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Abstract
We present the first shared task on semantic
change discovery and detection in Spanish and
create the first dataset of Spanish words man-
ually annotated for semantic change using the
DURel framework (Schlechtweg et al., 2018).
The task is divided in two phases: 1) Graded
Change Discovery, and 2) Binary Change De-
tection. In addition to introducing a new lan-
guage the main novelty with respect to the pre-
vious tasks consists in predicting and evaluating
changes for all vocabulary words in the corpus.
Six teams participated in phase 1 and seven
teams in phase 2 of the shared task, and the
best system obtained a Spearman rank corre-
lation of 0.735 for phase 1 and an F1 score of
0.716 for phase 2. We describe the systems de-
veloped by the competing teams, highlighting
the techniques that were particularly useful and
discuss the limits of these approaches.

1 Introduction

Lexical Semantic Change Detection (LSCD) is the
task of detecting words which have changed their
meaning over time in a diachronic corpus of text
(Schlechtweg et al., 2020), usually an unsupervised
task. In recent years, several LSCD shared tasks
have been organized (Schlechtweg et al., 2020;
Basile et al., 2020; Kutuzov and Pivovarova, 2021).
These tasks have contributed to a better understand-
ing of LSCD, but have also had their shortcomings:
(i) they have used mainly small pre-selected sets of
target words creating an unrealistic evaluation sce-
nario for the application of computational models
in historical semantics and lexicography where re-
searchers typically aim to cover the full vocabulary
of a language (Kurtyigit et al., 2021), (ii) different
formalizations of the LSCD task have been pro-
posed including binary classification and ranking
tasks (Schlechtweg et al., 2018; Schlechtweg and
Schulte im Walde, 2020; Schlechtweg, 2022) and
these have been employed inconsistently, and (iii)
none of them have focused on Spanish, despite the

fact that there are more than 450 million native
speakers of this language.

We tackle these shortcomings by organizing a
shared task on Spanish diachronic data with a more
realistic evaluation scenario requiring participants
to provide Lexical Semantic Change (LSC) predic-
tions for the full corpus vocabulary (Discovery).
Additionally, we cover previous scenarios by ask-
ing participants to predict LSC only in the limited
sample of annotated target words (Detection). By
offering a range of additional optional tasks (de-
fined on the same annotated data) participants are
able to evaluate and compare models on various
formalizations of the LSCD task. In order to derive
gold LSC labels for target words, we annotate and
publish the largest existing data set of semantic
proximity judgments covering 100 words with ap-
proximately 62k judgments from 12 human native
speakers.1

2 Related Work

The detection of lexical semantic changes is of
great interest in research areas such as historical
semantics, lexicography, linguistics and NLP. For
a comprehensive review of the literature on the
area we refer the reader to the recent surveys (Tah-
masebi et al., 2021; Kutuzov et al., 2018; Hengchen
et al., 2021). In previous years several shared
tasks have been organized: SemEval-2020 Task
1 (Schlechtweg et al., 2020) for English, German,
Latin, and Swedish, DIACR-Ita for Italian (Basile
et al., 2020), and RuShiftEval for Russian (Kutuzov
and Pivovarova, 2021).2 All shared tasks applied
an evaluation setup where LSC was measured be-
tween pairs of time periods.

SemEval used a total of 156 target words for
all languages with no development/test split. Ap-

1The data set is available at https://zenodo.org/
record/6300104.

2There was also a student shared task on German data
(Ahmad et al., 2020).
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proximately half of these were drawn from ety-
mological dictionaries or research literature, while
the other half was drawn from the corpus vocabu-
laries by selecting lemmas with similar POS and
frequency as the first half of target words. Tar-
get word occurrences in sentences (usages) were
combined into pairs and these were annotated for
their semantic proximity (Schlechtweg et al., 2021).
Target words were excluded if they had a high
number of undecidable use pairs or were anno-
tated too sparsely. Sense clusters were inferred
from the annotation. From the clusters a binary
(sense loss/gain vs. none) and a graded (Jensen-
Shannon distance between cluster distributions)
change score were derived and used to evaluate
participants on a corresponding binary classifica-
tion and ranking task.

DIACR-Ita used a total of 18 target words with
no development/test split. All of these were drawn
from an etymological dictionary. Target word us-
ages were annotated with word sense definitions.
Words with a high number of OCR errors and an-
notator disagreements were excluded. From the an-
notation Binary Change scores similar to SemEval
were derived and used to evaluate participants on a
binary classification task.

RuShiftEval used a total of 111 target words
(all nouns) split into 12 for development and
99 for testing. These were selected in a similar
procedure to SemEval: approximately half of
these were drawn from etymological dictionaries,
research literature or “invented” by the authors,
while the other half was drawn from the corpus
vocabularies by selecting lemmas with similar
POS and frequency as the first half of target
words. Target word usages from different time
periods were combined into usage pairs and
annotated for semantic proximity. From these
the DURel COMPARE score (see Subsection 3.3
for more details) (Schlechtweg et al., 2018) was
derived, which can be seen as an approximation
of SemEval’s Graded Change score (Schlechtweg,
2022). Participants were evaluated in a ranking
task on the COMPARE scores.

As we can see, target words in previous shared tasks
have been strongly preselected and systems have
been evaluated on different tasks. They have also
yielded (seemingly) contradictory results: while
type-based model architectures have dominated

in SemEval and DIACR-Ita, token-based architec-
tures have dominated in RuShiftEval. In all tasks
clustering-based models have shown rather low per-
formance.

3 Task description

Our task was designed in two phases:

1. Graded Change Discovery, and

2. Binary Change Detection.

Note that discovery introduces additional difficul-
ties for models as compared to the more simple
semantic change detection, e.g. because a large
number of predictions is required and the target
words are not preselected, balanced or cleaned (cf.
Kurtyigit et al., 2021). Yet, discovery is an impor-
tant task, with applications such as lexicography
where dictionary makers aim to cover the full vo-
cabulary of a language.

3.1 Phase 1: Graded Change Discovery
Similar to Kurtyigit et al. (2021), we define the task
of Graded Change Discovery as follows:

Given a diachronic corpus pair C1 and C2,
rank the intersection of their (content-word)
vocabularies according to their degree of
change between C1 and C2.

The participants were asked to rank the set of con-
tent words in the lemma vocabulary intersection of
C1 and C2 according to their degree of semantic
change between C1 and C2 where a higher rank
means stronger change. The true degree of seman-
tic change of a target word w was given by the
Jensen-Shannon distance (Lin, 1991; Donoso and
Sanchez, 2017) between w’s word sense frequency
distributions in C1 and C2 (cf. Schlechtweg et al.,
2020). The two word sense frequency distributions
were estimated via human annotation of word us-
age samples for w from C1 and C2 (see Subsection
4.4). Participants’ predictions were not evaluated
on the full set of target words, as this would be
unfeasible to annotate, but on an (unpublished) ran-
dom sample of words from the full set of target
words. The predictions were scored against the
ground truth via Spearman’s rank-order correlation
coefficient (Bolboaca and Jäntschi, 2006).

3.2 Phase 2: Binary Change Detection
Similar to Schlechtweg et al. (2020), we define the
task of Binary Change Detection as follows:
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Given a target word w and two sets of its us-
ages U1 and U2, decide whether w lost or
gained senses from U1 to U2, or not.

The participants were asked to classify a pre-
selected set of content words into two classes, 0 for
no change and 1 for change. The true binary labels
of word w were inferred from w’s word sense fre-
quency distributions in C1 and C2 (see Subsection
3.1). Participants’ predictions were scored against
the ground truth with the following metrics: F1
(main metric), Precision, and Recall. A crucial
difference compared to Graded Change Discovery
was that the public target words corresponded ex-
actly to the hidden words on which we evaluated.
Also, we published the usages sampled for annota-
tion. Hence, participants could work with the exact
annotated data, which was not possible in the first
phase where participants could only work with the
full corpora (from which the usages for annotation
were sampled).

3.3 Optional tasks
Participants could submit predictions for several
optional tasks:

Graded Change Detection was defined similar
to Graded Discovery. The only difference was that
the public target words corresponded exactly to the
hidden words on which we evaluated. Participants
were scored with Spearman correlation.

Sense Gain Detection was similar to Binary
Change Detection. However, only words which
gained (not lost) senses receive label 1. Partici-
pants were scored with F1, Precision and Recall.

Sense Loss Detection was similar to Binary
Change Detection. However, only words which
lost (not gained) senses received label 1. Partici-
pants were scored with F1, Precision and Recall.

COMPARE asked participants to predict the
negated DURel COMPARE metric (Schlechtweg
et al., 2018). This metric is defined as the average
of human semantic proximity judgments of usage
pairs for w between C1 and C2.3 It can be seen
as an approximation of JSD (Graded Change)
(Schlechtweg, 2022). Participants were scored
with Spearman correlation.

3Contrary to the original metric we first take the median of
all annotator judgments for each usage pair and then average
these values. For details see: https://github.com/
Garrafao/WUGs.

Corpus Time period Tokens
Old corpus (C1) 1810–1906 ∼ 13M
Modern corpus (C2) 1994–2020 ∼ 22M

Table 1: Sizes of both corpora.

Participants’ submission files only needed to in-
clude predictions corresponding to the obligatory
tasks in order to get a valid submission. They did
not see the leaderboard while the evaluation phases
were running. Furthermore, participants only had
three valid submissions for each evaluation phase.4

4 Data

In this section, we describe the corpora, the selec-
tion process of target words, the sampling of usages
and their annotation. Moreover, we explain how
the target words were presented to the participants
considering the two phases of the shared task.

4.1 Corpora
We created two corpora covering disjoint time pe-
riods: 1810 to 1906 (old corpus, C1) and 1994
to 2020 (modern corpus, C2) (see Table 1). The
former was created using different sources freely
available from Project Gutenberg5 and the latter
using different sources available from the OPUS
project6 (Tiedemann, 2012). For the old corpus, all
the sources collected were concatenated. As for the
modern corpus, four datasets were used: Spanish
portion of TED2013, Spanish portion of News-
Commentary v16, Spanish portion of MultiUN and
Spanish version of Europarl corpus. TED2013 was
used in its entirety, while 50 snippets with 5000
lines each were extracted from the other datasets
by cutting the corpora into snippets of the men-
tioned size and randomly choosing 50 of them.

Both corpora were parsed using spaCy (Hon-
nibal et al., 2020).7 Each corpus contains four

4We decided not to include the binary subtasks in phase
1, as the usage samples were not published which meant that
participants needed to work with the full corpora instead of the
samples on which the gold scores were inferred. We assumed
that the sampling error between usages in the full corpora and
our samples is much larger for Binary Change than for Graded
Change (cf. Schlechtweg, 2022).

5https://www.gutenberg.org/browse/
languages/es

6https://opus.nlpl.eu/
7Find details issues in Appendix A.
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versions of the original dataset (raw, tokenized,
lemmatized and POS-tagged).

4.2 Target words
4.2.1 Phase 1 (Graded Discovery)
Public target words was a list of 4385 words
created in the following way: we first took the cor-
pus vocabulary intersection from the lemmatized
versions of both corpora. Then we removed words
below a minimum frequency threshold of 40 for the
old corpus and 73 for the modern corpus.8 Then we
removed all non-content words, i.e., we left only
nouns, verbs, adjectives and adverbs. The final
list of target words was published and participants
were required to submit results for all 4385 words
in the development and evaluation phase 1.

Hidden target words The large number of pub-
lic target words was crucial to our task. However,
it was not feasible to annotate all of them. Hence,
we only annotated a subset of the public target
words for semantic change. Participants’ predic-
tions for development and evaluation phase 1 were
evaluated only on this subset of target words, which
remained hidden from the participants. We selected
the hidden target words in the following way: Ini-
tially, a list of 15 changing words was selected
by scanning etymological dictionaries and consult-
ing with a linguistic specialist to obtain words for
changes from C1 to C2. Likewise, it was verified
that these words were in both corpora. Additionally,
a list of 85 words were randomly sampled from the
public target words. The 85 + 15 = 100 words
were annotated as described in Section 4.4. Then,
20 words were excluded based on inter-annotator
agreement.9 The remaining set of 80 target words
were split randomly into two groups, 20 words for
the development set and 60 for the evaluation set
(see Table 3). Uploaded submissions were scored
against these 20/60 annotated words during devel-
opment/evaluation phases.

4.2.2 Phase 2 (Binary Detection)
The target words corresponded to the 20/60 hidden
words from Phase 1 for development/evaluation.

840 was chosen by us for the old corpus and then we
calculated 73 for the new corpus to reflect the same proportion
of the frequency threshold to corpus size.

9We removed target words with agreements of less than
0.3 Krippendorf’s α and less than 0.3 on a version of Krippen-
dorf’s α where expected disagreements were calculated from
the full annotated data (instead of for each word separately).
The latter measure is less sensitive to skewed judgment distri-
butions for individual words.

x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 2: DURel relatedness scale (Schlechtweg et al.,
2018).

There it was no distinction here between public
and hidden target words. Participants also got ac-
cess to the annotated usages (20+20 from each cor-
pus). Uploaded submissions were scored against
the 20/60 public annotated words.

4.3 Word usages
All occurrences of the target words per corpus were
extracted according to the lemma. Then, 20 usages
were randomly sampled per target word from each
corpus.

4.4 Annotation
We applied the SemEval procedure to annotate tar-
get word usages, as described in Schlechtweg et al.
(2020, 2021). Annotators were asked to judge the
semantic relatedness of pairs of word usages, such
as the two usages of servidor in (1) and (2), on the
scale in Table 2.

(1) Todo esto lo hago con mi iPhone; se va
derecho al servidor, allí se hace el trabajo de
archivo, clasificación y ensamble.
‘I do all this with my iPhone; it goes straight
to the server, there the work of archiving,
sorting and assembling is done.’

(2) Llamó a grandes voces a sus servidores, y
únicamente le contestó el eco en aquellas
inmensas soledades, y se arrancó los cabellos
y se mesó las barbas, presa de la más
espantosa desesperación.
‘He called out to his servants, and only the
echo in those immense solitudes answered
him, and he pulled out his hair and ruffled his
beard, prey to the most frightening
desperation.’

The annotated data of a word was represented in
a Word Usage Graph (WUG), where vertices rep-
resented word usages, and weights on edges repre-
sented the (median) semantic relatedness judgment
of a pair of usages such as (1) and (2). The final
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G, D = (23, 17) G1, D1 = (20, 0) G2, D1 = (3, 17)

Figure 1: Word Usage Graph servidor (left), subgraphs for old corpus G1 (middle) and for modern corpus G2

(right). The colors correspond to the clusters. black/gray lines indicate high/low edge weights.

WUGs were clustered with correlation clustering
(Bansal et al., 2004; Schlechtweg et al., 2020, 2021)
(see Figure 1, left) and split into two subgraphs G1

and G2 representing nodes from subcorpora C1

and C2 respectively (middle and right). Clusters
were then interpreted as word senses and changes
in clusters over time as lexical semantic change.10

In contrast to Schlechtweg et al., we used
the openly available DURel interface for anno-
tation and visualization.11 This also implied a
change in sampling procedure, as the system im-
plemented only random sampling of usage pairs
(without SemEval-style optimization, i.e., sampling
in rounds with connection of clusters). For each
target word we sampled |U1| = |U2| = 20 us-
ages (sentences) per subcorpus (C1, C2) and up-
loaded these to the DURel system, which pre-
sented usage pairs to annotators in randomized or-
der. We recruited twelve Spanish native speakers
(4 Chileans, 4 Colombians, 2 Cubans, 1 Spaniard
and 1 Venezuelan). All had university level educa-
tion, while seven had a background in linguistics
of which two had one in historical linguistics. We
monitored agreement between annotators during
the annotation process and discussed some strong
annotation disagreements with certain annotators.
This led to the exclusion of one annotator early
in the process who often completely inverted the
annotation scale (e.g. judged 1 while agreeing that
the two usages have identical meanings).

Similar to Schlechtweg et al. (2020), we ensured
the robustness of the obtained clusterings by con-
tinuing the annotation of a target word until all
clusters in its WUG were connected by at least one

10We used Schlechtweg et al. (2020, 2021)’s code
provided at https://www.ims.uni-stuttgart.de/
data/wugs.

11https://www.ims.uni-stuttgart.de/
data/durel-tool.

judgment.12 For 16 words the annotation had to be
stopped before this condition was met. We man-
ually inspected the unconnected clusters of some
words and concluded that missing connections did
not lead to clustering errors.

We finally labeled a target word as Binary
Change if it gained or lost a cluster over time.
For instance, servidor in Figure 1 was labeled
as change as it gained the orange cluster from
C1 to C2. Consequently, servidor was also la-
beled as gaining a sense; but not as losing a sense,
since the blue cluster persists. Graded Change was
defined as the Jensen-Shannon distance between
the normalized cluster frequency distributions D1

and D2 yielding a high value of 0.82 (ranges be-
tween 0.0 and 1.0) for servidor, as sense proba-
bilities changed drastically. The negated COM-
PARE score was derived by averaging over all
graph edges with nodes from different time periods
and negating this value, yielding a high score of
−1.97 (ranges between −4.0 and −1.0) for servi-
dor.13 Following Schlechtweg et al. (2020) we
used k and n as lower frequency thresholds for
the binary notions to avoid that small random fluc-
tuations in sense frequencies caused by sampling
variability or annotation error were misclassified as
change. As proposed in Schlechtweg and Schulte
im Walde (submitted) for comparability across sam-
ple sizes we set k = 1 ≤ 0.01 ∗ |Ui| ≤ 3 and
n = 3 ≤ 0.1 ∗ |Ui| ≤ 5, where |Ui| was the num-
ber of usages from the respective time period.14

12Note that this condition was more strict than Schlechtweg
et al. (2020)’s where only connection of multi-clusters (clus-
ters with more than one usage) was guaranteed. Their condi-
tion was always met in our data.

13Find a more detailed discussion of different change scores
in Schlechtweg et al. (2020) and Schlechtweg (2022).

14That is, k was always between 1 and 3. There are three
possible cases: k = 1 if 0.01 ∗ |Ui| ≤ 1, k = 0.01 ∗ |Ui| if
1 < 0.01 ∗ |Ui| < 3, k = 3 if 0.01 ∗ |Ui| ≥ 3. Similarly for
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This resulted in k = 1 and n = 3 for all target
words.

Find an overview over the final set of WUGs
in Table 3. We reached an inter-annotator agree-
ment of Krippendorff’s α = .53 and Spearman’s
ρ = .57 which was comparable to previous studies
(e.g. Schlechtweg et al., 2018; Rodina and Kutu-
zov, 2020; Kurtyigit et al., 2021; Baldissin et al.,
2022).15

5 Systems

We now summarize the baseline systems as well as
the systems and resources used by the participating
teams.

5.1 Baselines
For both phases we use five baselines:

baseline1 Skip-Gram with Negative Sampling
+ Orthogonal Procrustes + Cosine Distance
(SGNS+OP+CD) This approach learned vector rep-
resentations for each word (type-based) in two in-
put corpora with a shallow neural language model
(Mikolov et al., 2013a,b).16 These were then
aligned using Orthogonal Procrustes (Hamilton
et al., 2016). For phase 1, the method computed
Graded Change as the cosine distance between old
and modern vectors for all words in the vocabu-
lary. This same value was used in the COMPARE
subtask. In phase 2, binary predictions were com-
puted by setting a threshold to the cosine distances,
which was calculated as the sum between the mean
and the standard deviation (std) of all these dis-
tances (Kaiser et al., 2020b). All words with values
above the threshold were classified as change, and
values below were classified as no change. This
approach has shown high performance in several
previous studies and shared tasks (Schlechtweg
et al., 2019; Pömsl and Lyapin, 2020; Kaiser et al.,
2020b; Pražák et al., 2020).

baseline2 Normalized Log-Transformed Fre-
quency Difference (FD) For phase 1, this method
calculated the frequency of each target word in each
of the two corpora, normalized it by the logarithm

n.
15We provide WUGs as Python NetworkX graphs, de-

scriptive statistics, inferred clusterings, change values and
interactive visualizations for all target words and the respec-
tive code at https://www.ims.uni-stuttgart.de/
data/wugs (DWUG ES).

16As parameters we chose dim=100, window size=10,
epochs=5, number of negative samples=5, subsampling
threshold=0.001 (cf. Kaiser et al., 2020a).

of the total corpus frequency and then calculated
absolute differences between these values as a mea-
sure of change. We submitted these values for
the change graded and COMPARE subtasks. For
phase 2, the method applied the same thresholding
approach used in baseline1. For the sense loss sub-
task, it first verified that the target word presents
change using the value of the change binary sub-
task. Then, if the differences were negative, the
words were classified as loss = 1 and as loss = 0
otherwise. For sense gain the labeling is reversed.

baseline3 Grammatical profiles were generated
from tagged and parsed corpora (Kutuzov et al.,
2021). These profiles were essentially frequency
vectors of various morphological and syntactic fea-
tures (for example, case = Nominative, or syntax
role = subject) for a given word in a given his-
torical corpus. The cosine distance between the
profile vectors of the same word for the two peri-
ods was used as an estimate of graded semantic
change and COMPARE. Binary predictions were
generated from ordered lists of graded scores for all
target words by applying an offline change-point de-
tection algorithm based on dynamic programming.
The algorithm finds a point (a word) in an ordered
list of scores, where the scores become significantly
higher. This word and all words with score values
above it were assigned the class “changed”. This
baseline did not produce predictions for the sense
loss and sense gain subtasks.17

baseline4 Minority class This baseline produced
predictions by labeling each word with the minority
class label of the respective Binary Change score
(change binary, loss, gain). This is label 1 (change)
in all cases. It only applied to phase 2.

baseline5 Random baseline This baselines pro-
duced random predictions for all subtasks in both
phases. For phase 1, we generated random values
between 0 and 1 from a uniform distribution for
all hidden target words and computed Spearman
correlation with the gold scores. This process was
repeated 100 times and we reported the average
performance over all repetitions. For phase 2, we
used a parallel procedure generating random labels
∈ {0, 1} from a uniform distribution.18

17All results for baseline3 were computed and submitted
by Andrey Kutuzov using the code at https://github.
com/glnmario/semchange-profiling.

18Baseline3, baseline4 and baseline5 were added after the
shared task finished.
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Data set n N/V/A |U| AN JUD AV KRI SPR UNC LOSS LSCB LSCG

development 20 13/4/3 40 10 12k 40 .53 .59 0 .53 .55 .39
evaluation 60 30/14/16 40 12 38k 40 .58 .60 0 .45 .47 .37
discarded 20 8/6/6 40 12 12k 40 .27 .33 0 .52 .30 .18

full 100 51/24/25 40 12 62k 40 .53 .57 0 .48 .45 .34

Table 3: Overview target words. n = no. of target words, N/V/A = no. of nouns/verbs/adjectives+adverbs, |U |
= avg. no. of usages per word, AN = no. of annotators, JUD = total no. of judged usage pairs, AV = avg. no.
of judgments per usage pair, KRI = Krippendorff’s α, SPR = weighted mean of pairwise Spearman, UNC = avg.
no. of uncompared multi-cluster combinations, LOSS = avg. of normalized clustering loss * 10, LSCB/G = mean
binary/Graded Change score.

5.2 Participating systems
Below we present a summary of the methods de-
veloped by the participants:19

HSE (Kashleva et al., 2022) This team partici-
pated with two different methods. The first con-
sisted of fine-tuning BERT (Devlin et al., 2019) on
the lemmatized versions of the corpora in order to
extract embeddings of the target words separately
for each period, which are then clustered using
K-means. Graded Change was estimated as the
average cosine distance between all pairs of cluster
centroids in the first and second periods. In order
to estimate Binary Change, the Graded Change
scores were thresholded by clustering them into
two clusters.

The second method was based on grammatical
profiles (Kutuzov et al., 2021). The frequency of
morphological and syntactic categories for each
target word in both corpora (parsed with UdPipe,
Straka and Straková, 2017) were counted and used
as features in two time-specific vectors. Graded
Change was measured by the cosine distance be-
tween these vectors, while Binary Change was mea-
sured by thresholding the graded scores.

GlossReader (Rachinskiy and Arefyev, 2022)
This system fine-tuned the XLM-R multilingual
language model (Conneau et al., 2019) as part of
a gloss-based Word Sense Disambiguation (WSD)
system on a large English WSD dataset. It em-
ployed zero-shot cross-lingual transferability to
build contextualized embeddings for Spanish data.
The Graded Change score for each word was cal-
culated as the Average Pairwise (Manhattan) Dis-
tance (APD) between the embeddings for (non-

19The descriptions are based on the system description pa-
pers submitted by the participating teams, with the exception
of Rombek who did not provide a paper but gave us a brief
description by e-mail.

preprocessed) word usages in the old and new cor-
pus. Binary changes were estimated by threshold-
ing these scores. For the sense gain and sense loss
subtasks the same predictions were reused.

UAlberta (Teodorescu et al., 2022) This team
applied different methods to the two subtasks. For
Graded Change Discovery, they followed the de-
sign of CIRCE (Pömsl and Lyapin, 2020) and
computed distances based on both static (type-
based) and contextual (token-based) embeddings,
with their relative weights tuned on the devel-
opment set. For static embeddings, they used
SGNS+OP+Euclidean Distance on the lemmatized
versions of the corpora. For contextual embeddings,
the XLM-R model was trained on the combined
corpus (tokenized) to predict masked instances of
the target words and Graded Change was measured
using Euclidean APD. For Binary Change Detec-
tion, they framed the task as a WSD problem, cre-
ating sense frequency distributions for target words
in the old and modern corpus with an end-to-end
WSD system (Orlando et al., 2021). It was assumed
that the word semantics has changed if: (1) a sense
is observed in the modern corpus but not in the old
corpus (or vice versa), or (2) the relative change for
any sense exceeds a tuned threshold.

CoToHiLi (Sabina Uban et al., 2022) This team
proposed a type-based embedding model combined
with hand-crafted linguistic features. The system
computed several features for every target word
based on embedding distances between time pe-
riods and linguistic hand-crafted features, which
were then weighted into an ensemble model to pre-
dict the final score. First, the system obtained word
embeddings separately on the two corpora (tok-
enized) with the Continuos Bag-of-Words (CBOW)
model (Mikolov et al., 2013a,b), which were then
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aligned to obtain a common embedding space. The
alignment algorithms used were: supervised align-
ment using a seed word dictionary and a linear
mapping method, a semi-supervised algorithm and
unsupervised alignment based on adversarial train-
ing (Artetxe et al., 2016, 2017, 2018a,b). Finally,
cosine distance between embeddings of the same
word in different corpora was used as an indicator
of graded semantic change. For the binary task, the
system used thresholding the graded scores.

DeepMistake (Homskiy and Arefyev, 2022) This
team employed a Word-in-Context (WiC) model,
i.e., a model designed to determine if a particu-
lar word has the same meaning in two given con-
texts. In essence, they attempted to directly apply
a model trained on a related task to our problem.
The WiC model was initially trained by fine-tuning
the XLM-R language model on the Multilingual
and Cross-lingual Word-in-Context (MLC-WiC)
dataset (Martelli et al., 2021). Subsequently, it was
further fine-tuned on the provided annotations for
the development set in this shared task and on the
Spanish portion of the multi-language XL-WSD
dataset (Pasini et al., 2021). Graded Change was
measured similarly to APD by averaging same-
sense probabilities between embeddings for us-
ages (no preprocessing) from different time periods.
For the change binary subtask, the authors applied
thresholding to the Graded Change scores, for the
sense gain and sense loss subtasks the same predic-
tions were reused.

They also experimented with clustering by rep-
resenting word usages and their same-sense proba-
bilities in a weighted undirected graph, which was
then clustered with Correlation Clustering. Graded
Change was measured with JSD, while Binary
Change was measured with the Binary Change
score definition from Section 4.4.

BOS (Kudisov and Arefyev, 2022) The system
described by this team was based on generating
lexical substitutes that describe old and new senses
of a given word. These were generated using the
XLM-R masked language model. For polysemous
words, lexical substitutes depended on the mean-
ing expressed in a particular context. For each
target word, usages were sampled from both cor-
pora, lemmatized and used to generate lexical sub-
stitutes. Next, two sets of vectors were built for old
and new usages where each usage is represented
by a vector of the probabilities of its substitutes.

For Graded Change the Cosine APD between old
and new vectors was computed, while for Binary
Change a threshold was applied to this score. The
authors also proposed three different approaches
based on pairwise distances for the sense gain and
loss subtasks.

Rombek This system adapted ideas from the
Word Sense Induction (WSI) task. Lexical sub-
stitutes were generated in the same way as with the
BOS system (see above) and arranged in a matrix.
Agglomerative clustering was then applied to each
target word to obtain clusters with candidate senses.
JSD was applied between clusters to obtain Graded
Change estimates. Thresholding was applied to
produce binary predictions.20

5.3 Summary
Most systems were based on three main compo-
nents: (i) a semantic representation of words or
word usages as vectors, (ii) an aggregation method
over vectors, and (iii) a change measure. Type-
based systems usually employed an additional
alignment step over semantic representations. Also,
the preprocessing of data was crucial for the per-
formance of contextualized embeddings (Laicher
et al., 2021).

Preprocessing Some teams only used the tok-
enized version of the shared task dataset (CoTo-
HiLi, UAlberta), while other teams only used the
lemmatized version (UAlberta, BOS, HSE). One
team varied the preprocessings with systems (UAl-
berta): lemmatization for type-based embeddings
and tokenization, lemmatization and POS-tagging
for the WSD system. Two teams did not use any
sort of preprocessing (GlossReader, DeepMistake),
while two teams used substitution with dynamic
patterns (e.g. <mask> (y [target]), [target] (por
ejemplo <mask>)) for their lexical substitution
models (BOS, Rombek).

Semantic representations Most systems used
token-based contextualized embeddings such as
BERT (HSE) and XLM-R (DeepMistake, Gloss-
Reader, Rombek, UAlberta, BOS). Some teams
further fine-tuned these embeddings on Language
Modeling, WSD or WSI/WiC tasks. One team
(DeepMistake) fine-tuned on the semantic proxim-
ity judgments from the published development data.
Only three teams used type-based semantic rep-

20This team did not submit a paper to the shared task.
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resentations including SGNS (UAlberta), CBOW
(CoToHiLi) and Grammatical Profiling (HSE).

Vector aggregation Participating teams used dif-
ferent approaches to aggregate vectors into more
abstract semantic representations. A common strat-
egy was to model the COMPARE score by com-
puting Average Pairwise Distances (APD) between
vectors from different time periods (DeepMistake,
GlossReader, UAlberta, BOS). This strategy has
shown to perform well in various previous studies
and shared tasks (Kutuzov and Giulianelli, 2020;
Laicher et al., 2021; Kurtyigit et al., 2021; Arefyev
et al., 2021). Another strategy was to cluster the
vectors (HSE, Rombek, DeepMistake). Cluster-
ing algorithms used are: Agglomerative Clustering
(Rombek), K-means (HSE) and Correlation Clus-
tering (DeepMistake). One system used a WSD
system to assign cluster labels (UAlberta).

Change Measure For Graded Change most
teams using contextualized embeddings directly
relied on APD scores as described above. They
used different distance measures such as: Co-
sine (BOS), Euclidean (UAlberta) and Manhattan
(GlossReader) distances. One team averaged same-
sense probabilities (DeepMistake). The teams rely-
ing on clustering mostly used the JSD to measure
Graded Change (Rombek, DeepMistake). One
team instead used cosine distance between clus-
ter centroids (HSE). The teams relying on type-
based representations used either Cosine (CoTo-
HiLi, HSE) or Euclidean distance (UAlberta). For
Binary Change most teams relied on thresholding
the graded predictions (DeepMistake, GlossReader,
Rombek, HSE, CoToHiLi, BOS). This strategy has
shown high performance in several previous studies
and shared tasks (Schlechtweg et al., 2020; Kaiser
et al., 2020b; Kurtyigit et al., 2021). Two teams us-
ing a clustering approach measured Binary Change
by applying exactly the definition from the annota-
tion process (DeepMistake) or a similar definition
(UAlberta).

6 Results

The results shown in Tables 4, 5 and 6 correspond
to the best submissions per subtask.21

Graded Change Discovery As shown in Table
4, GlossReader and DeepMistake obtained first

21In the case of HSE who used two different systems, the
displayed results correspond to the token-based system.

and second place in the main task of evaluation
phase 1, while HSE came third.22 These were
the only teams that managed to outperform base-
line1 (SGNS+OP+CD) and baseline3 (Grammat-
ical Profiles). The three winning systems were
based on fine-tuned versions of contextualized em-
beddings with average vector aggregation (Gloss-
Reader, DeepMistake) or clustering (HSE). Inter-
estingly, the top two systems did not model the
JSD between cluster distributions (as done on the
annotation to derive gold scores), but instead model
the COMPARE score (with APD). We discuss this
observation further in Subsection 6.1.

COMPARE Discovery GlossReader and Deep-
Mistake also reached the first and second place on
the COMPARE task in evaluation phase 1. This is
not surprising, because they actually modeled the
COMPARE score with APD. Consequently, also
the correlation was considerably higher than with
Graded Change (e.g. ρ = 0.842 vs. 0.735). Base-
line1 took the third place.

Binary Change Detection For Phase 2 (Tables 5
and 6), again GlossReader performed best, this
time followed by UAlberta and Rombek. Interest-
ingly, with the exception of GlossReader the sys-
tems used in Phase 1 did not obtain a good perfor-
mance in Phase 2. However, participants managed
to outperform all baselines with the exception of
HSE not outperforming baseline4 (minority class).
Two out of the winning systems used threshold-
ing (GlossReader, Rombek), i.e., they modeled the
COMPARE score or the JSD and then thresholded
these scores to obtain Binary Change predictions.
From these teams only UAlberta inferred sense
clusters. Hence, here we saw again what we saw
for phase 1: the top-performing teams were often
not modeling the annotation procedure.

Sense Gain/Loss Detection The top perfor-
mance for sense gain (F1 = 0.591) was clearly
lower than for Binary Change, while for loss the
top performance (F1 = 0.688) approaches the one
for Binary Change. The best results for sense gain
were obtained by DeepMistake, followed by BOS
and GlossReader. In the sense loss subtask, Gloss-
Reader obtained the best performance, followed
by Rombek and BOS. GlossReader and DeepMis-
take submitted the same results to both subtasks as
for Binary Change Detection implicitly assuming

22Since not not all users reported a team name on Codalab,
some leaderboard entries are filled with usernames.
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Task Change graded COMPARE
# Team name SPR SPR
1 GlossReader 0.735 (1) 0.842 (1)
2 DeepMistake 0.702 (2) 0.829 (2)
3 HSE 0.553 (3) 0.558 (4)
4 baseline1 0.543 (4) 0.561 (3)
5 baseline3 0.508 (5) 0.459 (5)
6 Rombek 0.497 (6) 0.456 (6)
7 CoToHiLi 0.282 (7) –
8 baseline2 0.092 (8) 0.088 (7)
9 baseline5 0.064 (9) -0.072 (8)
10 BOS -0.125 (10) -0.129 (9)

Table 4: Summary of system performance in phase 1. Teams are ranked according to SPR score for the Graded
Change subtask in decreasing order. The values corresponding to the three best systems are highlighted in bold type.

Task Change binary Change graded COMPARE
# Team name F1 P R SPR SPR
1 GlossReader 0.716 (1) 0.615 (3) 0.857 (3) 0.735 (1) 0.842 (1)
2 UAlberta 0.709 (2) 0.549 (7) 1.000 (1) – –
3 Rombek 0.687 (3) 0.590 (4) 0.821 (4) 0.535 (5) 0.546 (5)
4 BOS 0.658 (4) 0.510 (8) 0.929 (2) 0.209 (8) 0.163 (7)
5 DeepMistake 0.655 (5) 0.633 (2) 0.679 (6) 0.676 (2) 0.821 (2)
6 CoToHiLi 0.636 (6) 0.553 (6) 0.750 (5) 0.282 (7) –
7 baseline4 0.636 (6) 0.467 (11) 1.0 (1) – –
8 HSE 0.586 (7) 0.567 (5) 0.607 (7) 0.553 (3) 0.558 (4)
9 baseline3 0.548 (8) 0.500 (9) 0.607 (7) 0.373 (6) 0.423 (6)

10 baseline1 0.537 (9) 0.846 (1) 0.393 (9) 0.543 (4) 0.561 (3)
11 baseline5 0.508 (10) 0.484 (10) 0.536 (8) 0.064 (10) -0.072 (9)
12 baseline2 0.222 (11) 0.500 (9) 0.143 (10) 0.092 (9) 0.088 (8)

Table 5: Summary of the results of Phase 2 for substasks Graded Change, COMPARE and Binary Change. Teams
are ranked according to F1 score for subtask Change binary in decreasing order. The values corresponding to the
three best systems are highlighted in bold type.

that gain and loss always occur together. In this
way, they mostly outperformed Rombek and BOS
who tried a more principled approach.

Graded Change/COMPARE Detection The top
performance for these tasks was the same in evalu-
ation phase 1 and 2 (ρ = 0.735 and 0.842). Some
teams had the same results in both phases (Gloss-
Reader, HSE, CoToHiLi) and thus likely submitted
the same predictions. Two teams improved their
results (Rombek, BOS), while one team had lower
results (DeepMistake). We are unsure about the
impact of the published target words and their us-
ages on these results, as teams did not consistently
report whether they used this information in phase
2.

6.1 Discussion
The Graded Change Discovery subtask was solved
with a rather high performance by the winning team
(ρ = 0.735). This is comparable to the top perfor-
mance in SemEval (ρ = 0.725 for DE) obtained
with type-based embeddings. The COMPARE Dis-
covery subtask was solved with even higher per-
formance (ρ = 0.842). This is comparable to the
top performance in RuShiftEval (ρ = 0.822). How-
ever, the results in our shared task were obtained un-
der harder conditions, i.e., for a large number of un-
cleaned target words (Discovery).23 This suggests
that, as far as Graded Change is concerned, LSCD

23We assume that the performance of participating systems
obtained on the hidden target words generalizes roughly to the
full set of public target words as the sample was taken largely
random.
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Task Sense gain Sense loss
# Team name F1 P R F1 P R
1 GlossReader 0.511 (3) 0.333 (5) 0.929 (2) 0.688 (1) 0.564 (2) 0.880 (2)
2 DeepMistake 0.591 (1) 0.433 (1) 0.929 (2) 0.582 (5) 0.533 (3) 0.640 (4)
3 HSE 0.250 (8) 0.192 (9) 0.357 (5) 0.364 (7) 0.421 (5) 0.320 (5)
4 baseline1 – – – – – –
5 Rombek 0.50 (4) 0.409 (2) 0.643 (4) 0.681 (2) 0.727 (1) 0.640 (4)
6 baseline3 – – – – – –
7 BOS 0.520 (2) 0.361 (4) 0.929 (2) 0.610 (3) 0.529 (4) 0.720 (3)
8 baseline2 0.211 (9) 0.400 (3) 0.143 (6) 0 (8) 0 (8) 0 (7)
9 UAlberta 0 (10) 0 (10) 0 (7) 0 (8) 0 (8) 0 (7)
10 CoToHiLi 0.462 (5) 0.316 (6) 0.857 (3) 0 (8) 0 (8) 0 (7)
11 baseline4 0.378 (6) 0.23 (8) 1.0 (1) 0.588 (4) 0.416 (6) 1.0 (1)
12 baseline5 0.333 (7) 0.313 (7) 0.357 (5) 0.367 (6) 0.375 (7) 0.36 (6)

Table 6: Summary of the results of Phase 2 for subtasks Sense loss and Sense gain. The values corresponding to the
three best systems are highlighted in bold type.

systems are applicable to solve real-world prob-
lems and may be useful in historical semantics or
lexicography. However, the more relevant task for
these fields is Binary Change Detection/Discovery
(Schlechtweg and Schulte im Walde, 2020). The
results for Binary Change Detection were lower
(F1 = 0.716), but still clearly higher than the best
baseline (0.636). Results in SemEval were mixed,
but mostly not higher than F1 = 0.7 (DE), while
results in DIACR-Ita were high with an accuracy of
0.94, which was, however, obtained with a different
metric and on a very small and strongly preselected
set of target words. A future challenge will thus be
to improve performance on the binary task.

Our shared task was clearly dominated by token-
based systems. Out of seven participants only two
used a (standalone) type-based system which also
performed much worse than the winning teams
(CoToHiLi, HSE).24 Also, our type-based base-
line1 was clearly outperformed by a number of
token-based systems (three in phase 1 and six in
phase 2). This confirms the tendency observed
in RuShiftEval where token-based systems outper-
formed type-based ones on LSCD. Before that, in
SemEval and DIACR-Ita the type-based systems
had dominated. Potential reasons for this switch are
the understanding of biases in contextualized em-
beddings (Laicher et al., 2021), their optimization
through fine-tuning (Arefyev et al., 2021; Arefyev
and Bykov, 2021) and the optimization of vector ag-
gregation methods (Kutuzov and Giulianelli, 2020;

24The result reported by the HSE team in the leaderboard
corresponds to the first method described in Section 5.2.

Laicher et al., 2021; Arefyev et al., 2021).
In our task, we saw clustering methods amongst

the best-performing systems (HSE, UAlberta) for
the first time. This is an important development,
because the current top-performing system (Gloss-
Reader), as well as many other systems not relying
on clustering, did not model the target word anno-
tation procedure (cf. Subsection 4.4). Instead, it ex-
ploited correlations between the COMPARE score
and JSD as well as Binary Change. These scores
are known to correlate strongly in current LSCD
datasets (Schlechtweg, 2022), including ours. The
correlation between gold (negated) COMPARE and
JSD scores in our dataset is 0.92, while it is 0.69
for gold (negated) COMPARE and Binary Change.
This means that modeling the COMPARE score
is a good predictor for Graded as well as Binary
Change. However, this also means that, the current
best-performing systems have a clear upper bound
on their potential to solve LSCD tasks (where this
upper bound is higher for Graded than for Binary
Change). Hence, if we want to break through this
upper bound in the future, we need to develop or
improve other system types possibly relying on
clustering to model the annotation procedure.25

In order to see how far the current approach of
thresholding COMPARE/JSD/graded scores car-
ries, we compared performance of the top three
systems in evaluation phase 1 across binarization
thresholds in Figure 2. As we can see, the three

25Homskiy and Arefyev (2022) had promising results with
applying the clustering framework used in the annotated data
and semantic proximity graphs derived from fine-tuned con-
textualized embeddings.
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Figure 2: F1 scores over binarization thresholds based on percentiles on submitted Graded Change predictions for
top four teams in evaluation phase 1.

systems had a similar maximum performance of
roughly F1 = 0.72 around a binarization thresh-
old of 50− 70 %.26 At 100 % they all converged
to the minority class baseline (all target words la-
beled as 1). The upper bound on this approach was
given by the maximum performance of the gold
JSD (graded_gold) and the gold COMPARE score
(compare_gold). These upper bounds were 0.88
and 0.81 respectively. This means that perfectly
modeling the COMPARE or even the JSD score
can reach high but never perfect performance on
Binary Change.

7 Conclusion

We conducted the first shared task on semantic
change discovery and detection in Spanish. We
manually annotated 100 Spanish words for seman-
tic change between two corpora, an old one cov-
ering the period between 1810 and 1906, and a
modern one covering the years between 1994 and
2020. The discovery part of our task imposed sev-
eral computational challenges for participants, as it
required calculating semantic change scores for all
words in the vocabulary.

We received predictions from six teams in phase
26Interestingly, HSE here obtained maximum performance

amongst all systems (0.73), much higher than their submission
in evaluation phase 2. A similar observation holds for our
baseline1. This shows how crucial threshold selection is in
this approach.

1 and seven teams in phase 2. Participants ap-
plied systems using static and contextualized word
embeddings in combination with various fine-
tuning procedures, vector aggregation methods and
change measures. Graded Change Discovery was
solved with high performance while Binary Change
Detection still remains far from being solved. The
most successful method winning both main tasks
is a system fine-tuning contextualized multilin-
gual XML-R embeddings on WSD data, aggregat-
ing vectors into cross-corpus pairs and measuring
change as the average of their distances, or a bi-
narization of these values. However, we showed
that this approach has a clear upper bound which
will not allow to solve the tasks completely reliably
in the future. Another interesting result from our
task was that clustering approaches are amongst
the winning teams for the first time.

We hope that this shared task will help pave the
way for future research in the discovery and de-
tection of semantic lexical changes for the Spanish
language, and that our data can be used in the future
for the proposal of novel ideas and techniques.
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Appendix

A Lemmatization

Manual inspection showed that spaCy sometimes
yielded erroneous lemmatization. This happened
more frequently for sentences in the old corpus and
for tokens at the beginning of sentences as shown
in the example below:

Example:
"Decidióse ésta por Teresa la expósita, y así se vio a la
vagamunda tomar bajo su amparo a la pobre desheredada
como ella."
Lemmatization:
Decidióse este por Teresa el expósita , y así él ver a el
vagamunda tomar bajo su amparo a el pobre desheredado
como él .

As can be seen, the lemma of the word Decidióse
was not found, nor was the word converted to lower-
case. SpaCy version 3.1.1 with es_core_news_md
(3.1.0) was used.

B Target indices of annotated usages

In the first version of the extracted word usages
which were uploaded to the DURel interface for
annotation there were frequent errors for the target
word indices. As a result, the wrong target words
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were marked in these usages. However, annota-
tors were instructed to search for the correct target
words and to judge these instead. We corrected the
indices for the data provided to participants during
the shared task. However, we later noticed that
some indices included punctuation immediately
following the target word as shown below:

Example
lemma: sexo
context: 136. Los apellidos de familia no varían de termi-
nación para los diferentes sexos; y así se dice «don Pablo
Herrera», «doña Juana Hurtado», «doña Isabel Donoso».
137 (b).
indexes_target_token: 75:81

After the shared task we uploaded a data version
with corrected indices.
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