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Abstract

Recent work has shown that systems for speech
translation (ST) – similarly to automatic speech
recognition (ASR) – poorly handle person
names. This shortcoming does not only lead to
errors that can seriously distort the meaning of
the input, but also hinders the adoption of such
systems in application scenarios (like computer-
assisted interpreting) where the translation of
named entities, like person names, is crucial.
In this paper, we first analyse the outputs of
ASR/ST systems to identify the reasons of fail-
ures in person name transcription/translation.
Besides the frequency in the training data, we
pinpoint the nationality of the referred person
as a key factor. We then mitigate the problem
by creating multilingual models, and further
improve our ST systems by forcing them to
jointly generate transcripts and translations, pri-
oritising the former over the latter. Overall, our
solutions result in a relative improvement in
token-level person name accuracy by 47.8% on
average for three language pairs (en→es,fr,it).

1 Introduction

Automatic speech translation (ST) is the task of
generating the textual translation of utterances. Re-
search on ST (Anastasopoulos et al., 2021; Ben-
tivogli et al., 2021) has so far focused on compar-
ing the cascade (a pipeline of an automatic speech
recognition – ASR – and a machine translation –
MT – model) and direct paradigms (Bérard et al.,
2016; Weiss et al., 2017), or on improving either of
them in terms of overall quality. Quality is usually
measured with automatic metrics such as BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006), possibly corroborated by manual analyses.

These metrics – as well as neural-based ones like
COMET (Rei et al., 2020) – are relatively insensi-
tive to errors on named entities (NEs) and numbers
(Amrhein and Sennrich, 2022), which instead are
of paramount importance for human readers (Xie
et al., 2022). As such, the blind pursue of higher

scores can lead to systems biased toward the met-
rics and not targeted on real users.

In addition, there are cases in which users are in-
terested only in NEs. For instance, interpreters
easily craft more fluent and intelligible transla-
tions than machines (Fantinuoli and Prandi, 2021),
but during simultaneous sessions suffer from a
high cognitive workload (Prandi, 2018; Desmet
et al., 2018), to which NEs and specific termi-
nology significantly contribute (Jones, 1998; Gile,
2009; Prandi, 2018; Desmet et al., 2018). Indeed,
these elements i) are hard to remember (Liu et al.,
2004), ii) can be unknown to interpreters and diffi-
cult to recognize (Griffin and Bock, 1998), and
iii) differently from other types of words, usu-
ally have one or few correct translations. For
this reason, modern computer-assisted interpret-
ing (CAI – Fantinuoli 2017) tools aim at automati-
cally recognizing, displaying, and translating NEs
and terms. However, current solutions rely on pre-
defined dictionaries to identify and translate the
elements of interest (Fantinuoli et al., 2022), pre-
venting them to both generalize and disambiguate
homophones/homonyms. This would be instead
possible using ST system, but they need to reliably
recognize and translate NEs and terms, without
generating wrong suggestions that are even harm-
ful (Stewart et al., 2018).

In contrast with these needs, Gaido et al. (2021)
recently showed on their newly created benchmark
– NEuRoparl-ST – that both ASR models (and
thus cascade ST systems) and direct ST systems
perform poorly on person names, with transcrip-
tion/translation accuracy of ~40%. Hence, as a
first step toward ST systems more targeted for hu-
man needs, and in particular toward the long-term
goal of integrating ST models in assistant tools for
live interpreting, this work focuses on i) identify-
ing the factors that lead to the wrong transcription
and translation of person names, and ii) proposing
dedicated solutions to mitigate the problem.

62



To achieve these objectives, our first contribution
(§3.1) is the annotation1 of each person name occur-
ring in NEuRoparl-ST with information about their
nationality and the nationality of the speaker (as a
proxy of the native language) – e.g. if a German
person says “Macron is the French president”, the
speaker nationality is German, while the referent
nationality is French. Drawing on this additional
information, our second contribution (§3.2-3.3) is
the analysis of the concurring factors involved in
the correct recognition of person names. Besides
their frequency, we identify as key discriminating
factor the presence in the training data of speech ut-
tered in the referent’s native language (e.g. French
in the above example). This finding, together with
an observed accuracy gap between person name
transcription (ASR) and translation (ST), leads to
our third contribution (§4): a multilingual ST sys-
tem that jointly transcribes and translates the input
audio, giving higher importance to the transcrip-
tion task in favour of a more accurate translation of
names. Our model shows relative gains in person
name translation by 48% on average on three lan-
guage pairs (en→es,fr,it), producing useful transla-
tions for interpreters in 66% of the cases.

2 Related Work

When the source modality is text, person names
can often be “copied”, i.e. replicated unchanged,
into the output. This task has been shown to be well
accomplished by both statistical and neural transla-
tion systems (Koehn and Knowles, 2017). On the
contrary, when the source modality is speech (as in
ASR and ST), systems struggle due to the impossi-
bility to copy the audio source. The recognition of
person names from speech is a complex task that
has mostly been studied in the context of recogniz-
ing a name from a pre-defined list, such as phone
contacts (Raghavan and Allan, 2005; Suchato et al.,
2011; Bruguier et al., 2016). The scenario of an
open or undefined set of possible names is instead
under-explored. Few studies (Ghannay et al., 2018;
Caubrière et al., 2020) focus on comparing end-
to-end and cascade approaches in the transcription
and recognition of NEs from speech. They do not
directly investigate person names though, as they
do not disaggregate their results by NE category.
Similarly, Porjazovski et al. (2021) explore NE
recognition from speech in low-resource languages,

1Available at: https://ict.fbk.eu/
neuroparl-st/.

and propose two end-to-end methods: one adds a
tag after each word in the generated text to define
whether it is a NE or not, and one uses a dedicated
decoder. However, they do not provide specific
insights on the system ability to correctly generate
person names and limit their study to ASR, without
investigating ST. Closer to our work, Gaido et al.
(2021) highlight the difficulty of ASR/ST neural
models to transcribe/translate NEs and terminology.
Although they identify person names as the hardest
NE category by far, they neither analyse the root
causes nor propose mitigating solutions.

3 Factors Influencing Name Recognition

As shown in (Gaido et al., 2021), the translation
of person names is difficult both for direct and cas-
cade ST systems, which achieve similar accuracy
scores (~40%). The low performance of cascade
solutions is largely due to errors made by the ASR
component, while the MT model usually achieves
nearly perfect scores. For this reason, henceforth
we will focus on identifying the main issues related
to the transcription and translation of person names,
respectively in ASR and direct ST.

We hypothesize that three main factors influence
the ability of a system to transcribe/translate a per-
son name: i) its frequency in the training data, as
neural models are known to poorly handle rare
words, ii) the nationality of the referent, as dif-
ferent languages may involve different phoneme-
to-grapheme mappings and may contain different
sounds, and iii) the nationality of the speaker, as
non-native speakers typically have different accents
and hence different pronunciations of the same
name. To validate these hypotheses, we inspect
the outputs of Transformer-based (Vaswani et al.,
2017) ASR and ST models trained with the config-
uration defined in (Wang et al., 2020). For the sake
of reproducibility, complete details on our experi-
mental settings are provided in the Appendix.2

3.1 Data and Annotation

To enable fine-grained evaluations on the three fac-
tors we suppose to be influential, we enrich the
NEuRoparl-ST benchmark by adding three (one
for each factor) features to each token annotated
as PERSON. These are: i) the token frequency in
the target transcripts/translations of the training
set, ii) the nationality of the referent, and iii) the

2Code available at: https://github.com/
hlt-mt/FBK-fairseq.
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nationality of the speaker. The nationality of the
referents was manually collected by the authors
through online searches. The nationality of the
speakers, instead, was automatically extracted from
the personal data listed in LinkedEP (Hollink et al.,
2017) using the country they represent in the Eu-
ropean Parliament.3 All our systems are trained
on Europarl-ST (Iranzo-Sánchez et al., 2020) and
MuST-C (Cattoni et al., 2021), and evaluated on
this new extended version of NEuRoparl-ST.

3.2 The Role of Frequency

As a first step in our analysis, we automatically
check how the three features added to each PER-
SON token correlate with the correct generation of
the token itself. Our aim is to understand the impor-
tance of these factors and to identify interpretable
reasons behind the correct or wrong handling of
person names. To this end, we train a classification
decision tree (Breiman et al., 1984). Classification
trees recursively divide the dataset into two groups,
choosing a feature and a threshold that minimize
the entropy of the resulting groups with respect to
the target label. As such, they do not assume a
linear relationship between the input and the target
(like multiple regression and random linear mixed
effects do) and are a good fit for categorical fea-
tures as most of ours are. Their structure makes
them easy to interpret (Wu et al., 2008): the first
decision (the root of the tree) is the most important
criterion according to the learned model, while less
discriminative features are pushed to the bottom.

We feed the classifier with 49 features, cor-
responding to: i) the frequency of the token in
the training data, ii) the one-hot encoding of the
speaker nationality, and iii) the one-hot encoding
of the referent nationality.4 We then train it to pre-
dict whether our ASR model is able to correctly
transcribe the token in the output. To this end, we
use the implementation of scikit-learn (Pedregosa
et al., 2011), setting to 3 the maximum depth of the
tree, and using Gini index as entropy measure.

Unsurprisingly, the root node decision is based
on the frequency of the token in the training data,
with 2.5 as split value. This means that person
names occurring at least 3 times in the training data
are likely to be correctly handled by the models.
Although this threshold may vary across datasets

3 For each speech in Europarl-ST, the speaker is referenced
by link to LinkedEP.

4Speakers and referents respectively belong to 17 and 31
different nations.

of different size, it is an indication on the necessary
number of occurrences of a person name, eventu-
ally useful for data augmentation techniques aimed
at exposing the system to relevant instances at train-
ing time (e.g. names of famous people in the spe-
cific domain of a talk to be translated/interpreted).
We validate that this finding also holds for ST sys-
tems by reporting in Table 1 the accuracy of person
tokens for ASR and the three ST language direc-
tions, split according to the mentioned threshold of
frequency in the training set. On average, names
occurring at least 3 times in the training set are
correctly generated in slightly more than 50% of
the cases, a much larger value compared to those
with less than 3 occurrences.

All Freq. >= 3 Freq. < 3
ASR 38.46 55.81 4.55
en-fr 28.69 45.45 0.00
en-es 35.29 53.57 19.05
en-it 29.70 46.77 2.56
Average 33.04 50.40 6.54

Table 1: Token-level accuracy of person names divided
into two groups according to their frequency in the train-
ing set for ASR and ST (en→es/fr/it) systems.

The other nodes of the classification tree contain
less interpretable criteria, which can be considered
as spurious cues. For instance, at the second level
of the tree, a splitting criterion is “is the speaker
from Denmark?” because the only talk by a Danish
speaker contains a mention to Kolarska-Bobinska
that systems were not able to correctly generate.

We hence decided to perform further dedicated
experiments to better understand the role of the the
other two factors: referent and speaker nationality.

3.3 The Role of Referent Nationality

Humans often struggle to understand names belong-
ing to languages that are different from their native
one or from those they know. Moreover, upon man-
ual inspection of the system outputs, we observed
that some names were Englishized (e.g. Youngsen
instead of Jensen). In light of this, we posit that
a system trained to recognize English sounds and
to learn English phoneme-to-grapheme mappings
might be inadequate to handle non-English names.

We first validate this idea by computing the ac-
curacy for names of people from the United King-
dom5 (‘UK” henceforth) and for names of people

5We are aware that our annotation is potentially subject to
noise, due to the possible presence of UK citizens with non-
anglophone names. A thorough study on the best strategies
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Referent ASR en-fr en-es en-it Freq.
UK 52.38 59.09 63.16 41.18 46.21
non-UK 35.78 22.00 30.00 27.38 21.96
All 38.46 28.69 35.29 29.70 25.65

Table 2: Token-level accuracy of ASR and ST (en-fr,
en-es, en-it) systems for UK/non-UK referents.

from the rest of the World (“non-UK”). Looking
at Table 2, we notice that our assumption seems
to hold for both ASR and ST. However, the scores
correlate with the frequency (Freq.) of names in
the training set6 as, on average, UK referents have
more than twice the occurrences (46.21) of non-
UK referents (21.96). The higher scores for UK
referents may hence depend on this second factor.

To disentangle the two factors and isolate the
impact of referents’ nationality, we create a train-
ing set with balanced average frequency for UK
and non-UK people by filtering out a subset of
the instances containing UK names from the origi-
nal training set.3 To ensure that our results are not
due to a particular filtering method, we randomly
choose the instances to remove and run the experi-
ments on three different filtered training sets. The
results for the three ST language pairs and ASR
(see Table 3) confirm the presence of a large ac-
curacy gap between UK and non-UK names (9.22
on average), meaning that the accuracy on non-UK
names (23.62) is on average ~30% lower than the
accuracy on UK names (32.84). As in this case
we can rule out any bias in the results due to the
frequency in the training set, we can state that the
nationality of the referent is an important factor.

ASR en-fr en-es en-it Avg.
UK 42.86 25.76 33.33 29.41 32.84
non-UK 29.05 22.67 23.33 19.44 23.62
∆Accuracy 13.81 3.09 10.00 9.97 9.22

Table 3: Token-level accuracy of UK/non-UK referents
averaged over three runs with balanced training sets.

3.4 The Role of Speaker Nationality
Another factor likely to influence the correct un-
derstanding of person names from speech is the
speaker accent. To verify its impact, we follow a
similar procedure to that of the previous section.

to maximise the accuracy of UK/non-UK label assignment
is a task per se, out of the scope of this work. By now, as a
manual inspection of the names revealed no such cases in our
data, we believe that the few possible wrong assignments do
not undermine our experiments, nor the reported findings.

6Notice that the ASR and the ST training sets mostly con-
tain the same data, so frequencies are similar in the four cases.

First, we check whether the overall accuracy is
higher for names uttered by UK speakers than for
those uttered by non-UK speakers. Then, to ascer-
tain whether the results depend on the proportion
of UK/non-UK speakers, we randomly create three
training sets featuring a balanced average frequency
of speakers from the two groups.

Speaker ASR en-fr en-es en-it Freq.
UK 41.03 32.43 36.84 29.41 34.55
non-UK 37.36 27.06 34.57 29.85 21.76
All 38.46 28.69 35.29 29.70 25.65

Table 4: Token-level accuracy of ASR and ST systems
for names uttered by UK/non-UK speakers.

Table 4 shows the overall results split according
to the two groups of speaker nationalities. In this
case, the accuracy gap is minimal (the maximum
gap is 5.37 for en-fr, while it is even negative for en-
it), suggesting that the speaker accent has marginal
influence, if any, on how ASR and ST systems
handle person names.

The experiments on balanced training sets (see
Table 5) confirm the above results, with an aver-
age accuracy difference of 2.78 for ASR and the
three ST language directions. In light of this, we
can conclude that, differently from the other two
factors, speakers’ nationality has negligible effects
on ASR/ST performance on person names.

Speaker ASR en-fr en-es en-it Avg.
UK 29.91 29.73 28.95 23.53 28.03
non-UK 33.33 22.75 25.51 19.40 25.25
∆Accuracy -3.42 6.98 3.43 4.13 2.78

Table 5: Token-level accuracy of person names uttered
by UK/non-UK speakers averaged over three runs with
balanced training sets.

4 Improving Person Name Translation

The previous section has uncovered that only two
of the three considered factors actually have a tan-
gible impact: the frequency in the training set, and
the referent nationality. The first issue can be tack-
led either by collecting more data, or by generating
synthetic instances (Alves et al., 2020; Zheng et al.,
2021). Fine-tuning the model on additional ma-
terial is usually a viable solution in the use case
of assisting interpreters since, during their prepa-
ration phase, they have access to various sources
of information (Díaz-Galaz et al., 2015), including
recordings of previous related sessions. Focusing
on the second issue, we hereby explore i) the cre-
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Monolingual Multilingual
ASR en-fr en-es en-it ASR en-fr en-es en-it

WER (↓) BLEU (↑) WER (↓) BLEU (↑)
Europarl-ST 13.65 32.42 34.11 25.72 13.29 33.92 35.59 26.55
MuST-C 11.17 32.81 27.18 22.81 11.86 33.34 27.72 23.02

Token-level Person Name Accuracy (↑) Avg. ∆
Overall 38.46 28.69 35.29 29.70 46.15 38.52 44.54 36.63 +8.43
UK 52.38 59.09 63.16 41.18 66.67 59.09 63.16 52.94 +6.51
non-UK 35.78 22.00 30.00 27.38 42.20 34.00 41.00 33.33 +8.84

Table 6: Transcription/translation quality measured respectively with WER and SacreBLEU7 (Post, 2018) and
token-level person name accuracy, both overall and divided into UK/non-UK referents. Avg. ∆ indicates the
difference between multilingual and monolingual systems averaged over the ASR and the three ST directions.

ation of models that are more robust to a wider
range of phonetic features and hence to names of
different nationalities (§4.1), and ii) the design of
solutions to close the gap between ASR and ST sys-
tems attested by previous work (Gaido et al., 2021)
and confirmed by our preliminary results shown in
Table 1 (§4.2).

4.1 Increasing Robustness to non-UK
Referents

As illustrated in §3.3, one cause of failure of our
ASR/ST models trained on English audio is the ten-
dency to force every sound to an English-like word,
distorting person names from other languages. Con-
sequently, we posit that a multilingual system,
trained to recognize and translate speech in dif-
ferent languages, might be more robust and, in turn,
achieve better performance on non-English names.

We test this hypothesis by training multilin-
gual ASR and ST models that are fed with audio
in different languages, and respectively produce
transcripts and translations (into French, Italian,
or Spanish in our case). The ST training data
(*→es/fr/it) consists of the en→es/fr/it sections
of MuST-C and the {nl, de, en, es, fr, it, pl, pt,
ro}→es/fr/it sections of Europarl-ST. Notice that,
in this scenario, the English source audio consti-
tutes more than 80% of the total training data, as
MuST-C is considerably bigger than Europarl-ST
and the English speeches in Europarl-ST are about
4 times those in the other languages.8 For ASR, we
use the audio-transcript pairs of the *-it training set
defined above. Complete details on our experimen-
tal settings are provided in the Appendix.??

We analyze the effect of including additional
languages both in terms of general quality (mea-
sured as WER for ASR, and BLEU for ST) and

7BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
8For instance, in *-fr the training set amounts to 671 hours

of audio, 573 (i.e. 83%) having English audio.

in terms of person name transcription/translation
accuracy. Looking at the first two rows of Table
6, we notice that the improvements in terms of
generic translation quality (BLEU) are higher on
the Europarl-ST than on the MuST-C test set – most
likely because the additional data belongs to the
Europarl domain – while in terms of speech recog-
nition (WER) there is a small improvement for
Europarl-ST and a small loss for MuST-C. Turning
to person names (third line of the table), the gains
of the multilingual models (+8.43 accuracy on av-
erage) are higher and consistent between ASR and
the ST language pairs.

By dividing the person names into the two cat-
egories discussed in §3.3 – UK and non-UK ref-
erents – the results become less consistent across
language pairs. On ST into French and Spanish,
the accuracy of UK names remains constant, while
there are significant gains (respectively +12 and
+11) for non-UK names. These improvements
seem to support the intuition that models trained on
more languages learn a wider range phoneme-to-
grapheme mappings and so are able to better handle
non-English names. However, the results for ASR
and for ST into Italian seemingly contradict our hy-
pothesis, as they show higher improvements for UK
names (~11-14) than for non-UK names (~6-7).

We investigate this behavior by further divid-
ing the non-UK group into two sub-categories: the
names of referents whose native language is in-
cluded in the training set (“in-train” henceforth),
and those of referents whose native language is not
included in the training set (“out-of-train”). For
in-train non-UK names, the monolingual ASR ac-
curacy is 33.33 and is outperformed by the multilin-
gual counterpart by 16.66, i.e. by a margin higher
than that for UK names (14.29). For the out-of-
train names, instead, the gap between the mono-
lingual ASR accuracy (36.71) and the multilingual
ASR accuracy (39.24) is marginal (2.5). Similarly,
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Model WER (↓)
ASR

BLEU (↑) Person Accuracy
en-es en-fr en-it ASR en-es en-fr en-it ST Avg. ASR-ST

Base 13.29 35.86 33.99 26.80 46.15 44.54 38.52 36.63 39.90 6.25
Triangle 14.25 37.42 35.44 28.20 42.31 43.70 41.80 41.58 42.36 -0.05
λASR=0.8, λST =0.2 13.75 36.48 34.85 27.30 47.69 44.54 43.44 50.50 46.16 1.53

Table 7: WER (for ASR), SacreBLEU (for ST), and token-level person name accuracy computed on the NEuRoparl-
ST test set. For triangle models, ASR scores are computed on the transcript output of the *-it model, as throughout
the paper we evaluate ASR on the English transcript of the en-it section. ST Avg. is the the average accuracy on the
3 language pairs (en→es,fr,it) and ASR-ST is the difference between the ASR and the average ST accuracy.

for ST into Italian the in-train group accuracy im-
proves by 8.70 (from 34.78 to 43.48), while the
out-of-train group accuracy has a smaller gain of
4.92 (from 24.59 to 29.51). These results indicate
that adding a language to the training data helps the
correct handling of person names belonging to that
language, even when translating/transcribing from
another language. Further evidence is exposed in
§5, where we analyse the errors made by our sys-
tems and how their distribution changes between a
monolingual and a multilingual one.

4.2 Closing the Gap Between ASR and ST

The previous results – in line with those of Gaido
et al. (2021) – reveal a gap between ASR and
ST systems, although their task is similar when
it comes to person names. Indeed, both ASR and
ST have to recognize the names from the speech,
and produce them as-is in the output. Contextually,
Gaido et al. (2021) showed that neural MT models
are good at “copying” from the source or, in other
words, at estimating p(Y |T ) – where Y is the tar-
get sentence and T is the textual source sentence
– when Y and T are the same string. Hence, we
hypothesize that an ST model can close the per-
formance gap with the ASR by conditioning the
target prediction not only on the input audio, but
also on the generated transcript. Formally, this
means estimating p(Y |X,T ′), where T ′ denotes
a representation of the generated transcript, such
as the embeddings used to predict them; and this
estimation is what the triangle architecture (Anas-
tasopoulos and Chiang, 2018) actually does.

The triangle model is composed of a single en-
coder, whose output is attended by two decoders
that respectively generate the transcript (ASR de-
coder) and the translation (ST decoder). The ST
decoder also attends to the output embeddings (i.e.
the internal representation before the final linear
layer mapping to the output vocabulary dimension
and softmax) of the ASR decoder in all its layers.
In particular, the output of the cross-attention on

the encoder output and the cross-attention on the
ASR decoder output are concatenated and fed to a
linear layer. The model is optimized with a multi-
loss objective function, defined as follows:

L(X) = −
∑

x∈X

(
λASR ∗

∑

t∈Tx

log(pθ(ti|x, ti−1,...,0))

+ λST ∗
∑

y∈Yx

log(pθ(yi|x, T, yi−1,...,0))
)

where T is the target transcript, Y is the target
translation, and x is the input utterance. λASR and
λST are two hyperparameters aimed at controlling
the relative importance of the two tasks. Previ-
ous works commonly set them to 0.5, giving equal
importance to the two tasks (Anastasopoulos and
Chiang, 2018; Sperber et al., 2020). To the best of
our knowledge, ours is the first attempt to inspect
performance variations in the setting of these two
parameters, calibrating them towards the specific
needs arising from our application scenario.

In Table 7, we compare the multilingual models
introduced in §4.1 with triangle ST multilingual
models trained on the same data (second row). Al-
though the transcripts are less accurate (about +1
WER), the translations have higher quality (+1.4-
1.6 BLEU on the three language pairs). Person
names follow a similar trend: in the transcript the
accuracy is lower (-3.84), while in ST it increases
(on average +2.46). Interestingly, the accuracy
gap between ASR and ST is closed by the triangle
model (see the ASR-ST column), confirming our
assumption that neural models are good at copying.
However, due to the lower ASR accuracy (42.31),
the ST accuracy (42.36) does not reach that of the
base ASR model (46.15). The reason of this drop
can be found in the different kind of information
required by the ASR and ST tasks. Chuang et al.
(2020) showed that the semantic content of the ut-
terance is more important for ST, and that joint
ASR/ST training leads the model to focus more
on the semantic content of the utterance, yielding
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Figure 1: Correct person names and the categories of errors of the baseline and multilingual ASR systems.

BLEU gains at the expense of higher WER. As per-
son names are usually close in the semantic space
(Das et al., 2017), the higher focus on semantic con-
tent may be detrimental to their correct handling
and hence explain the lower person name accuracy.

In light of this observation, we experimented
with changing the weights of the losses in the tri-
angle training, assigning higher importance to the
ASR loss (third row of Table 7). In this configu-
ration, as expected, transcription quality increases
(-0.5 WER) at the expense of translation quality,
which decreases (-0.8 BLEU on average) but re-
mains higher than that of the base model. The accu-
racy of person names follows the trend of transcrip-
tion quality: the average accuracy on ST (46.16)
increases by 3.8 points over the base triangle model
(42.36), becoming almost identical to that of the
base ASR model (46.15). All in all, our solution
achieves the same person name accuracy of an ASR
base model without sacrificing translation quality
compared to a base ST system.

5 Error Analysis

While the goal is the correct rendering of person
names, not all the errors have the same weight. For
interpreters, for instance, minor misspellings of a
name may not be problematic, an omission can be
seen as a lack of help, but the generation of a wrong
name is harmful, as potentially distracting and/or
confusing. To delve into these aspects, we first
carried out a manual analysis on the ASR outputs
(§5.1) and then compared the findings with the
same analysis on ST outputs (§5.2).

5.1 ASR Analysis

Two authors with at least C1 English knowledge
and linguistic background annotated each error as-

signing it to a category.9 The categories, chosen
by analysing the system outputs, are: misspelling –
when a person name contains minor errors leading
to similar pronunciation (e.g. Kozulin instead of
Kazulin); replacement with a different name –
when a person name is replaced with a completely
different one in terms of spelling and/or pronuncia-
tion (e.g. Mr Muhammadi instead of Mr Allister);
replacement with other words – when a proper
person name is replaced by a common noun, other
parts of speech, and/or proper nouns that do not
refer to people, such as geographical names (e.g.
English Tibetan core instead of Ingrid Betancourt)
omission – when a person name, or part of a sen-
tence containing it, is ignored by the system.

The results of the annotations are summarized
in the graphs in Figure 1. Looking at the baseline
system (Figure 1a), we notice that omissions and
replacements with a different name are the most
common errors, closely followed by replacements
with other words, although for non-UK names the
number of misspellings is also significant. The mul-
tilingual system (Figure 1b) does not only show a
higher percentage of correct names, but also a dif-
ferent distribution of errors, in particular for the
names belonging to the languages added to the
training set (non-UK in train). Indeed, the mis-
spellings increase to the detriment of omissions
and replacements with a different name and other
words. Omissions also decrease for UK names and
for names in languages not included in the train-
ing set (non-UK not in train). For UK names, the
previously-missing names fall either into the cor-
rect names or into the replacements with a different
name; for the non-UK not in train, instead, they are

9The inter-annotator agreement on label assignments was
calculated using the kappa coefficient in Scott’s π formula-
tion (Scott, 1955; Artstein and Poesio, 2008), and resulted
in 87.5%, which means “almost perfect” agreement in the
standard interpretation (Landis and Koch, 1977).
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Figure 2: Correct person names and the categories of errors of the baseline and multilingual ST-into-Italian systems.
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Figure 3: Correct person names and the different cat-
egories of errors of the ST-into-Italian triangle system
with λASR=0.8, λST =0.2 expressed in percentages.

replaced by different names or other words.
Considering multilingual outputs, we observe

that for the languages in the training set (including
English), in 66% of the cases the system gener-
ates a name that could be helpful for an interpreter
(either correct or with minor misspellings). Con-
fusing/distracting outputs (i.e. replacements with a
different person name) occur in about 15% of the
cases. Future work should precisely assess whether
these scores are sufficient to help interpreters in
their job, or which level of accuracy is needed.

Moreover, we notice that the system is able to
discern when a person name should be generated
(either correct, misspelled, or replaced by a differ-
ent name) in more than 80% of the cases. This
indicates their overall good capability to recognize
patterns and/or appropriate contexts in which a per-
son name should occur.

5.2 ST Analysis

The same analysis was carried out for ST systems
translating into Italian (see Figure 2) by two na-
tive speakers, co-authors of this paper. Although
results are lower in general, when moving from the
monolingual (Figure 2a) to the multilingual (Fig-
ure 2b) system we can see similar trends to ASR,
with the number of omissions and replacements

with a different name that decreases in favor of a
higher number of correct names and misspellings.
Looking at the analysis of the triangle model with
λASR=0.8, λST=0.2 presented in §4.2 (Figure 3),
we observe that misspellings, omissions, and re-
placements with other words diminish, while cor-
rect names increase. Moreover, both the accuracy
(i.e. correct in the graphs) and the error distri-
butions of this system are similar to those of the
ASR multilingual model (Figure 1b). On one side,
this brings to similar conclusions, i.e. ST models
can support interpreters in ∼66% of the cases, and
can discern when a person name is required in the
translation in ∼80% of the cases. On the other,
it confirms that the gap with the ASR system is
closed, as observed in §4.2.

6 Conclusions

Humans and machines have different strengths and
weaknesses. Nonetheless, we have shown that
when it comes to person names in speech, they
both struggle in handling names in languages they
do not know and names that they are not used to
hear. This finding seems to insinuate that humans
cannot expect help from machines in this regard,
but we demonstrated that there is hope, moving the
first steps toward ST systems that can better handle
person names. Indeed, since machines are faster
learners than humans, we can train them on more
data and more languages. Moreover, we can design
dedicated architectural solutions aimed to add an
inductive bias and to improve the ability to handle
specific elements. Along this line of research, we
have shown that a multilingual ST model, which
jointly predicts the transcript and conditions the
translation on it, has relative improvements in per-
son name accuracy by 48% on average. We also
acknowledge that much work is still needed in this
area, with large margin of improvements available,
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especially to avoid the two most common type of
errors pointed out by our analysis: omissions and
replacements with different person names.
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A Experimental Settings

Our ASR and ST models share the same architec-
ture. Two 1D convolutional layers with a Gated
Linear Unit non-linearity between them shrink the
input sequence over the temporal dimension, hav-
ing 2 as stride. Then, after adding sinusoidal po-
sitional embeddings, the sequence is encoded by
12 Transformer encoder layers, whose output is
attended by 6 Transformer decoder layers. We use
512 as Transformer embedding size, 2048 as inter-
mediate dimension of the feed forward networks,
and 8 heads. In the case of the triangle model, we
keep the same settings and the configurations are
the same for the two decoders. The number of pa-
rameters is ∼74M for the base system and ∼117M
for the triangle model.

We filter out samples whose audio segment lasts
more than 30s, extract 80 features from audio seg-
ments, normalize them at utterance level, and apply
SpecAugment (Park et al., 2019). The target text
is segmented into BPE (Sennrich et al., 2016) sub-
words using 8,000 merge rules (Di Gangi et al.,
2020) with SentencePience (Kudo and Richardson,
2018).

Models are optimized with Adam (Kingma and
Ba, 2015) to minimize the label smoothed cross
entropy (Szegedy et al., 2016). The learning rate
increases up to 1e-3 for 10,000 warm-up updates,
then decreases with an inverse square-root sched-
uler. We train on 4 K80 GPUs with 12GB of RAM,
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using mini-batches containing 5,000 tokens, and
accumulating the gradient for 16 mini-batches. We
average 5 checkpoints around the best on the val-
idation loss. All trainings last ∼4 days for the
multilingual systems, and ∼3 days for the base
system.
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