbeam@gmail.com, nick.arefyev@gmail.com

Abstract

We propose a solution for the LSCDiscovery
shared task on Lexical Semantic Change De-
tection in Spanish. Our approach is based on
generating lexical substitutes that describe old
and new senses of a given word. This approach
achieves the second best result in sense loss
and sense gain detection subtasks. By observ-
ing those substitutes that are specific for only
one time period, one can understand which
senses were obtained or lost. This allows pro-
viding more detailed information about seman-
tic change to the user and makes our method
interpretable.

1 Introduction

LSCDiscovery is a shared task on Lexical Semantic
Change Detection (LSCD) in Spanish (D. Zamora-
Reina et al., 2022). The participants were pro-
vided with two corpora in Spanish, correspond-
ing to 1810-1906 and 1994-2020 respectively, and
were asked to solve two subtasks. In the first sub-
task the participants were asked to rank the given
list of about 4K words according to the degree of
their semantic change. The second subtask required
to determine for each given word if its senses oc-
curring in two corpora are different (and optionally,
if it has acquired some new senses, and if it has lost
any old ones).

2 Background

Our approach is based on the bag-of-substitutes
(BOS) representation of word meaning in con-
text (Başkaya et al., 2013; Arefyev and Zhikov,
2020). Lexical substitutes are those words that can
replace a given target word in a given text fragment
without making this fragment ungrammatical or
substantially changing the meaning of the target
word. For ambiguous words, lexical substitutes
depend on their meaning expressed in a particular
context. For instance, some reasonable substitutes
for the word fly in the sentence A noisy fly sat on

my shoulder are bug, beetle, butterfly, firefly, insect,
etc. But in the sentence We will fly to London they
are different: walk, run, bike, etc.

In order to generate lexical substitutes, we em-
ploy the XLM-R1 masked language model (Con-
neau et al., 2020). This model was pre-trained on
2.5T of data in 100 languages as a masked language
model, i.e. it received text fragments with some
tokens hidden (replaced with the special <mask>
token) and was trained to guess those hidden to-
kens by their context. This kind of pre-training
is partially aligned with the lexical substitution
task because the model can predict words compati-
ble with the given context. However, there are no
guarantees that these words are similar or related
by meaning to the target word. Suitable types of
lexical substitutes (e.g., synonyms, hypernyms, co-
hyponyms) and suitable degree of their similarity
to the target word depend on the target task and
can be controlled with various techniques explored
in (Arefyev et al., 2020). In our solution, we em-
ploy the dynamic patterns proposed by Amrami
and Goldberg (2018) and explained in 3.2.

Unlike the traditional bag-of-words representa-
tion, which contains those words that occur in a
text fragment, the BOS representation is built from
lexical substitutes. Thus, it better represents the
meaning of some specific target word in a given
text fragment rather than the whole fragment in gen-
eral. Clustering of the BOS vectors is a successful
approach to solve the Word Sense Induction (WSI)
task, i.e. to discover senses of ambiguous words.
This approach was explored in many papers, includ-
ing (Başkaya et al., 2013; Amrami and Goldberg,
2018, 2019; Arefyev et al., 2019, 2020) among
others. Also, a substitution-based WSI model was
employed to solve the LSCD task in (Arefyev and
Zhikov, 2020; Arefyev and Bykov, 2021). How-
ever, in our solution we avoid solving the more

1The pre-trained xlmr.large from fairseq library is used
without any fine-tuning.

165

https://github.com/pytorch/fairseq/blob/main/examples/xlmr/README.md


<mask>-(y-T) <mask><mask>-(y-T) <mask>-(incluso-T)
Substitute Prob. Substitute Prob. Substitute Prob.
documentos (documents) 0.367 archivos (records) 0.016 documentos (documents) 0.391
libros (books) 0.160 escritos (letters) 0.012 libros (books) 0.082
datos (data) 0.052 informes (reports) 0.010 datos (data) 0.039

actos (acts) 0.036 dos documentos (two
documents) 0.010 textos (texts) 0.037

textos (texts) 0.032 expedientes (records) 0.008 contratos (contracts) 0.014

Table 1: For the word actas (reports) in ayer recibimos dos actas literales (yesterday we received two verbatim
reports), 5 most probable substitutes with 1 or 2 subwords are shown. The patterns with y (and) and incluso
(including).

general and probably more difficult WSI task that
requires clustering. Instead, we propose methods
to directly obtain LSCD predictions from the BOS
vectors.

3 Model description

For each target word we sample some examples of
its usage from both corpora and generate lexical
substitutes for them. Then we build two sets of
BOS vectors for old and new examples, describing
old and new senses of the word respectively. Fi-
nally, the distances from old to new examples are
calculated, and their average is returned as the pre-
dicted score of graded change. Following previous
works on LSCD (Giulianelli et al., 2020; Laicher
et al., 2021), we will denote this average as the
Average Pairwise Distance (APD). Notice that our
vector representation is very different from those
works.

For the second subtask, if APD is greater than
a certain threshold, we predict that this word has
changed its meaning. To determine whether it has
acquired new senses and whether any old senses
were lost, we propose three different methods based
on pairwise distances.

3.1 Collected data
For each target word wi, we lemmatize2 both cor-
pora and retrieve all examples with wi in different
grammatical forms. Then we take the same number
Ni of examples from the old and the modern set of
examples.3

3.2 Substitute generation
For each example we generate several types of
substitutes with different dynamic patterns, post-

2We used the Spanish lemmatizer from Spacy proposed by
the organizers.

3If possible, Ni = 100 examples are sampled without
replacement from each set. Otherwise, we take all Ni < 100
examples from the smaller set and sample the same number
of examples from another set.

Pattern weight
<mask> 0.25
<mask>-(y-T) 0.25
T-(y-<mask>) 0.25
<mask>-(incluso-T) 0.0625
T-(incluso-<mask>) 0.0625
<mask>-(por-ejemplo-T) 0.0625
T-(por-ejemplo-<mask>) 0.0625

Table 2: In LS_m1_7, we employ 7 single-subword pat-
terns with y (and), incluso (including) and por ejemplo
(for example) with the specified weights.

LS_m1_2 patterns LS_m2_2 patterns weight
<mask>-(y-T) <mask><mask>-(y-T) 0.5
T-(y-<mask>) <mask><mask>-(y-T) 0.5

Table 3: In LS_m1_2 and LS_m2_2 we employ 2 single-
subword and 2 two-subword patterns respectively.

process them and combine together to get a sin-
gle vector representation. Dynamic patterns are
similar to the Hearst patterns by nature (Hearst,
1992). They were proposed in (Amrami and Gold-
berg, 2018) to obtain from masked language mod-
els those substitutes that do not only fit the given
context, but also are similar or related to the target
word by meaning. For instance, using patterns with
the Spanish conjunction y (English: and) we hope
to obtain mostly co-hyponyms of the target word,
while patterns with the adverb incluso (English:
including) shall bias the model towards generat-
ing hypernyms or hyponyms, depending on the
position of the target word. Table 1 shows some
examples.

Table 2 lists all dynamic patterns we use. All
patterns contain the special token <mask> that
XLM-R is asked to recover, and some of them
contain the variable T representing the target word.
Given a pattern and an example for some target
word, first we replace the target word with this
pattern, and then replace the variable T (if any)
back with the target word. For simplicity, let us
consider an example in English. Given the sentence

166



We can fly to London and using the pattern <mask>
(and T), we first obtain We can <mask> (and T) to
London, and finally have We can <mask> (and fly)
to London.

The vocabulary of XLM-R consists of 250K
subwords in 100 different languages, which are
sometimes whole frequent words, but most often
pieces of words. To better describe word mean-
ing, we generate substitutes consisting of differ-
ent number of subwords. To achieve this, we ap-
ply patterns with several <mask> tokens, for in-
stance,<mask><mask> (y T).

To find probable sequences of subwords that
could fill the <mask> tokens, we apply a slightly
modified greedy decoding strategy. For the left-
most <mask> token, topK = 150 most proba-
ble subwords are predicted first. Then for each
of those subwords we generate one continuation
using greedy decoding. Below we will say that a
substitute is not generated for a particular pattern
in a particular example if it was not among topK
substitutes generated this way. For computational
reasons, we generated only substitutes with one or
two subwords and did not apply beam search for
decoding. Examples of two-subword substitutes
are in table 1.

3.3 Substitute post-processing and
combination

Next, we post-process all substitutes for each exam-
ple: convert them to lower case, remove all words
except for the last one from multi-word substitutes,
apply stemming.4 After post-processing, we sum
the probabilities of duplicated substitutes.

For each example, we combine substitutes gen-
erated for different patterns by calculating the
weighted average of the corresponding probabil-
ity distributions. In LS_m1 and LS_m2 (Lexical
Substitution with one-subword substitutes and two-
subword substitutes respectively), for combination
we use patterns and weights presented in Tables 2
and 3. The weights were selected based on a few
experiments on the development set consisting of
20 words, so these weights are likely suboptimal.
It is possible that one of the substitutes is not gen-
erated by XLM-R for a certain pattern. In this case,
during combination we assume that the correspond-
ing probability is equal to the minimal probability
among all substitutes generated for this pattern.

4The Spanish stemming from nltk.stem.snowball was used.

Model/Team JSD,SPR COMPARE,SPR
baselines

baseline1 0.543 (4) 0.561 (3)
baseline2 0.092 (8) 0.088 (6)

best results of other teams
myrachins 0.735 (1) 0.842 (1)
UsrD7 0.702 (2) 0.829 (2)
aishein 0.553 (3) 0.558 (4)

our results
#LS_m1_7+APD -0.125 (9) -0.129 (8)

our post-evaluation results
LS_m1_7+APD 0.584 (3*) 0.598 (3*)
LS_m1_2+APD 0.562 (3*) 0.562 (3*)
LS_m2_2+APD 0.576 (3*) 0.637 (3*)

Table 4: Graded Change Discovery results. # denotes
the buggy implementation. * denotes possible ranks of
the corresponding results in the leaderboard.

3.4 BOS vectors

For each target word wi we build 2Ni BOS vec-
tors for old and new examples. These vectors are
basically bag-of-word vectors built for topK most
probable substitutes for each example. Only sub-
stitutes that were generated for more than 3% and
less than 90% of examples of the target word are
taken into account5.

3.5 Graded Change Discovery

APD (Average Pairwise Distance). After building
the BOS vectors, we calculate the cosine distance
from each old to each new example, resulting in
a matrix of size Ni ×Ni. The APD is calculated
by averaging all cells in this matrix. Finally, we
sort test words according to their APDs and submit
their ranks as the predicted change scores.6

3.6 Binary Change Detection

For the main Binary Change Detection subtask,
if the calculated APD is greater than the certain
threshold7, then we predict that this word has
changed its meaning. In this case we also try to
determine if it has acquired new senses and if it has
lost some old ones (sense loss and sense gain detec-
tion subtasks). We try three methods to determine
that.

5We used CountVectorizer from scikit-learn, where
min_df = 0.03 was selected in range from 0 to 0.05 with
0.01 step and max_df = 0.9 was selected in range from 0.85
to 1 with 0.01 step.

6There was a mistake in the original implementation of the
ranking procedure. After the competition we fixed it, which
significantly improved the results of this method (see table 4
for comparison).

7threshold = 0.8 was selected on the development set in
the range from 0.7 to 0.9 with 0.05 step.

167

https://www.nltk.org/api/nltk.stem.snowball.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html


Model/Team CH, F1 GAIN, F1 LOSS, F1
baselines

baseline1 0.537 (9) NaN (8) NaN (6)
baseline2 0.222 (10) 0.211 (7) 0.000 (6)

best results of other teams
myrachins 0.716 (1) 0.491 (3) 0.688 (1)
dteodore 0.709 (2) 0.000 (8) 0.000 (6)
rombek 0.687 (3) 0.490 (4) 0.593 (3)

our results
LS_m1_7+AID 0.658 (4*) 0.393 (6*) 0.137 (6*)
LS_m2_2+min 0.636 (6*) 0.418 (6*) 0.610 (2*)
LS_m1_7+perc. 0.658 (4) 0.520 (2) 0.600 (2)

our post-evaluation results
LS_m1_2+AID 0.628 (7*) 0.4 (6*) 0.076 (6*)
LS_m1_2+min 0.628 (7*) 0.583 (2*) 0.387 (5*)
LS_m1_2+perc. 0.628 (7*) 0.486 (5*) 0.608 (2*)
LS_m2_2+AID 0.636 (6*) 0.382 (6*) 0.193 (6*)
LS_m2_2+perc. 0.636 (6*) 0.376 (6*) 0.600 (2*)
LS_m1_7+min 0.658 (4*) 0.533 (2*) 0.564 (5*)

Table 5: Binary Change Detection results. * denotes
possible ranks of the corresponding results in the leader-
board.

AID (Average Inner Distance). We calculate
APDs between only new examples AID1 and be-
tween only old examples AID2. If AID1 >
(AID2−b1), we predict that a new sense appeared.
If AID2 > (AID1 − b2), we predict that an old
sense is lost.8 Thus, we assume that a difference
in average inner distances for two sets of examples
indicates that there is a difference in underlying
sets of senses.

min. We calculate an Ni ×Ni matrix of pair-
wise distances from old to new examples and as-
sume that if some new sense appeared, then a new
example exists that is far from all old examples.
Thus, if there is at least one new example whose
minimal distance to the old examples is greater than
some threshold 9, we predict that a new sense ap-
peared. Sense loss is determined symmetrically.

perc. (percentile). This is similar to the pre-
vious method, but we calculate the 5th percentile
instead of the minimum, i.e. we allow at most 5%
of examples from the old corpus to be closer to an
example of the new sense from the new corpus than
the specified threshold. We assume that this should
make the model less sensitive to noisy examples
and more stable.

8b1 = 0.03, b2 = 0. These values were selected on the
development set in the range from -0.1 to 0.1 with 0.01 step.

9threshold = 0.8 was selected on the development set in
the range from 0.7 to 0.9 with 0.05 step.

Model GAIN,F1 LOSS,F1
LS_m1_2+AID 0.4 (6*) 0.076 (6*)
LS_m1_2+min 0.583 (2*) 0.387 (5*)
LS_m1_2+perc. 0.486 (5*) 0.608 (2*)
LS_m2_2+AID 0.382 (6*) 0.193 (6*)
LS_m2_2+min 0.418 (6*) 0.610 (2*)
LS_m2_2+perc. 0.376 (6*) 0.600 (2*)
LS_m1_7+AID 0.393 (6*) 0.137 (6*)
LS_m1_7+min 0.533 (2*) 0.564 (5*)
LS_m1_7+perc. 0.520 (2) 0.600 (2)

Table 6: Comparison of aggregation methods. * denotes
possible ranks of the corresponding results in the leader-
board.

4 Experiments and Results

4.1 Phase 1: Graded Change Discovery

In this subtask, it was required to rank about 4K
target words according to their degree of semantic
change (the higher rank, the stronger change). The
final quality of ranking was evaluated for 60 hidden
words only by the Spearman’s correlation with the
gold ranks (Bolboaca and Jäntschi, 2006).

Table 4 provides the results for the first phase.
Our original implementation of the ranking proce-
dure had mistakes in the ranking procedure, so the
results are poor. After the competition, we fixed
the mistake and obtained the correct results, which
are comparable to the 3rd best participant in the
leaderboard.

LS_m1_2 and LS_m2_2 differ only in the num-
ber of masks in the used patterns. So comparing
their scores, we can say that using two-subword
substitutes is more preferable than one-subword
substitutes. In LS_m2_7 seven patterns are com-
bined compared to two patters in LS_m1_2, this
gives a significant improvement despite somewhat
arbitrarily selected weights. Developing some prin-
cipled ways of finding promising dynamic patterns
and weights for their combination is a reasonable
direction for future work. LS_m1_7 has a slightly
higher JSD,SPR score, but its COMPARE,SPR
score is lower and it uses a more complex pattern
combination than LS_m2_2. A more detailed in-
vestigation is presented in Appendix A.

4.2 Phase 2: Binary Change Detection

In this subtask the participants were asked to deter-
mine if target words have changed their meanings.
And if so, how exactly (have acquired and/or have
lost senses). Three F1-scores are calculated: Bi-
nary Change Detection (CH), Sense Gain Detection
(GAIN), Sense Loss Detection (LOSS). Results are

168



presented in Table 5 where we have the 2nd best
submission for GAIN and LOSS optional subtasks.

LS_m1_2 + APD and LS_m2_m2 + APD
have 0.628 and 0.636 CH,F1 scores respectively,
which means that using two-subword substitutes is
slightly better than one-subword. But in the case
of LS_m1_7 + APD we already get 0.658 CH,F1
resulting in the 4th rank.

Using AID method does result in good GAIN,F1
and LOSS,F1 scores (Table 6). At the same time
min and percentile show a better results but they
highly depend on used LS patterns, i.e., in the some
cases these methods improves only GAIN,F1 or
LOSS,F1 scores, but not both of them.

5 Discriminative substitutes

The main advantage of LS-based models is their
interpretability. We can roughly understand word
meanings looking at the discriminative substitutes,
i.e. the substitutes specific for a particular subset
of examples.

Table 7 provides some examples for disco (disc)
and satélite (satellite). We take old examples O and
those new examples M , that were determined by
LS_m1+percentile model as being far away from
O. Then we find substitutes with the largest ratio
P (w|M)
P (w|O)

10, i.e. those substitutes that are rarely gen-
erated for old examples but frequently generated
for new examples that are not similar to any old
examples.

Disco (disc) Satélite (satellite)
LP 0.72/0.00 CD 1.00/0.00
EP 0.55/0.00 video 1.00/0.00

documentos 0.55/0.00 internet 1.00/0.00
videos 0.50/0.00 televisión 0.88/0.00

mp 0.50/0.00 FM 0.88/0.00
anime 0.44/0.00 señal 0.88/0.00

memoria 0.44/0.00 Internet 0.88/0.00
PC 0.44/0.00 canal 0.88/0.00

USB 0.44/0.00 TV 0.88/0.00
b 0.44/0.00 web 0.88/0.00

MP 0.44/0.00 vídeo 0.77/0.00

Table 7: Discriminative substitutes generated for the
<mask> (y T) pattern. The probabilities P (w|M) and
P (w|O) are shown for each substitute. Documentos is
’documents’, señal is ’signal’, memoria is ’memory’ and
canal is ’channel’.

From the Table 7 we can see that disco (disc)
and satélite (satellite) have acquired new senses
as a data storage device and satellite television
respectively.

10If the word denominator is 0, we demand P (w|M) to be
greater 0.2, otherwise we don’t consider such word.

6 Efficiency

The set of the target words proposed in Phase 1 was
supposed to be a challenge for participants due to
its size. For 4385 words given we have collected
about 777K examples. Generation of substitutes
for all examples took 13 GPU-hours and 310 GPU-
hours for each one-mask and two-mask pattern
respectively on V100 GPUs. All other steps took
incomparably less time.

7 Conclusion

We have proposed an interpretable approach to
lexical semantic change detection. This approach
shows the 2nd best result for sense loss and sense
gain detection subtasks. It provides techniques to
understand which senses were obtained or lost by
a word.

Acknowledgements

We are grateful to our anonymous reviewers. This
research was partially supported by the Basic Re-
search Program at the HSE University and through
computational resources of HPC facilities at HSE
University (Kostenetskiy et al., 2021).

References
Asaf Amrami and Yoav Goldberg. 2018. Word sense

induction with neural bilm and symmetric patterns.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4860–4867.

Asaf Amrami and Yoav Goldberg. 2019. Towards better
substitution-based word sense induction. arXiv.

Nikolay Arefyev and Bykov. 2021. An interpretable
approach to lexical semantic change detection with
lexical substitution. In Computational linguistics and
intellectual technologies: Papers from the annual
conference Dialogue, 20.

Nikolay Arefyev, Boris Sheludko, and Tatiana Alek-
sashina. 2019. Combining Neural Language Models
for Word Sense Induction. In Analysis of Images,
Social Networks and Texts, page 105–121. Springer
International Publishing.

Nikolay Arefyev, Boris Sheludko, Alexander Podol-
skiy, and Alexander Panchenko. 2020. Always keep
your target in mind: Studying semantics and improv-
ing performance of neural lexical substitution. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 1242–1255,
Barcelona, Spain.

169

https://doi.org/10.48550/ARXIV.1905.12598
https://doi.org/10.48550/ARXIV.1905.12598
https://doi.org/10.1007/978-3-030-37334-4_10
https://doi.org/10.1007/978-3-030-37334-4_10


Nikolay Arefyev and Vasily Zhikov. 2020. BOS at
SemEval-2020 task 1: Word sense induction via lex-
ical substitution for lexical semantic change detec-
tion. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, pages 171–179, Barcelona
(online). International Committee for Computational
Linguistics.

Osman Başkaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. AI-KU: Using substitute vectors and
co-occurrence modeling for word sense induction
and disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 300–306, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Sorana-Daniela Bolboaca and Lorentz Jäntschi. 2006.
Pearson versus spearman, kendall’s tau correlation
analysis on structure-activity relationships of biologic
active compounds. Leonardo Journal of Sciences,
5(9):179–200.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and
Dominik Schlechtweg. 2022. Lscdiscovery: A
shared task on semantic change discovery and de-
tection in spanish. In Proceedings of the 3rd Inter-
national Workshop on Computational Approaches to
Historical Language Change, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Mario Giulianelli, Marco Del Tredici, and Raquel Fer-
nández. 2020. Analysing lexical semantic change
with contextualised word representations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960–
3973, Online. Association for Computational Lin-
guistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Computa-
tional Linguistics.

P. S. Kostenetskiy, R. A. Chulkevich, and V. I. Kozyrev.
2021. HPC resources of the higher school of eco-
nomics. Journal of Physics: Conference Series,
1740:012050.

Severin Laicher, Sinan Kurtyigit, Dominik Schlechtweg,
Jonas Kuhn, and Sabine Schulte im Walde. 2021. Ex-
plaining and improving BERT performance on lex-
ical semantic change detection. In Proceedings of

the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 192–202, Online. Associ-
ation for Computational Linguistics.

170

https://doi.org/10.18653/v1/2020.semeval-1.20
https://doi.org/10.18653/v1/2020.semeval-1.20
https://doi.org/10.18653/v1/2020.semeval-1.20
https://doi.org/10.18653/v1/2020.semeval-1.20
https://aclanthology.org/S13-2050
https://aclanthology.org/S13-2050
https://aclanthology.org/S13-2050
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.18653/v1/2021.eacl-srw.25
https://doi.org/10.18653/v1/2021.eacl-srw.25
https://doi.org/10.18653/v1/2021.eacl-srw.25


A Substitute analysis

Our models mostly depend on the used LS patterns
and ways of their combination. So it is important
to make some investigations about them. In this
section we study the following questions.

• Which single-subword pattern gives the best
results and how these results depend on the
number of substitutes generate (topk)?

• Is it better to use single-subword or multi-
subword substitutes?

• Do brackets and dashes affect the results?

Figure 1: Dependence of the JSD,SPR score on the
pattern and topk.

Figure 2: Dependence of the COMPARE,SPR score on
the pattern and topk.

For brevity, we will use M instead of <mask>
in the pattern descriptions. In the follow-

ing figures mask position describes the po-
sition of the <mask> token. For example,
if the pattern is M (y T) / T (y M), mask
position=left refers to the pattern M (y T),
and mask position=right refers to T (y M).
Finally, mask position=combination de-
notes the combination of these patterns with equal
weights.

A.1 One-subword subword

In LS_m1_7 we use 7 patterns with different
weights, which were selected after only a few ex-
periments on the development set. In this section
we study how the results depend on the patterns
and try to find simpler and more intuitive ways of
the substitute combination. Figures 1 and 2 show
JSD,SPR and COMPARE,SPR for different pat-
terns.

It is interesting that in all cases the left pat-
terns give better results than the right ones, ex-
cept for the incluso-based patterns. Also in all cases
the combination averages the results of both pat-
terns, again except for the combination of incluso-
based patterns which on the contrary improves the
results.

Figure 3: Comparison of one-subword and two-subword
substitutes.

A.2 One-subword substitutes vs.
two-subword substitutes

We assume that using more masks should improves
results because this allows to generate more di-
verse substitutes. Figure 3 provides comparison of

171



patterns with different number of masks. As we
suspect, using T (y MM) pattern gives a much better
results than T (y M). However combination of two-
mask patterns results in just slightly higher score
and one-mask pattern M (y T) even outperforms MM
(y T).

Figure 4: Comparison patterns with and without brack-
ets.

Figure 5: Comparison patterns with and without brack-
ets.

A.3 Patterns without brackets and dashes

In the patterns discussed above we have extra
dashes which were added by mistake and poten-
tially could affect the results, so firstly we remove

them from patterns. Also we have assumption that
using brackets is not common thing in Spanish so
such patterns could spoil generated substitutes and
final results. To prove it we decide to compare
y-based patterns with and without brackets and
dashes.

In the Figures 4 and 5 we can see that in all
cases refusal to use brackets and dashes improves
our results quite well, especially the right pat-
tern get around 0.1 growth in JSD,SPR and COM-
PARE,SPR scores.

172


