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Abstract
We investigate the semantic retrieval potential
of pre-trained contextualized word embeddings
(CWEs) such as BERT, in combination with
explicit linguistic information, for various NLP
tasks in an information retrieval setup. In this
paper, we compare different strategies to ag-
gregate contextualized word embeddings along
lexical, syntactic, or grammatical dimensions
to perform semantic retrieval for various natural
language tasks. We apply this for fine-grained
named entities, word senses, short texts, verb
frames, and semantic relations, and show that
incorporating certain linguistic knowledge im-
proves the retrieval performance over various
baselines. In a simulation study, we demon-
strate the practical applicability of our findings
to speed up the linguistic annotation of datasets.
We also show that nearest neighbor classifica-
tion, which implicitly uses the retrieval setup,
works well with only small amounts of training
data.1

1 Introduction

Neural language models (NLMs) producing contex-
tualized word embeddings (CWEs) such as ELMo
(Embeddings from Language Models; Peters et al.,
2018), FLAIR (Akbik et al., 2018), or BERT (Bidi-
rectional Encoder Representations from Transform-
ers; Devlin et al., 2019), or one of its many suc-
cessors have been a leap forward for multiple NLP
tasks. One major reason for this is the fact that
current NLMs can generate compositional vec-
tor space representations of a word based on the
sequential context in which it appears, thus suf-
ficiently representing its compositional meaning.
CWEs allow the disambiguation of a word’s mean-
ing up to a certain degree, such that, for example,

⋆Equal contribution
1Our code, experiments and results are published as

open source software under a permissive Apache v2 license:
https://github.com/uhh-lt/cwe-ling

sequence tagging models can distinguish two iden-
tical surface forms when used in different contexts.
For example, both instances of each of the two
words ‘can’ and ‘open’ in the following two sen-
tences “Alice opens the can” and “Alice can open
the box” will be represented with quite distinct em-
beddings. Whereas vectors are expected to be very
similar for the word ‘open’, both representations
for ‘can’ are expected to be inherently different,
indicating a syntactic and semantic shift.

Still, although certain dependency relations are
implicitly encoded in BERT, no equivalent to holis-
tic parsing of syntactical or grammatical structures
can be assumed from BERT’s attention mechanism
(Htut et al., 2019). We thus hypothesize that down-
stream NLP tasks benefit from exploiting explicit
syntactical and grammatical cues derived from lin-
guistic knowledge in addition to the contextual em-
beddings. To investigate this hypothesis, we define
a set of aggregation strategies for word embeddings
along linguistically informed dimensions. Such
representations are used to address several down-
stream tasks: a) labeling on the sentence level,
where we experiment with sentiment detection, re-
lation identification, and semantic frame induction,
and b) word-level- and sequence labeling, where
we experiment with named entity recognition and
word sense disambiguation.

The explicit use of syntactic information to ag-
gregate CWEs can be regarded as feature extraction
or feature transformation. Such features may not
only be useful in classification scenarios but also
for retrieval tasks. Particularly, they can be useful
in the context of a retrieval scenario in which the
ultimate goal is to enable users to rapidly find se-
mantically similar word patterns or sentences in
their datasets.

In this regard, there are three main contributions
of this paper: a) We introduce several different
strategies to incorporate explicit linguistic informa-
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Figure 1: Overview of the retrieval process.

tion for embedding-based feature representations.
b) We evaluate these strategies in an information
retrieval setup to find semantically related items for
various downstream NLP tasks. c) We demonstrate
two potential applications of our findings 1) for
speeding up manual annotation of text data, and 2)
for fast nearest neighbor classification with little
training data. Depending on the task, our retrieval
evaluation shows the retrieval precision and nearest
neighbor classification indeed profit from the incor-
poration of additional explicit linguistic knowledge.
Depending on the complexity of the task, and cor-
relating it with a simulated cognitive shift between
dissimilar texts and distinct categories, our simula-
tion shows that the use of linguistic structures in a
retrieval scenario can speed up the manual annota-
tion of text data, e.g. to create training data more
rapidly.

2 Related Work

The LISA (linguistically-informed self-attention)
approach by Strubell et al. (2018) showed the ben-
efit of injecting syntactic information into a neural
network using self-attention for multi-task learn-
ing. LISA was applied for dependency parsing,
part-of-speech tagging, predicate detection, and se-
mantic role labeling, where the results for all tasks
showed significant improvements over the previ-
ous state-of-the-art, particularly when using ELMo
embeddings (Peters et al., 2018).

Wiedemann et al. (2019) showed that contex-
tual embeddings, particularly BERT (Devlin et al.,
2019) inherit a certain degree of sense represen-
tation, i.e. polysemous words appear in different
areas of the embedding space depending on their
context. Wang et al. (2019) implement Elman
(1990)’s theory, which states that neural language
models are sensitive to word order regularities in
simple sentences, by specifically exploiting the
inner-sentence structure (word-level ordering) and

inter-sentence structure (sentence-level ordering)
as training objectives. They argue that their Struct-
BERT model successfully captures the structure of
sentences during pre-training.

Htut et al. (2019) and Clark et al. (2019) analyze
to which extent attention heads in BERT can track
linguistic dependencies. Both works conclude that
some attention heads specialize in syntactic struc-
ture. Wu et al. (2020) measure the impact one
word has on another in a sentence by using a so-
called perturbed masking technique. They can de-
rive a syntax tree from a word-word matrix. Soares
et al. (2019) used a so-called masking technique to
specifically force the model to learn entity locations
in a sentence. By doing so, specific representations
for particular relations within text can be learned.

SBERT (SentenceBERT; Reimers and
Gurevych, 2019) is an extension to pre-trained
transformer architectures such as BERT or
RoBERTa, which is specifically targeted for
sentence similarity search, i.e. finding similar
sentences by using cosine similarity. SBERT
outperforms most other embedding strategies for
multiple sentence similarity tasks. However, it
requires labeled data in form of similar/dissimilar
sentences.

3 Retrieval of Linguistic Patterns

We approach the problem of semantic retrieval
with linguistic structures as follows: Let S :=
[s1, . . . , sn] be a dataset with n instances, where
si represents a sentence. For our retrieval exper-
iments, we use datasets with corresponding class
labels y = [y1, . . . , yn], where yi is a list of labels
in case of word-level tasks. Instances are decom-
posed into a set of finer-grained, lexical structures
such as tokens, multi-word units, chunks, depen-
dency relations, etc. (see Section 3.1 for refer-
ence), which we use as the basic unit of retrieval.
For each instance si, a unique set of mi linguistic
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structures si 7→ {x1
i , . . . ,x

mi

i }, with replicated yi
labels {y1i , . . . , ym

i

i }, is extracted by using a par-
ticular linguistic pattern. Further, xj

i represents a
single feature vector extracted by a particular lex-
ical template, for example, it could be the actual
sentence embedding or word embedding of si. We
call xj

i a structured embedding.
The goal is to retrieve the k most relevant in-

stances for a given query instance q and its ex-
tracted structured embeddings q 7→ {x̂1, . . . , x̂mq}
of a target class c:
[r1, . . . , rk] := topk

i∈{1...n}
{ argmax
h∈{1...mq}
j∈{1...mi}

sim(x̂h,xj
i ) } ,

where topk is defined as a function that selects
the top k indices as an ordered list from the entire
set of labeled instances regarding their maximum
similarity score. The sim function is defined to be
a similarity function for two vectors; we use cosine
similarity in our experiments. Figure 1 illustrates
the indexing and retrieval process.

3.1 Lexical Structures
For the linguistic pre-processing, i.e. tokenization,
part-of-speech tagging (PoS), and dependency pars-
ing we use spaCy2 (unless stated otherwise) and
for chunking we use FLAIR3. For CWEs based on
RoBERTa (Liu et al., 2019), we sum the output of
the last four layers of the model, and if a token com-
prises several word piece tokens, the corresponding
embeddings are averaged to obtain a single vector
for a lexical token. We describe our linguistically
informed structures in the following.

3.2 Word-level structures
We use the following two word-level structures to
find similar entity spans:

token: Each token of the dataset is considered a
single item. Consequently, the unit of retrieval
is always a single token.

SPS (same-PoS-span): In order to capture nouns
and noun phrases, each sequence of tokens
having the same PoS tag within a sentence is
considered as one structure. Thus, the unit of
retrieval is a variable-length span of one or
more tokens.

3.3 Sentence-level structures
We use the following sentence-level structures to
find similar sentences.

2https://spacy.io/
3https://github.com/flairNLP/flair

The Prime Minister left Brasilia on Monday for Lima
DT
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[CLS] The Prime Minister left Brasilia on Monday for Lima .
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(c)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
d1 d2

nsubj

(d)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
d2 d2 d1

compound
det

(e)

[CLS] The Prime Minister left Brasilia on Monday for Lima
e1 p p e2pobjnsubj prep

(f)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
FN.Departing,Quitting

(g)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
S V Onsubj dobj

(h)

Figure 2: (a) Word-level structures with BIO-labels for
NER and WordNet sense information. (b) shows the au-
tomatically extracted dependency graph and syntax fea-
tures. (c-h) Sentence-level structures: (c) shows the ag-
gregation strategy for token (t), word (w), word-NS
(w-ns), chunk (c), and chunk-NS (c-ns). (d) shows
the aggregation strategy for dep-{concat,avg} for
a single dependency edge, i.e. d1 and its governor (de-
pendency head) d2. (e) illustrates the dep-depavg
strategy for the word ‘Minister’, where d1 is the ac-
tual word and all d2 are dependents of d1. (f) shows
the task dependent dependency-path structure for
relation identification. (g) and (h) show the task depen-
dent lexical-unit and subj-v-obj structures
for frame identification.

token: each token of a sentence is considered a
structure.

word: same as token, w/o punctuation.
word-NS: same as word, w/o stop-words.
chunk: each extracted chunk of a sentence is a

structure. For this, token embeddings of a sin-
gle chunk’s constituents are averaged. For the
short text retrieval task, these chunk represen-
tations again are averaged to obtain a single
vector representation for the sentence.

chunk-NS: same as chunk, w/o stop-words.
dep: dependency relations are encoded as a com-

bined vector of its head and tail word. Three
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strategies are tested to encode dependency re-
lations as vectors a) both vectors are concate-
nated (-concat) b) both vectors are aver-
aged (-avg) c) for each word, we concate-
nate the word vector itself with the averaged
vectors of its dependents (-depavg).

Figures 2 (c-e) show the structures for an example
sentence. The following two baseline approaches
produce a single vector representation for the entire
sentence:

CLS: the artificial [CLS] token of BERT-based
models, which is added to every sentence as a
meta-token and which is frequently used as a
vector representation for the entire sequence
in downstream tasks;

BoW: all embeddings are averaged (bag-of-words).

4 Experiments

Several word-level- and sentence-level retrieval
tasks of different granularity are tested. We also
compare with static word embeddings provided by
Mikolov et al. (2013, word2Vec)4 since our linguis-
tic structures enable the composition of meaning
due to the use of multiple tokens for a single struc-
tured representation. We investigate the retrieval
performance using precision at k (P@k, k = 1
and k = 5) and mean average precision (mAP)
and refer to the static word2Vec embedding as w2v
and to the contextualized RoBERTa embedding as
RB. To perform the retrieval evaluation based on
gold standard data, we use labeled datasets, which
means each word or sentence is labeled with one
specific target class. We use the standard train and
test splits for indexing and querying as indicated
by each task-specific dataset.

We additionally run a simple classification
benchmark test using the same datasets. As a clas-
sification approach, we opted to use a k-nearest
neighbor (kNN) approach, which heavily relies
on the retrieval performance and, thus, implicitly
evaluates the retrieval performance. The kNN ap-
proach groups and counts the class labels of the
top k retrieved training samples and uses the most
prominent class label as a classification result. In
case of ties, a random label of the most prominent
class labels is chosen. Here, we report F1 scores
on the test sets and determine the hyper-parameter

4https://code.google.com/archive/p/
word2vec/

k by using the validation set of the respective task
benchmarks.5

4.1 Word-level tasks

Named Entity Recognition (NER) We use NER
as a coarse-grained task. We evaluate the retrieval
performance on the two common English bench-
mark datasets CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) and OntoNotes Release 5.0
(Weischedel et al., 2013).6

For retrieval, we only use structures consisting
of entity-labeled tokens, i.e. excluding the ‘other’
class — with the goal to find more structures having
the same label as the query. For NER, searching
for non-entities, and including their scores, would
only increase the reported performance, because
the majority of labels are actually ‘other’.

Both word-level structures explained in Sec-
tion 3.2 are tested. An issue arises when retrieving
token spans instead of whole sentences because
the unit of retrieval is some linguistic structure that
does not necessarily map perfectly to an entity span.
Since there is no proper solution to this issue, we
validate the appropriateness of our linguistic struc-
tures used for retrieval via named-entity classifica-
tion. The classification scores allow interpretation
and connection to SOTA results, but we note that
those results are only for anecdotal purposes and
cannot be properly compared to SOTA systems be-
cause of the simplicity and different objective of
our approach.
Word Sense Disambiguation (WSD) can be con-
sidered as a fine-grained multi-class problem with
thousands of classes where each word sense is a
class. We evaluate retrieval and classification per-
formance on a wide range of WSD datasets. In par-
ticular, we use the following datasets provided by
UFSAC (Vial et al., 2018)7: SemCor (Miller et al.,
1993), WordNet Gloss Tag8 (WNGT) consisting of
all WordNet (Miller, 1995) definitions, SensEval
2 (Edmonds and Cotton, 2001) & 3 (Litkowski,
2004) as well as SemEval 2007 Task 7 (Navigli
et al., 2007) & 17 (Pradhan et al., 2007). The
SemCor and WNGT datasets are used as training
corpora with SemEval 2007 Task 7 and 17 as query

5If an explicit validation set is not supplied, we split the
original training set (80/20) and use a random subset for vali-
dation and the remainder for training.

6We apply the split proposed by Pradhan et al. (2013) for
OntoNotes as there is no official dataset split.

7https://github.com/getalp/UFSAC
8https://wordnetcode.princeton.edu/

glosstag.shtml
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datasets. For SensEval 2 and 3, we use their respec-
tive training and test sets.

In analogy to NER, we only use words that need
disambiguation as queries for the retrieval evalu-
ation. Since WSD is mostly the task of disam-
biguating a single word, we only use the token
structure.

4.2 Sentence Level Tasks

Short-text retrieval evaluates the performance of
retrieving semantically similar sentences ideally
labeled with the same class. This task can be seen
as a binary text classification problem. First, we try
to find more tweets containing offensive language
given an offensive tweet from the OLID dataset
(Zampieri et al., 2019)9 provided by the OffensE-
val 2019 Shared Task. Second, we want to obtain
more negative or positive tweets from the Twitter
Airline sentiment dataset10. Our intuition is that
some very specific parts of a sentence (comparable
to a particular linguistic structure) are responsible
for triggering a particular class, e.g. making a tweet
sound either offensive or negative.
Relation Identification is a multi-class classifica-
tion problem, where the label space contains be-
tween 10 and 19 classes. We use three standard
benchmarks from the SemEval11 challenges for re-
lation classification: SE’07 (SemEval 2007; Girju
et al., 2007), SE’10 (SemEval 2010; Hendrickx
et al., 2010), and SE’18 (SemEval 2018; Gábor
et al., 2018). SE’07 and SE’10 focus on the
classification of semantic relations between pairs
of nominals. E.g. ‘tea’ and ‘ginseng’ are in an
ENTITY-ORIGIN(e1,e2) relationship in the
sentence ‘The cup contained tea from dried gin-
seng’. SE’18 focuses on domain-specific semantic
relations from scientific articles and provides entire
paragraphs instead of single sentences.

We apply the sentence-level templates men-
tioned in Section 3.1 and additionally apply a
specifically designed template structure, which in-
volves the path between two given entities in a
dependency path. The dependency path as a fea-
ture has been proven to be beneficial for relation
extraction in multiple previous works.We define the
feature vector x to be the concatenation of vectors
for each entity e{1,2} and the path p, where each

9https://competitions.codalab.org/
competitions/20011

10https://www.kaggle.com/crowdflower/
twitter-airline-sentiment

11https://semeval.github.io/

individual vector is the average vector of the words
included: x := e1 ⊕ e2 ⊕ p (cf. Fig. 2f).
Frame Identification or classification is consid-
ered to be a fine-grained multi-class classifica-
tion problem since every frame is its own class.
We evaluate the performance on FrameNet (Baker
et al., 1998). The latest release of the dataset
is FrameNet-1.7, but FrameNet-1.5 is by far the
most commonly used one in the literature. We
report results for both versions. For this work,
we only use the dataset of fulltext annotations
which provides 78 documents for FrameNet-1.5
and 108 documents for FrameNet-1.7. To gener-
ate data splits for both versions, we use 23 docu-
ments to extract the test set following the previous
work (Das et al., 2014; Peng et al., 2018) and 16
documents are used as development set (Hermann
et al., 2014), whereas the remaining documents are
used as training set. Each frame is associated with
one or more frame evoking elements commonly
referred to as lexical-units. For example,
the frame ‘Abandonment’ can be evoked by the
lexical-units ‘abandon’, ‘depart’ or ‘leave’.
To find sentences that represent the same frame,
we use the following task-dependent structures in
addition to the default structures:

lexical-unit: This structure is based on
the target words and phrases corresponding
to the lexical-unit of the respective
frame. Unlike PropBank (Palmer et al., 2005),
where the target predicate is always a verb,
FrameNet contains ten different types of lexi-
cal units such as nouns, adjectives, and prepo-
sitions. Embeddings of multi-token lexical
units are averaged.

subj-v-obj: This structure is based on the con-
catenation of subject-verb-object
triples, which have demonstrated competitive
performance for unsupervised semantic frame
induction tasks (Ustalov et al., 2018). For non-
verb lexical units with no subject and object,
we just consider the lexical unit.

5 Results

For discussion, we focus on P@1 scores because
we believe this is the most important metric for
practical applicability. As expected, we observe
significantly better performance using contextual
word embeddings as compared to static word em-
beddings across all tasks. However, our goal is
not to compare these two types of embeddings,
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Aggregation
Data token SPS

CoNLL-2003 (w2v)
37.1 38.9 mAP1K
71.3 79.8 P@1
64.5 70.3 P@5

CoNLL-2003 (RB)
48.0 48.0 mAP1K
87.3 87.2 P@1
78.1 79.3 P@5

OntoNotes-v5 (w2v)
26.6 29.6 mAP1K
49.7 50.5 P@1
38.7 44.9 P@5

OntoNotes-v5 (RB)
38.4 36.0 mAP1K
75.7 75.3 P@1
64.4 64.5 P@5

Table 1: NER retrieval results. We use the mean average
precision (mAP) estimate of the top 1K nearest neigh-
bors.

Embedding
Data w2v RB

SensEval 2 45.9 65.9 mAP1K
38.8 75.1 P@1
40.4 69.7 P@5

SensEval 3 45.7 64.2 mAP1K
40.5 72.3 P@1
45.1 68.7 P@5

SemEval ’07 T7 (SemCor) 35.6 41.4 mAP1K
22.3 27.8 P@1
22.5 26.5 P@5

SemEval ’07 T7 (WNGT) 31.8 38.6 mAP1K
25.0 32.7 P@1
24.7 29.9 P@5

SemEval ’07 T17 (SemCor) 50.0 63.3 mAP1K
41.7 62.6 P@1
42.7 57.5 P@5

SemEval ’07 T17 (WNGT) 37.1 53.0 mAP1K
32.4 54.7 P@1
29.6 44.5 P@5

Table 2: WSD Retrieval results for the token structure.

but to evaluate if aggregation of embeddings along
linguistically informed lexical structures provides
benefits for retrieval compared to the baselines re-
gardless of the type of embedding.

Named-entity recognition: Table 1 shows the re-
trieval results for the CoNLL-2003 and OntoNotes
v5 datasets. The retrieval performances of the two
structures differ depending on the type of word em-
bedding, we can see a rough increase of 10-15%
for each dataset and aggregation strategy. With
static word embeddings, the SPS structure shows
improved performance compared to the token struc-
ture. A likely explanation is that averaging vectors
of neighboring words inherently creates a kind of
composite embedding that is unique for the com-
bination of words. This is supported by the obser-
vation that for CWEs, there is only a minor differ-
ence between both linguistic structures. For small
k, SPS is marginally better while token outper-
forms SPS on the mAP1K metric on the OntoNotes
dataset.

The classification results for CoNLL-2003 and

Aggregation

Data CL
S

Bo
W

to
ke
n

wo
rd

wo
rd
-N
S

ch
un
k

ch
un
k-
NS

de
p-
ca
t

de
p-
av
g

de
p-
de
pa
vg

Twitter-
Airline
(w2v)

- 75.9 63.0 64.3 64.3 66.2 65.6 65.4 66.0 65.6 mAP
- 85.6 71.9 27.4 71.9 56.4 70.6 62.4 59.1 65.2 P@1
- 86.2 58.6 51.9 59.5 62.0 57.9 62.6 59.2 62.3 P@5

Twitter-
Airline
(RB)

73.7 79.0 63.8 64.7 65.7 78.8 77.9 63.4 65.1 64.3 mAP
23.5 88.9 74.4 77.5 81.2 90.0 89.0 67.8 71.3 68.4 P@1
35.3 88.3 72.7 75.8 79.3 89.7 88.2 67.1 68.5 67.2 P@5

Offens-
Eval’19
(w2v)

- 39.3 47.5 48.4 51.5 47.9 49.2 45.4 45.7 46.0 mAP
- 52.5 60.4 66.2 69.2 60.8 62.5 57.5 56.2 60.0 P@1
- 46.8 61.2 64.5 66.4 62.4 63.5 58.7 56.8 60.8 P@5

Offens-
Eval’19
(RB)

29.6 39.4 43.1 43.2 44.7 40.2 40.2 41.8 39.9 43.8 mAP
62.5 49.2 67.5 66.2 70.4 48.8 48.3 59.2 63.3 63.3 P@1
56.7 47.6 66.8 66.3 68.8 52.3 50.9 62.3 56.8 63.5 P@5

Table 3: Short text retrieval results.

OntoNotes-v5 are shown in Table 612. Overall, the
picture is very similar to retrieval. There is only
a minor difference between both structures when
using contextual embeddings. While the classifica-
tion with the k-NN approach does not reach SOTA
performance, the scores show that both linguistic
structures are generally useful to retrieve named
entities of the same type.
Word sense disambiguation: Table 2 shows the
WSD retrieval results for the various pairs of query
and background datasets. For SemEval ’07 scores
for task 17 are considerably higher as it is not as
fine-grained as task 7. Furthermore, the use of Sem-
Cor as a background corpus is superior to WNGT.
These dataset characteristics are independent of the
choice of word embedding type.

The performance of k-NN classification with
static word embeddings is always close to the most
frequent sense (MFS) baseline (cf. Tab. 7 in the
appendix). With CWEs, however, this baseline is
beaten by a large margin (cf. Tab. 6).
Short-text retrieval: Table 3 shows the retrieval
results for tweet labels. Aggregating embeddings
with the chunk structure improves the retrieval
performs best for sentiment analysis (90% for Twit-
terAirline and RB). For offensive language, the
word-NS strategy performs best (70.4% for Offen-
sEval’19 and RB). The reason for this could be that
longer phrases are required to express a sentiment
but a single word is enough to express offensive
content. It is thus highly category-dependent which
strategy to use for semantic retrieval.
Relation identification: A common pattern for
all datasets is that simple linguistic structures per-
form worse in terms of P@1 than the baseline BoW
approach (cf. Tab. 4). Among the simple linguis-

12Complete results can be found in Tables 7 and 8 in the
appendix.
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de
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SE’18
(w2v)

- 32.9 31.1 30.4 31.2 31.0 30.9 30.6 30.8 31.2 36.8 mAP
- 39.1 33.1 29.7 30.3 30.6 31.4 25.7 27.7 31.7 46.0 P@1
- 34.6 30.9 31.7 33.4 31.4 31.3 27.1 30.2 31.1 43.3 P@5

SE’18
(RB)

31.9 34.5 32.1 31.4 32.0 32.1 32.2 31.8 32.2 32.4 35.3 mAP
35.4 40.3 29.7 32.0 34.9 37.7 32.9 33.7 32.9 34.9 52.9 P@1
34.6 37.8 33.5 32.2 35.0 33.4 34.9 35.0 33.4 34.1 46.9 P@5

SE’10
(w2v)

- 12.7 9.0 9.5 9.8 10.8 10.6 11.1 11.3 11.4 22.2 mAP
- 35.5 9.9 14.4 15.6 21.9 21.8 22.7 22.5 23.0 58.6 P@1
- 30.3 10.0 11.3 14.6 19.3 19.2 19.7 19.9 20.4 50.0 P@5

SE’10
(RB)

10.3 14.1 11.5 12.6 12.3 12.8 13.2 15.1 13.5 15.5 26.5 mAP
31.6 40.6 26.0 26.8 27.3 32.0 32.4 38.3 27.5 37.6 73.0 P@1
27.0 35.9 22.0 23.3 23.5 28.6 29.0 34.0 26.3 33.4 66.5 P@5

SE’07
(w2v)

- 32.2 29.2 29.6 29.8 30.5 30.4 30.5 30.6 30.8 37.9 mAP
- 39.2 17.9 15.1 32.8 31.9 33.2 37.0 35.2 34.8 53.6 P@1
- 36.5 20.2 22.9 30.2 32.2 32.4 31.8 32.6 33.3 49.3 P@5

SE’07
(RB)

30.8 31.6 30.6 31.2 31.5 31.1 31.3 32.2 31.3 32.5 37.0 mAP
36.8 39.9 36.2 37.7 40.4 40.8 39.5 43.2 34.8 43.7 61.9 P@1
33.7 37.3 32.9 34.9 35.6 37.2 35.3 39.9 34.3 38.6 53.8 P@5

Table 4: Relation identification retrieval results.

tic structures, the dependency-depavg still
performs consistently better than other structures,
probably because it covers more words than others.
BoW also consistently produces better results than
the CLS approach, which questions the practical
usability of the [CLS] meta-token for downstream
tasks. The specialized dependency-path
structure, however, improves the results by a large
margin, almost doubling the BoW results and even
tripling the token-based results (cf. e.g. 73%
P@1 for SE’10 and RB). We believe that BoW and
dependency-path work so well because rela-
tions require even more content than sentiments
and dependency-path focuses the content on
the important part of the sentence.
Frame identification: Table 5 shows the re-
trieval results for frame identification. The
lexical-unit structure has shown the best
performance (∼84% P@1 for RB), followed by
subj-v-obj (∼77% P@1 for RB). All other
simple sentence-level structures perform signifi-
cantly worse. In FrameNet, one sentence can have
multiple lexical units which invoke different frames.
Simple structures do not capture this and treat
each structure as a representative for the whole
sentence. The performance is further negatively
affected by the very large number of classes in
FrameNet (1, 000+) in comparison to other tasks
discussed in this work. Thus, high precision, i.e.
one representative embedding laying out only the
frame evoking lexical unit suppresses the noise that
other structures introduce.

6 Application

Based on our findings, we investigate two down-
stream applications. First, similarity-based re-
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FN1.5
(w2v)

- 1.8 0.9 1.0 1.2 1.6 1.5 1.5 1.5 1.4 45.1 41.7 mAP
- 3.2 0.6 0.8 1.4 2.1 1.8 1.2 1.7 1.9 80.3 70.2 P@1
- 3.3 0.7 0.9 1.3 2.0 1.5 1.5 1.7 1.8 73.4 66.8 P@5

FN1.5
(RB)

1.2 1.6 1.3 1.3 1.4 1.6 1.6 1.7 1.4 1.5 38.0 31.1 mAP
1.6 2.2 1.8 2.2 1.8 2.4 2.5 2.7 2.0 2.3 83.4 77.0 P@1
1.8 2.5 1.7 2.1 2.2 2.6 2.5 2.7 2.3 2.5 74.2 67.1 P@5

FN1.7
(w2v)

- 1.7 0.8 0.9 1.1 1.4 1.4 1.5 1.4 1.3 44.6 41.4 mAP
- 3.5 0.9 0.8 1.4 2.3 1.6 1.2 1.4 1.5 79.3 70.6 P@1
- 3.4 0.8 0.7 1.2 1.8 1.6 1.5 1.5 1.5 74.7 67.5 P@5

FN1.7
(RB)

1.1 1.5 1.2 1.3 1.4 1.5 1.5 1.6 1.3 1.5 37.8 30.8 mAP
1.7 2.7 1.7 2.0 2.4 2.6 2.8 2.8 2.1 2.5 84.0 77.1 P@1
1.8 2.4 1.8 1.9 2.2 2.5 2.4 2.7 2.2 2.6 75.5 68.2 P@5

Table 5: Frame identification retrieval results.
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Figure 3: Simulation of similarity-based data labeling
for offensive tweets: average agreement of subsequent
sample labels (a), simulated label cost reduction depend-
ing on relative time saving due to reduced cognitive
shifting (b).

trieval improved with linguistic information can
be used to speed up manual labeling of text data.
Second, aggregated CWEs can be used for rapid
nearest neighbor classification with small training
data.
Data labeling: Utilizing similarity information
during annotation tasks can reduce annotation time
and costs. In neuroscience, task switching is a well-
studied phenomenon describing prolonged cog-
nitive processing times due to altered tasks and
task parameters (Rogers and Monsell, 1995). Vice
versa, tasks can be solved faster in a series if param-
eters stay similar. This circumstance can be used
to improve data labeling processes by presenting
more similar instead of random samples to human
annotators. We simulate the potential gains of such
a process for selected aggregation strategies.
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For this, we assume that labeling a single ran-
dom example si takes the maximum amount of
one time unit t. Labeling of the next most sim-
ilar sample reduces cognitive processing time to
t − α × t × sim(si, si+1) × β with regard to the
similarity of the two samples and a task-dependent
parameter α representing its complexity, i.e. the
upper bound of potential speed-up relative to t.
Speed-up is expected if the labels of si and si+1

agree, in this case setting β = 1, and β = 0 other-
wise. Figure 3 shows the result of such a simulation
on the OLID dataset. Similarity-based retrieval of
samples for labeling achieves higher agreement
between consecutive labels than random sample se-
lection (cf. Fig. 3a). The best performing strategy
word-NS outperforms BoW, especially in the early
steps of the simulation. Figure 3b shows that sig-
nificant time savings can be expected. For α = .4,
an assumed upper bound of 40% reduction of cog-
nitive processing time per sample, for instance, the
simulation shows a total time saving of ca. 10 %.

Rapid nearest neighbor classification: Table 6
shows a summary of kNN classification experi-
ments with the best performing setup for each task
and dataset, which was identified using a held-out
validation set and evaluated on the held-out test set.
Interestingly, the best classification setups do not
correlate with the precision at k scores in the re-
trieval setup, but rather the mAP scores. While the
classification results do not reach SOTA, they still
achieve considerable results over a standard base-
line. Much shorter training and prediction times of
kNN-classification compared to fine-tuning trans-
formers make it an appealing approach in some
scenarios despite the lower performance.

Furthermore, kNN can be used in few-shot clas-
sification scenarios. We test the performance of
the classifier with increasing dataset size, where
we randomly select training sentences for indexing.
Results are plotted in Figure 4. For the word-level
task of NER (Fig. 4a), we can see that as few as
3, 000 sentences are sufficient to reach a decent
performance that only slightly increases with more
training data. The findings for the sentence-level
tasks (Fig. 4b) are even more drastic, where, de-
pending on the task and the available training data,
as few as 300 to 1, 000 sentences are sufficient to
reach a similar performance as compared to using
the entire training data.

Data Embedding Aggregation k F1

CoNLL-2003 RB SPS 1 79.6
OntoNotes-v5 RB SPS 9 65.9

SensEval 2 RB token 8 78.1
SensEval 3 RB token 15 73.3
SemEval ’07 T7 (WNGT) RB token 1 69.7
SemEval ’07 T17 (SemCor) RB token 7 63.6

TwitterAirline RB BoW 29 87.8
OffensEval’19 RB word-NS 75 63.6

SE’07 w2v dep-path 1 43.4
SE’10 RB dep-path 5 78.7
SE’18 RB dep-path 5 35.9

FN1.5 RB lexical-unit 1 63.9
FN1.7 RB lexical-unit 1 61.9

Table 6: Classification results using kNN for word-level
tasks (upper part) and sentence-level tasks (lower part).
k refers to the best identified validation k.
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SE'10: [RB, dep-path]

(b)
Figure 4: kNN performance for increasing training
dataset sizes for the word-level task of NER (a) and
the sentence-level tasks of short text classification and
relation classification (b).

7 Conclusion

We presented an analysis of different linguisti-
cally informed aggregation strategies for word
embeddings in an information retrieval setting to
find semantic units of the same class for differ-
ent NLP tasks. Our experiments show that more
fine-grained label sets perform better with specifi-
cally designed task-dependent linguistic structures,
whereas coarse-grained tasks such as short-text
classification, work quite well with simple struc-
tures such as chunk, word-NS, or even the BoW
baseline. We believe that particularly for the short-
text classification tasks, certain keywords often are
sufficient to trigger a certain class (e.g. offensive
words). This can also be observed for word-level
tasks. It is thus highly dependent on the task at
hand if explicit structures based on external lin-
guistic knowledge can be beneficial. We showed
that more complex tasks benefit from both, linguis-
tic structures and contextualized word embeddings.
We also showed that for simple k nearest neigh-
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bor classification, only a certain amount of training
data is sufficient to reach a decent performance.
Use cases of this work include support for rapid
training data collection, manual coding/annotation
of datasets e.g. in social science and humanities
applications, retrieval of similar language use in
eDiscovery tasks, and many more.
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A KNN Results

Data

Masking + Embedding CoNLL-2003
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Eval

’07 T7 (Sem
Cor)

Sem
Eval

’07 T7 (W
NGT)

Sem
Eval

’07 T17 (Sem
Cor)

Sem
Eval

’07 T17 (W
NGT)

MFS - - 55.3 54.4 63.60 58.0 51.8 38.9 F1

token (w2v) 3 25 25 24 24 8 20 25 k
64.5 44.9 54.8 51.8 62.9 58.5 50.7 43.9 F1

token (RB) 1 11 8 15 6 1 7 1 k
79.4 65.6 78.1 73.3 69.6 69.7 63.6 60.7 F1

SPS (w2v) 3 16 - - - - - - k
73.5 52.3 - - - - - - F1

SPS (RB) 3 9 - - - - - - k
79.6 65.9 - - - - - - F1

Table 7: Word-level classification results using KNN. Showing the best identified hyperparameter k and the F1
score.
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Twitter-Airline - 9 22 5 133 113 31 194 200 194 - - - k
(w2v ) - 83.3 62.8 68.0 75.3 77.0 73.7 78.9 79.9 78.5 - - - F1

Twitter-Airline 42 29 24 17 14 58 21 89 141 29 - - - k
(RB) 83.9 87.8 81.7 82.5 83.5 81.8 82.3 79.9 81.5 79.3 - - - F1

Offens-Eval’19 - 16 160 180 164 154 84 30 67 39 - - - k
w2v - 42.2 56.4 59.5 59.3 56.9 55.1 51.3 56.0 54.4 - - - F1

Offens-Eval’19 8 54 54 44 75 66 51 38 52 27 - - - k
(RB) 33.4 46.1 61.7 60.0 63.6 56.9 60.0 56.7 61.1 55.5 - - - F1

SE’18 - 6 4 13 4 26 6 8 2 9 3 - - k
(w2v) - 27.9 15.8 14.4 16.5 15.6 22.4 19.8 15.7 19.7 27.9 - - F1

SE’18 10 4 14 15 18 38 27 25 2 20 5 - - k
(RB) 21.5 26.6 21.6 17.3 20.2 15.2 16.5 24.1 25.0 17.6 35.9 - - F1

SE’10 - 65 11 24 16 41 30 23 24 22 107 - - k
(w2v) - 40.7 9.6 11.3 17.2 22.7 22.4 24.4 27.8 24.4 67.0 - - F1

SE’10 14 17 90 28 28 42 49 38 15 9 5 - - k
(RB) 33.9 50.5 24.8 29.0 30.0 34.8 34.1 31.2 40.2 41.7 78.7 - - F1

SE’07 - 1 16 6 10 2 7 2 1 16 1 - - k
(w2v) - 22.3 8.6 7.0 8.6 12.6 12.6 14.7 16.5 11.3 43.4 - - F1

SE’07 6 2 5 4 10 3 3 11 3 1 12 - - k
(RB) 11.0 22.4 13.4 13.4 10.8 18.8 14.4 17.2 23.0 26.5 41.6 - - F1

FrameNet-1.5 - 24 42 44 41 79 92 79 27 25 - 1 1 k
(w2v) - 1.5 0.2 0.4 1.1 2.6 1.7 1.8 2.1 1.9 - 58.8 55.1 F1

FrameNet-1.5 20 14 44 34 49 26 66 60 17 24 - 1 1 k
(RB) 0.8 1.4 1.6 2.2 2.9 3.1 3.0 1.8 2.9 3.4 - 63.9 54.3 F1

FrameNet-1.7 - 9 2 62 60 64 61 41 113 38 - 1 1 k
(w2v) - 1.3 0.4 0.8 1.1 2.5 1.9 1.7 2.2 2.0 - 56.3 52.6 F1

FrameNet-1.7 2 13 76 38 36 49 65 83 41 69 - 1 1 k
(RB) 0.6 1.7 1.5 2.2 3.1 3.4 3.3 1.8 3.1 3.0 - 61.9 53.1 F1

Table 8: Sentence-level classification results using KNN. Showing the best identified hyperparameter k and the F1
score.
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