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Abstract

To participate in the Isometric Spoken Lan-
guage Translation Task of the IWSLT 2022
evaluation, constrained condition, AppTek de-
veloped neural Transformer-based systems for
English-to-German with various mechanisms
of length control, ranging from source-side and
target-side pseudo-tokens to encoding of re-
maining length in characters that replaces po-
sitional encoding. We further increased trans-
lation length compliance by sentence-level se-
lection of length-compliant hypotheses from
different system variants, as well as rescor-
ing of N-best candidates from a single system.
Length-compliant back-translated and forward-
translated synthetic data, as well as other par-
allel data variants derived from the original
MuST-C training corpus were important for
a good quality/desired length trade-off. Our
experimental results show that length compli-
ance levels above 90% can be reached while
minimizing losses in MT quality as measured
in BERT and BLEU scores.

1 Introduction

In this paper, we describe AppTek’s submission
to the IWSLT 2022 Isometric Spoken Language
Translation evaluation (Anastasopoulos et al.,
2022). Our goal was to create a system that pro-
duces translations which are within 10% of the
source sentence length, but have similar levels of
quality as a baseline system translations without
length control. AppTek participated in the con-
strained condition with an English-to-German neu-
ral machine translation (NMT) system that we de-
scribe in Section 2. The system was extended
with 5 different length control methods, which
we explain in detail in Section 3. We also cre-
ated synthetic data with back-translation, forward-
translation, as well as a novel data augmentation
method of synonym replacement. All three meth-
ods are described in Section 4. Our experimental
results on the MuST-C tst-COMMON test set and

the official evaluation test set are presented in Sec-
tion 5, including ablation studies that prove the
effectiveness of synthetic data and noisy length en-
coding for a better trade-off between length compli-
ance and MT quality. We summarize our findings
in Section 6.

2 Baseline system

2.1 Data
We follow the constrained condition of the IWSLT
Isometric SLT task and use only English-to-
German TED-talk data from the MuST-C corpus
(Di Gangi et al., 2019). The corpus contains 251K
sentence pairs with 4.7M and 4.3M English and
German words, respectively.

We apply minimal text pre-processing, mainly
consisting of normalization of quotes and dashes.
2K sentences that have mismatching digits or paren-
theses in source and target were filtered out.

We use a joint English and German Sentence-
Piece model (Kudo and Richardson, 2018), trained
on the whole corpus using a vocabulary size of
20K, to split the data into subwords.

2.2 Neural NMT model
In preliminary experiments we tried several Trans-
former model configurations, including base and
big from the original paper (Vaswani et al., 2017),
a 12 encoder and decoder layer variant of base,
and a "deep" 20 encoder layer version with halved
feed-forward layer dimension in the encoder and
only 4 attention heads. These attempts to optimize
the model architecture for the given, rather low re-
source task did not yield a better architecture than
Transformer big, which we end up using in all our
experiments.

We however find an increased dropout rate of
0.3 and an increased label smoothing of 0.2 to be
crucial. We further optimize the model by sharing
the parameters of the source and target embeddings
as well as the softmax projection matrix.
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In all experiments we use two translation factors
(García-Martínez et al., 2016) on both the source
and target side to represent the casing of the sub-
words and the binary decision whether a subword
is attached to the previous subword (Wilken and
Matusov, 2019). This allows for explicit sharing of
information between closely related variants of a
subword and reduces the model vocabulary size.

All models are trained on a single GPU for 162 to
198 epochs of 100K sentence pairs each in less than
two days. We use batches of 1700 subwords and
accumulate gradients over 8 subsequent batches.
The global learning rate of the Adam optimizer is
increased linearly from 3 × 10−5 to 3 × 10−4 in
the first 10 epochs and then decreased dynamically
by factor 0.9 each time perplexity on the MuST-C
dev set increases during 4 epochs. For decoding
we use beam search with a beam size of 12.

We train the Transformer models using
RETURNN (Doetsch et al., 2017; Zeyer et al.,
2018), which is a flexible neural network toolkit
based on Tensorflow (Abadi et al., 2015). Automa-
tion of the data processing, training and evalua-
tion pipelines is implemented with Sisyphus (Peter
et al., 2018).

3 Length control methods

In this work we perform an extensive evaluation of
different ways to control the length of the transla-
tions generated by the NMT model, all applied to
the same baseline Transformer big model.

3.1 N-best rescoring

A simple method to achieve length compliant trans-
lation is to generate N-best lists and select trans-
lation hypotheses from the lists that adhere to the
desired length constraints. Saboo and Baumann
(2019) and Lakew et al. (2021) compute a linear
combination of the original MT model score and a
length-related score to reorder the N-best list. In
this work, we simply extract the translation from
the N-best list with the best MT score that has a
character count within a 10% margin of the source
character count and fall back to the first best hypoth-
esis if there is no such translation. This approach
is tailored towards the evaluation condition of the
IWSLT Isometric SLT task where length compli-
ance within a 10% margin is a binary decision and
the absolute length difference is not considered.

While N-best rescoring has the advantage of be-
ing applicable to any NMT model that uses beam

search, it is outperformed by learned length control
methods because in many cases there is no length
compliant translation in the N-best list, and also
because learned methods are able to shorten the
translation in a more semantically meaningful way.
However, we use N-best rescoring on top of other
methods to further improve length compliance, as
done by Lakew et al. (2021).

3.2 Length class token
Lakew et al. (2019) introduce a special token at the
start of the source sentence to control translation
length. For this, the training data is classified into
difference length classes based on the target-to-
source ratio measured in number of characters. In
this work we use two variants of length classes:

1. 3 length bins representing "too short", "length
compliant" and "too long". Length compliant
here means the number of characters in source
and target differs by less than 10%;

2. 7 length bins from "extra short" to "extra
long", such that an approximately equal num-
ber of training sentence pairs falls into each
bin.

The first option is focused on isometric MT, i.e.
equal source and target length, while the second
option offers a more fine-grained length control.

In addition, we analyze the difference of adding
the token to the source versus the target side.
Adding the token on the target side has the advan-
tage of offering the option to not enforce a length
class at inference time and instead let the model
perform an unbiased translation. This is especially
important in a commercial setting where costs can
be saved by deploying a single model for general
and isometric MT.

3.2.1 Length ROVER
A system that takes a length class as input can
produce multiple different translations of a given
source sentence. To maximize the chance for length
compliant translations, we produce translations of
the whole test set for each of the length bins and
then, for each sentence, select the hypothesis which
adheres to the length constraint. We refer to this as
length ROVER, in analogy to the automatic speech
recognition system combination technique called
ROVER (Fiscus, 1997). If multiple length bins pro-
duce a length compliant translation, precedence is
determined by the corpus-level translation quality
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scores for the different length bins. If no bin pro-
duces a length compliant translation the bin with
the best corpus-level translation quality is used as
fallback.

As we use a target-side length token, we can
let the model predict the length token instead of
forcing one. This usually leads to the best corpus-
level translation quality. We include this freely
decoded translation in the length ROVER.

When applying the length ROVER to the 7-bin
model, we exclude the bins corresponding to the
longest and shortest translations as those rarely
lead to length compliant translations but generally
to degraded translation quality. The same is true
for the "too short" and "too long" bins in the 3-
bin model, which is why we do not use the length
ROVER for this model.

3.3 Length encoding

We adopt length-difference positional encoding
(LDPE) from Takase and Okazaki (2019). It re-
places the positional encoding in the transformer
decoder, which usually encodes the absolute target
position, with a version that "counts down" from
a desired output length Lforced to zero. At each
decoding step the available remaining length is an
input to the decoder and thus the model learns to
stop at the right position. In training, Lforced is
usually set to the reference target length Ltarget,
while at inference time it can be set as desired.
For isometric MT, setting it to the source length
Lforced = Lsource is the natural choice.

The original work of Takase and Okazaki (2019)
uses a character-level decoder, which means that
the number of decoding steps equals the translation
length, assuming the latter is measured in number
of characters. Using subwords (Sennrich et al.,
2016) as the output unit of the decoder is more
common in state-of-the-art systems (Akhbardeh
et al., 2021). In this case, one can either encode
the target length in terms of number of subword
tokens (Liu et al., 2020; Niehues, 2020; Buet and
Yvon, 2021), or keep the character-level encoding
which however requires subtracting the number of
characters in the predicted subword token in each
decoding step (Lakew et al., 2019). The former
has the disadvantage that the number of subword
tokens is a less direct measure of translation length,
especially for the case of the IWSLT Isometric
SLT task where length compliance is measured in
terms of number of characters. The second option

is more exact but arguably a bit more complex to
implement. In this work we compare results for
both methods.

In contrast to (Lakew et al., 2019) we do not
combine standard token-level positional encoding
and character-level length encoding, instead we
only use the latter.

3.3.1 Length perturbation
For both the token-level and character-level ver-
sion we add random noise to the encoded trans-
lation length Lforced during training (Oka et al.,
2020). We find that this is necessary to make the
model robust to the mismatch between training,
where the target length is taken from a natural trans-
lation, and inference, where the enforced target
length is a free parameter. Especially in the case of
character-length encoding one cannot expect that a
high-quality translation with a given exact charac-
ter count exists. As opposed to Oka et al. (2020),
who add a random integer to the token-level target
length sampled from a fixed interval, e.g. [−4, 4],
we chose a relative +/-10% interval:

Lforced ∼ U (⌊0.9 · Ltarget⌉, ⌊1.1 · Ltarget⌉) (1)

Here, U(n,m) denotes the discrete uniform dis-
tribution in the interval [n,m], and ⌊·⌉ denotes
rounding to the nearest integer. This is in line with
the +/-10% length compliance condition used in
the evaluation. The length difference subtracted in
each decoder step is left unaltered, which means
counting down will stop at a value that in general
is different from zero.

3.3.2 Second-pass length correction
Length encoding as described above does not result
in a length compliant translation in all cases. The
reasons for this are: 1. general model imperfec-
tions, intensified by the small size of the training
data in the constrained track; 2. the noise added to
the target length in training (although it is within
the "allowed" 10% range); 3. for the case of token-
level length encoding, an equal number of source
and target tokens does not necessarily mean an
equal number of characters.

We therefore perform a second decoding pass for
those sentences where the first pass does not gener-
ate a length compliant translation. In this second
pass, instead of attempting to enforce Lforced =
Lsource, we make a correction by multiplying by
the source-to-target ratio observed in the first pass
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(measured in tokens or characters, depending on
the unit used for length encoding):

L2-pass
forced =

⌊
Lsource ·

Lsource

L1-pass
target

⌉
(2)

L1-pass
target is the first pass translation length, ⌊·⌉ de-

notes rounding. That way, an over-translation of
factor r in the first pass will be counteracted by
"aiming" at a translation length of 1/r of the source
length in the second pass.

This procedure could be applied iteratively, one
could even run a grid search of many different val-
ues for Lforced until a length compliant translation
is generated. We refrain from doing so as we find
it to be impracticable in real-world applications.

4 Synthetic data

We expand the original MuST-C data with synthetic
data of different types, all derived from the given
MuST-C corpus.

First, we include a copy of the data1 in which
two consecutive sentences from the same TED talk
are concatenated into one. Since many segments
in the original data are short, this helps to learn
more in-context translations. Then, we also include
a copy of the data where the English side is pre-
processed by lowercasing, removing punctuation
marks and replacing digits, monetary amounts and
other entities with their spoken forms. This helps
to adjust to the spoken style of TED talks and im-
perfections in the (manual) transcriptions of the
training and evaluation data.

We also use 82K bilingual phrase pairs extracted
from word-aligned MuST-C data, as described be-
low, as training instances.

4.1 Word synonym replacement

To enrich the training data with more examples of
length-compliant translations, we experiment with
a novel technique of replacing a few randomly se-
lected source (English) words in a given sentence
pair with their synonyms which are shorter/longer
in the number of characters, so that the result-
ing modified synthetic sentence is closer to being
length compliant. Whereas in an unconstrained
conditions the synonyms can come from WordNet
or other sources, in the constrained track we rely on
synonyms extracted from a bilingual lexicon. The

1Including, if applicable, the synthetic data described be-
low.

replacement of a source word with a synonym in a
given sentence pair happens only if it is aligned to
a target word, for which another word translation
exists in the bilingual lexicon.

The word alignment and bilingual word lexicon
extraction is performed on the lowercased MuST-C
corpus itself using FastAlign (Dyer et al., 2013).
The bilingual lexicon is filtered to contain entries
with the costs (negative log of the word-level trans-
lation probability) of 50 or lower.

We apply the synonym replacements only to sen-
tence pairs for which the target sentence is not
length-compliant with the source. We first generate
multiple versions of modified source sentences for
these data, which all differ in the choice of ran-
domly selected words that are to be replaced with
synonyms and in the actual synonyms selected for
replacement (also at random). Each word in a sen-
tence has a 0.5 chance of being considered for re-
placement (regardless of whether it has synonyms
as defined above or not), and the replacement is
done with (at most) one of 3 synonym candidates
with the highest lexicon probability which have
fewer or more characters than the word being re-
placed, depending on whether the length of the
original sentence was too long or too short.

From the resulting data (ca. 1M sentences), we
keep only those modified source sentences for
which the BERT F1 score (Zhang et al., 2020)
with respect to the original (unmodified) source
sentence is 0.94 or higher. In this way we try to
make sure that the meaning of the modified source
sentence stays very close to the original meaning.
This way, only 192K sentences are kept, which are
then paired with the original target (German) sen-
tences to form a synthetic synonym replacement
parallel corpus.

4.2 Back-translated data

We train the reverse, German-to-English system
with 7 length bins and source length token as de-
scribed in Section 3 using the same architecture and
settings as for the English-to-German system. We
then use this system to translate the MuST-C corpus
from German to English, generating 7 translations
of each sentence for each of the 7 bins. From these
data, we keep all back-translations which make the
corresponding German sentence length-compliant.
This resulted in a back-translated corpus of 172K
sentence pairs.
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tst-COMMON v2 blind test
# BLEU BERT LC BLEU BERT LC
0 baseline (no length control) 32.0 84.00 44.03 19.2 77.94 45.50
1 source-side token, 3 bins 31.3 83.94 51.59 20.6 78.40 62.50
2 + N-best rescoring 30.5 83.60 78.41 20.1 77.78 81.50
3 target-side token, 3 bins 31.4 83.88 50.12 19.7 78.37 53.50
4 + N-best rescoring 30.7 83.58 77.40 18.3 77.43 82.50

target-side token, 7 bins
5 predicted token (no length control) 32.0 84.00 45.23 18.3 77.55 46.50
6 + N-best rescoring 31.1 83.75 71.20 18.9 77.38 72.50
7 M token 31.7 83.99 49.19 19.1 78.24 56.00
8 + N-best rescoring 31.0 83.74 76.39 18.6 77.68 81.00
9 S token 30.5 83.73 62.95 18.9 78.05 59.00
10 + N-best rescoring 29.8 83.38 87.64 18.9 77.52 85.50
11 XS token 28.1 83.09 72.13 18.2 77.81 68.00
12 + N-best rescoring 27.8 82.91 92.21 17.8 77.32 90.00
13 ROVER over XS to XL 29.0 83.35 80.66 17.5 77.59 76.50
14 + N-best rescoring 28.0 82.94 94.19 17.6 77.09 93.00
15 ROVER over S to L 31.1 83.83 66.90 18.2 77.76 65.50
16 + N-best rescoring 30.0 83.38 88.57 18.7 77.32 86.50
17 length encoding (tokens) 31.5 83.91 48.57 19.6 77.45 55.50
18 + 2-pass length correction 30.0 83.42 68.14 19.5 77.75 75.50
19 + N-best rescoring 30.9 83.66 72.36 19.3 77.47 80.50
20 + 2-pass length correction 29.5 83.12 88.41 19.0 76.95 92.00
21 length encoding (characters) 30.7 83.57 63.64 20.1 78.27 73.00
22 + 2-pass length correction 29.3 82.89 89.50 19.2 77.55 90.50
23 + N-best rescoring 30.0 83.24 88.10 19.2 77.22 95.50
24 + 2-pass length correction 29.2 82.76 98.14 18.8 76.80 98.00

Table 1: English→German translation results for MuST-C tst-COMMON and the IWSLT 2022 Isomtetric SLT blind
test. All values in %. LC = length compliance within 10% in number of characters. All systems are based on the
same Transformer big model. Length bins of the 7-bin system are referred to as XXS, XS, S, M, L, XL and XXL
from short to long. For explanation of N-best rescoring, ROVER, and 2-pass length correction refer to Section 3.

4.3 Forward-translated data

In addition to back-translated data, we also aug-
mented our training corpus with forward-translated
data. For this, we generated translations using our
English-to-German system with 7 length bins and
a source length token for each of the length classes.
Then, we kept only those translations which turned
out to be length-compliant with the corresponding
source sentence. The resulting synthetic corpus has
213K sentence pairs.

5 Experimental results

Table 1 presents results for all length control meth-
ods explored in this work. We evaluate on MuST-C
tst-COMMON v22 and the blind test set provided
by the shared task organizers using the official scor-
ing script3. As a measure of MT quality it com-
putes BLEU (Papineni et al., 2002; Post, 2018)
and BERT F1 score (Zhang et al., 2020). Length
compliance (LC) is calculated as the proportion

2The official evaluation uses tst-COMMON v1. Differ-
ences in metric scores are minor though.

3Blind test set and scoring script are published un-
der https://github.com/amazon-research/
isometric-slt.

of translations that have a character count which
differs by 10% or less from the number of charac-
ters in the source sentence. For this, spaces are not
counted and sentences with less than 10 characters
are ignored. References for the blind test set were
made available only after development of the sys-
tems. Line 0 in Table 1 corresponds to a system
trained without any of the length control methods
from Section 3. All systems use all synthetic data
as described in Section 4 if not stated otherwise.

5.1 Length token systems

Rows 1 to 4 of Table 1 show results for the 3-bin
length token systems. The "length compliant" bin
is used for all translations. (When used on the tar-
get side it is enforced as the first decoding step.)
Overall, we observe no major differences between
a source-side and target-side length token in both
LC and MT quality scores. Synthetic data and
selection of the length bin alone leads to length
compliant translations in about 50% of cases (rows
1 and 3). This shows that the model has to com-
promise between translation quality and length and
that a length token is not a strong enough signal to
enforce the corresponding length class in all cases.
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N-best rescoring, i.e. selection of a length compli-
ant translation from the beam search output of size
12, can improve LC to 78% on tst-COMMON but
comes at the cost of a loss in translation quality by
0.8% BLEU and 0.3% BERTScore absolute.

The 7-bin system shown in rows 5 to 16 offers
a greater variety of trade-off points. We refer to
the 7 length bins with size labels from "XXS" to
"XXL". The target-to-source ratio boundaries for
equally sized bins in terms of training examples are
computed to be 0.90, 0.98, 1.02, 1.06, 1.10, and
1.23. This means the desired 1.0 ratio for isometric
MT falls into the "S" bin.

Row 5 shows the scores achieved when not forc-
ing any length token. This configuration leads to
the same quality on tst-COMMON as the base-
line system, namely 32.0% BLEU and 84.0%
BERTScore. This indicates that the model is able
to predict the right length class corresponding to
an unbiased translation. Setting the length token to
either "M", "S" or "XS" offers different trade-offs
between translation quality and length compliance.
Interestingly, the "XS" class has a higher LC than
the class "S" which should represent translations
with a target-to-source ratio closer to 1. Again, this
shows that the effect of length tokens is in conflict
with general translation quality, which is optimal
when not skipping any information present in the
source. A more extreme length class has to be cho-
sen to achieve the desired amount of compression.
In all cases N-best rescoring has the same effect as
observed for the 3-bin systems, namely a higher LC
at the cost of worse translation quality. All length
classes not shown in the table lead to either clearly
worse LC or quality scores.

The outputs for different length tokens, possi-
bly after N-best rescoring, can be combined with
the length ROVER. As mentioned in Section 3.2.1,
we exclude the extreme length classes. We con-
sider two variants: excluding the bins with short-
est and longest translations, or excluding the two
shortest and longest. As expected, both variants
lead to more length compliant translations in the
combined output. However, they provide different
trade-offs: while the first variant (rows 13, 14) can
achieve 94% length compliance on tst-COMMON,
translation quality drops to similarly low values as
observed for the "XS" length class. The second
variant is more conservative and achieves only 89%
length compliance, but preserves higher BLEU and
BERT scores.

5.2 Length encoding systems

Rows 17 to 24 of Table 1 show the results of sys-
tems trained with length encoding as described in
Section 3.3. They are also trained using 3 length
bins and a "length compliant" token is forced on
the target side, we however observe no significant
differences to not using the token.

Using the source length as input to the decoder
(Lforced = Lsource), the token-level length encod-
ing model (row 17) does not achieve a higher LC
value than the length token systems (49%), while
the model with character-level length encoding
(row 21) is able to produce compliant translations
in 64% of the cases. Doing a length-corrected
second decoding pass is very effective for both sys-
tems. This shows that the decoder input Lforced has
a strong impact on the model output, however has
to be adjusted to get the desired output length. In
Section 3.3.1 we give explanations for such imper-
fections. In addition, similar to the case of length
tokens, we attribute this to the fact that in training
the desired length is always conform with the refer-
ence translation, while at inference time the model
often has to compress its output to fulfill the length
constraints, which might require a more extreme
value for the targeted length Lforced.

N-best rescoring can be applied on top to achieve
a further large increase in length compliance4. This
indicates that there is length variety in the N-best
list that at least in part can be attributed to the noise
added through length perturbation (Section 3.3.1).
The resulting character-level length encoding sys-
tem in row 24 achieves the overall best length com-
pliance value of 98.14%.

5.3 System selection

To select systems for our submission, in Figure 1
we visualize the inherent trade-off between length
compliance and translation quality for the systems
from Table 1. We look at BERT scores as they
were announced to be the main MT quality metric
for the evaluation. We chose system 16, the 7-bin
length token system using the length ROVER, as
our primary submission. As contrastive submis-
sions we include systems 2 (3 length bins using
source-side token), 14 (ROVER variation of the
primary submission) and 24 (character-level length
encoding with second-pass length correction). All
submissions use N-best rescoring. As it can be

4First-best translation length of first pass is used for length
correction, N-best rescoring only applied in the second pass.
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Figure 1: Visualization of length compliance (LC) vs.
BERTScore trade-offs on MuST-C tst-COMMON for
systems taken from Table 1. Data point labels are the
row numbers (#) from Table 1. Submitted systems are
labeled in bold blue.

seen, the different length control methods are all
able to provide useful trade-off points. While only
length encoding can achieve a near perfect length
compliance, length token-based methods can of-
fer a good compromise that preserves more of the
baseline MT performance.

5.4 Ablation study
For a selected subset of the systems we show the
contribution of the most important types of syn-
thetic data used in our systems (Section 4), as well
as the effect of length perturbation (Section 3.3.1).

5.4.1 Effect of synthetic data
Comparison of the first two rows of Table 2 shows
that taking away synthetic data created using word
synonym replacement (Section 4.1) from the 7-bin
length token system causes a slight degradation of
the BLEU score and no significant change of BERT
and length compliance score on tst-COMMON. We
consistently observe the same tendencies when tak-
ing other configurations of the 7-bin system from
Table 1 as baseline (not shown here). This indicates
that synonym replacement has some positive effect
on MT quality as a data augmentation method, but
fails to lead to the desired effect of improved length
compliance. This could also in part be explained
by the fact that in our experiment setting, remov-
ing synonym data resulted in the increased relative
proportion of length-compliant back- and forward-
translated data.

Removing also the back- and forward-translated
data from training leads to a consistent drop in

all quality metrics on tst-COMMON. In particu-
lar, length compliance becomes worse, even in the
considered case that uses the length ROVER and N-
best rescoring. When training the length-unbiased
system of row 5, Table 1 without synthetic data
LC even drops from 45.27 to 30.70 (not shown in
Table 2). This shows that length-compliant back-
and forward-translated data clearly has the desired
effect of learning isometric translation and it is still
noticeable when combined with other length con-
trol methods. Also for the length encoding model
(row 8) we observe a similar positive effect of the
synthetic data, despite the translation length being
predominantly determined by the length value fed
into the decoder.

On the blind test set we observe contradicting
results. For this we can provide no better expla-
nation than referring to statistical randomness. In
Table 1 one can see that ranking of independently
trained neural models (e.g. rows 1, 3, 5, 17 and 21)
disagrees on the two test sets, which we attribute
to the small size of 200 lines of the blind test set.
In fact, according to paired bootstrap resampling
computed with SacreBLEU (Post, 2018), the large
difference of 1.3 BLEU between row 1 and 2 of Ta-
ble 2 is not statistically significant with p < 0.05,
and the 95% confidence interval of row 1 is 2.8
BLEU.

5.4.2 Effect of length perturbation
Without length perturbation the character-level
length encoding model is able to produce length
compliant translations in almost all cases, as can be
seen in Row 7 of Table 2, without the need for sub-
sequent steps like N-best rescoring or second-pass
length correction. This however comes at the cost
of a severe drop in translation quality as measured
in both BLEU and BERT score. When comparing
to row 24 of Table 1 it is apparent that the sys-
tem trained with length perturbation and using the
above-mentioned methods can achieve a similar
high level of length compliance while offering a
better translation quality by 2.6% BLEU and 1.1%
BERT F1 score absolute.

A similar drop in translation quality due to lack
of length perturbation can be observed for the case
of token-level length encoding comparing rows 4
and 5 of Table 2. The gain in LC from training with-
out noise is outperformed by the combination of
N-best rescoring and second-pass length correction
applied to the baseline system (row 20, Table 1).
Notably, even without noise in training token-level
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tst-COMMON v2 blind test
# BLEU BERT LC BLEU BERT LC

target-side token, 7 bins
1 Row 16, Table 1 30.0 83.38 88.57 18.7 77.32 86.50
2 + no synonym replacement 29.6 83.41 88.41 20.0 77.58 88.50
3 + no back-/forward-translation 29.5 83.20 87.48 19.5 77.49 87.50

length encoding (tokens)
4 Row 19, Table 1 30.9 83.66 72.36 19.3 77.47 80.50
5 + no length perturbation 28.6 82.32 76.12 18.3 74.51 81.00

length encoding (characters)
6 Row 21, Table 1 30.7 83.57 63.64 20.1 78.27 73.00
7 + no length perturbation 26.6 81.66 98.26 18.4 76.07 99.00

+ no synonyms replacement,
8 no back-/forward-translation 30.0 83.37 61.94 19.8 77.86 75.50

Table 2: Ablation study results. All values in %.

length encoding does not surpass a length compli-
ance value of 80%. This shows that the number of
subwords is not accurate enough as a measure of
length when targeting a precise character count.

6 Conclusion

In this paper, we described AppTek’s neural MT
system with length control that we submitted to the
IWSLT 2022 Isometric Spoken Translation Evalu-
ation. We showed that by using length-compliant
synthetic data, as well as encoding the desired trans-
lation length in various ways, we can significantly
increase the length compliance score, while at the
same time limiting the loss of information as re-
flected in only slightly lower BERT scores. As one
of the best methods for real-time production set-
tings not involving system combination, N-best list
rescoring or 2-pass search, the modified positional
encoding that counts the desired length in charac-
ters achieves the best quality/length compliance
trade-off in our experiments. We attribute this to
more fine-grained length control capabilities of this
system as compared to systems that use source-side
or target-side length pseudo-tokens.
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