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Abstract

The primary goal of this FBK’s systems sub-
mission to the IWSLT 2022 offline and simul-
taneous speech translation tasks is to reduce
model training costs without sacrificing trans-
lation quality. As such, we first question the
need of ASR pre-training, showing that it is not
essential to achieve competitive results. Sec-
ond, we focus on data filtering, showing that a
simple method that looks at the ratio between
source and target characters yields a quality im-
provement of 1 BLEU. Third, we compare dif-
ferent methods to reduce the detrimental effect
of the audio segmentation mismatch between
training data manually segmented at sentence
level and inference data that is automatically
segmented. Towards the same goal of training
cost reduction, we participate in the simulta-
neous task with the same model trained for
offline ST. The effectiveness of our lightweight
training strategy is shown by the high score
obtained on the MuST-C en-de corpus (26.7
BLEU) and is confirmed in high-resource data
conditions by a 1.6 BLEU improvement on the
IWSLT2020 test set over last year’s winning
system.

1 Introduction

The yearly IWSLT offline speech translation (ST)
evaluation campaign aims at comparing the models
produced by companies, universities, and research
institutions on the task of automatically translating
speech in one language into text in another lan-
guage. Given a blind test set, participants’ submis-
sions are ranked according to the obtained Sacre-
BLEU score (Post, 2018).

Over the years, the competition to achieve the
highest score has driven to bigger and bigger mod-
els trained on large datasets: the 2021 winning
model (Bahar et al., 2021b) has twice the number
of encoder layers (12 vs 6), and a deeper (6 vs 4
layers) and larger (1024 vs 512 features) decoder
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compared to the 2019 winner (Potapczyk et al.,
2019). In addition, most of the competitors have
relied on knowledge transfer techniques (Ansari
et al., 2020; Anastasopoulos et al., 2021b), such
as the initialization of the ST model encoder with
the encoder of an ASR system trained on large cor-
pora (Bansal et al., 2019). All these practices have
contributed to a remarkable increase in computa-
tional expenses and energy consumption that are
antithetic with the recent rise of concerns on the
social and environmental consequences of these
costs (Strubell et al., 2019).

Among the harms inherent to the high computa-
tional cost of training ST systems, there is also the
risk of restricting the participation in competitions
like IWSLT to few big players from the industry
sectors that can afford them. As part of a research
institution, with this work we try to answer the
question: can we reduce the training cost of ST sys-
tems without sacrificing final translation quality?
Specifically, can we train a competitive direct ST
model from scratch, without expensive pre-training
(e.g. ASR pre-training or self-supervised learning
on huge dataset – Baevski et al. 2020)?

To answer these questions, we perform a prelim-
inary study on the English-German (en-de) section
of MuST-C (Cattoni et al., 2021), one of the most
widespread ST corpora and then we scale to the
high-resource data condition allowed by the task
organizers. On MuST-C, we show that with the aid
of a Connectionist Temporal Classification (CTC)
auxiliary loss (Graves et al., 2006) and compression
(Gaido et al., 2021a) in the encoder, our Conformer-
based (Gulati et al., 2020) model can outperform
– to the best of our knowledge – the previous best
reported value of 25.3 BLEU by Inaguma et al.
(2021), even avoiding any additional pre-training
or transfer learning. Moreover, with the addition
of a simple data filtering method, we achieve the
new state-of-the-art score of 26.7 BLEU for a di-
rect ST model that does not exploit external (au-
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dio or textual) resources. Scaling to high-resource
data conditions, we notice that the gap between
an ASR pre-trained system and a system trained
from scratch is closed only after a fine-tuning on
in-domain data. Our submission to the offline task
consists of an ensemble of three models that scores
32.2 BLEU on MuST-C v2 and 27.6 on IWSLT
tst2020.

In the same vein of reducing the overall train-
ing computational costs, we participated also in
the simultaneous task using our best offline model
and without performing any additional training do
adapt it to the simultaneous scenario (Papi et al.,
2022). The simultaneous version of our offline-
trained model is realized by applying the wait-k
strategy (Ma et al., 2019) with adaptive word de-
tection from the audio input (Ren et al., 2020) that
determines the number of words in a speech seg-
ment using the greedy prediction of the CTC. Our
SimulST model achieves competitive results on the
MuST-C v2 test set compared to the last year sys-
tems, scoring 25 BLEU at medium latency (< 2s)
and 30 BLEU at high latency (< 4s) while keeping
low (300− 400ms) the computation overhead and
requiring no dedicated training.

2 Competitive ST without Pre-training

Before training systems on huge corpora, we
conduct preliminary experiments on the MuST-C
benchmark to find a promising setting aimed at re-
ducing the high computational costs of ST. First,
we validate on different architectures the finding
of previous works (Gaido et al., 2021a; Papi et al.,
2021b) that ST models trained with an additional
CTC loss do not need an initialization of the en-
coder with that of an ASR model. To this aim, we
add a CTC loss (Gaido et al., 2021a) whose targets
are the lowercase transcripts without punctuation.1

Second, we explore data selection mechanisms to
increase model quality and reduce training time.
We always use the same hyper-parameters used in
our final trainings for all systems (see Section 6)
unless otherwise specified.

2.1 Model Selection
As a first step, we compare different architectures
proposed for ST: ST-adapted Transformer (Wang
et al., 2020b), Conformer (Gulati et al., 2020), and

1We add the CTC loss in the 8th encoder layer since (Gaido
et al., 2021a; Papi et al., 2021a) has demonstrated that it com-
pares favourably with adding the CTC on top of the encoder
outputs or in other layers (Bahar et al., 2019).

Speechformer (Papi et al., 2021b). In addition,
we also test a composite architecture made of a
first stack of 8 Speechformer layers and a second
stack of 4 Conformer layers. Hereinafter, we refer
to this architecture as Speechformer Hybrid. As
a side note, we also experimented with replacing
the ReLU activation functions in the decoder of
our Conformer model with the squared ReLU, in
light of the recent findings on language models (So
et al., 2021) showing accelerated model conver-
gence, decreased training time, and improved per-
formance. Unfortunately, these benefits were not
observed in our experiments, as the introduction
of the squared ReLU caused a small performance
drop (-0.2 BLEU) and did not improve the conver-
gence speed of the model. So, we do not consider
this change in the rest of the paper.

In all the architectures, the encoder starts with
two 1D convolutions. These layers compress the
input sequence by a factor of 4 except for the
Speechformer, where they do not perform any
downsampling. Indeed, the Speechformer relies
on a modified self-attention mechanism (ConvA-
ttention) with reduced memory requirements and
shrinks the length of the input sequence only on top
of 8 ConvAttention layers by means of the CTC-
compression (Gaido et al., 2021a) mechanism be-
fore feeding the sequence to 4 Transformer layers.
However, in a randomly initialized state, the CTC
compression may actually not reduce the input se-
quence (or only slightly), leading to OOM errors
caused by the quadratic memory complexity with
respect to the sequence length of the Transformer
layers. For this reason Papi et al. (2021b) initialize
their encoder layers up to the CTC-compression
module with a pre-trained model. Since we aim at
reducing the computational cost avoiding any pre-
training, we introduce two methods that ensure a
minimal compression factor of the input sequence
after the CTC-compression:

• Max Output Length: if the sequence pro-
duced by the CTC compression is longer than
a threshold (a hyper-parameter that we set to
1/4 of the maximum input sequence length2),
we merge (averaging them) an equal num-
ber of consecutive vectors so that the final
length of the sequence is inferior of the de-
fined threshold. For instance, if the maximum

2This ensures that the resulting sequences are not longer
than the maximum length obtained by the Transformer and
Conformer architectures after the two 1D convolutions.
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input sequence length is 4,000, we set the
threshold to 1,000; in this case, if a sample
results in a sequence of length 2,346 after the
CTC compression, we merge the first 3 vec-
tors, then the vectors from the 4th to the 6th,
and so on. We use 3 because it is the minimum
compression factor that satisfies the length re-
quirement.3

• Fixed compression: for a given number of
epochs nE (a hyperparameter) the CTC com-
pression is disabled and replaced by a fixed
compression that averages 4 consecutive vec-
tors. In this way, we directly control the length
of the sequence after the compression, resem-
bling the fixed compression performed by the
initial 1D convolutional layers of Transformer
and Conformer ST models.

We choose the nE parameter of the fixed com-
pression method among the values 6, 8, 10, and
12 according to the BLEU score4 on the dev set.
The best score was achieved with nE = 10 (24.16
BLEU), which was lower than the score obtained
by the Max Output Length method (24.26 BLEU).
As such, in Table 1 (w/o pretrain column) we re-
port the results of Speechformer and Speechformer
Hybrid with the Max Output Length method.

The results show that the Speechformer-based
models do need pre-training to reach their best
scores while Conformer and Transformer models
achieve comparable translation quality avoiding the
pre-training. Specifically, the Conformer architec-
ture with CTC compression obtains the best score
without pre-training (25.5 BLEU) and has a negligi-
ble gap from the best result with pre-training (25.7
of Speechformer Hybrid). We can hence confirm
the statement that ASR pre-training can be avoided
at barely no translation quality cost, and hereinafter
we use the Conformer with CTC compression with-
out pre-training unless noted otherwise. It is worth
mentioning that the introduction of the CTC com-
pression in the Conformer encoder does not only
increase translation quality; also, it reduces the
RAM requirements and speeds up both the infer-
ence and training phases. Indeed, as the sequence
length is significantly reduced in the last encoder
layers and in the encoder-decoder attention, less
computations are required and the mini-batch size –

3A compression factor 2 would result in a sequence of
length 1,173 – higher than the 1,000 threshold – while 3
produces a sequence of length 782.

4BLEU+case.mixed+smooth.exp+tok.13a+version.1.5.1

Model w pretrain w/o pretrain
Transformer 23.6 23.6
Speechformer 24.5 24.3
Conformer 24.8 24.8

+ CTC compr. 25.6 25.5
Speechformer Hybrid 25.7 24.9

Table 1: SacreBLEU on the tst-COMMON set of MuST-
C v1 en-de.

the number of samples processed in parallel – can
be increased. Overall, this leads to save ∼ 35% of
the training and inference time.

2.2 Data Filtering

Easy methods to improve the quality of ST systems
– and deep neural networks in general – consist in
providing them with more data or better data. The
first approach comes at the cost of longer train-
ing time and higher computational requirements.
This makes the second approach more appealing
and in line with the overall goal and spirit of this
work. We hence focus on the definition of an effi-
cient filtering strategy that improves the quality of
our training data (and consequently of our models)
without additional computational costs.

We start from the observation that ST models
estimate the probability of an output text given
an input audio p(Y |X), and a good ST model as-
signs a low probability to erroneous samples, which
are outliers of the p(Y |X) distribution. Although
training a ST model only to filter the training data
would be extremely computationally expensive, we
decided to adopt this method as an upper bound for
comparison with easier and feasible strategies. In
particular, for each sample in the training set, we
computed the negative log-likelihood5 (NLL) with
a strong ST model trained on all the data available
for the competition (see Section 5) as a proxy of the
probability of the sample. A high NLL means that
a sample is unlikely, while a NLL close to 0 means
that the sample has a very high probability. Based
on this, we can filter all the samples above a thresh-
old to remove the least probable ones. To set the
threshold, we draw an histogram on all the training
sets (see Figure 2 in the Appendix) that leads to
the following considerations: i) each dataset has a
different distribution, making it difficult to define a
threshold valid for all of them, and ii) MuST-C has
the highest NLL, meaning that it is more complex
to fit for the model.

5The negative log-likelihood is defined as −log(p(Y |X)).
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Through the approach described above, we se-
lected the data of MuST-C - the dataset we used in
these preliminary experiments - with a NLL greater
than 4.0. Upon a manual inspection of a sample
of these selected data (5-10% of the total), we no-
ticed that two main categories were present: i) bad
source/target text alignments6 (e.g. two sentences
in the target translation are paired with only one
in the transcript or vice versa), and ii) free (non-
literal) translations. Instead, no cases of bad audio-
transcript alignments were found (this was only a
non-exhaustive manual inspection though), mean-
ing that this problem is likely less widespread and
impactful than the textual alignment errors in the
corpus.

These considerations motivated us to search for a
feasible strategy that filter out the bad source/target
text alignments. We first considered a simple
method that discards samples with too high or low
ratio between the target translation length (in char-
acters) and the duration of the source audio.7 The
corresponding histogram on the training data can
be found in Figure 3 in the Appendix. Looking
at the plots, it emerges that this ratio is strongly
dataset-dependent, likely due to the high variability
in speaking rate for different domains and condi-
tions, thus making it hard to set good thresholds.
For this reason, also supported by the finding of the
manual inspection on the good quality of audio-text
alignments discussed above, we turn to examine the
ratio between the target translation length and the
source transcript length.8 Figure 4 in the Appendix
shows its histogram: in this case, the behavior is
consistent on all datasets, making it easy to deter-
mine good values for the minimum and maximum
ratio to admit (we set them to 0.8 and 1.6).

In Table 2 we report the results of our filtering
method and we compare it with the upper bound
of the NLL-based filtering strategy as well as with
previous works both under the same data condi-
tion and with additional external data. First, we
can notice that our simple method based on the tar-
get/source character ratio leads to a 1.2 BLEU gain,
and has a very small gap (0.2 BLEU) with respect
to the upper bound exploiting a strong ST model

6In the MuST-C corpus, the alignments between transcripts
and translations of the training set are automatically produced,
hence misalignments and textual differences can be present.

7In practice, we compute the number of characters divided
by the number of 10ms audio frames.

8We used normalized transcript without punctuation, so
the length of the target translation is on average 1.2X that of
the source transcript.

Model BLEU
Cascade (Bahar et al., 2021a) 25.9
Tight Integrated Cascade (Bahar et al., 2021a) 26.5

Without external data
SATE (Xu et al., 2021) 25.2
BiKD (Inaguma et al., 2021) 25.3

With external data
JT-ST (Tang et al., 2021) 26.8
Chimera (Han et al., 2021) 26.3

This work
Conformer + CTC compr. 25.5

+ char-ratio filter. 26.7
+ NLL-based filter. 26.9

Table 2: SacreBLEU on the tst-COMMON set of MuST-
C v1 en-de. Chimera uses additional speech and
WMT14 (Bojar et al., 2014), while JT-ST uses only
WMT14 as external resource.

for filtering. Second, our score (26.7 BLEU) is sig-
nificantly higher than those reported by previous
direct ST works in the same data condition and is
on par or even outperforms those of models trained
with the addition of external resources. Finally, we
compare the results of our model with those of the
best cascade models reported in the same data con-
ditions (Bahar et al., 2021a): the tightly-integrated
cascade is close to our model (-0.2 BLEU), but
ours also benefits from the data filtering technique
we just discussed.

To sum up, we managed to define a training
recipe that enables reaching state-of-the-art ST re-
sults on MuST-C en-de (26.7 BLEU) with a sin-
gle training step and involves: i) the Conformer
architecture, ii) an auxiliary CTC loss and CTC-
compression in the 8th encoder layer, and iii) a
simple yet effective filtering strategy based on the
ratio between source and target number of char-
acters. In the following section, we discuss the
application of this procedure in high-resource data
conditions.

3 Audio Segmentation Strategy

ST models are usually trained and evaluated in the
ideal and unrealistic condition of audio utterances
split at sentence level. As such, when fed with
an unsegmented audio stream, they suffer from
the mismatch between the training and inference
data, which often results in significant performance
drops. Accordingly, our last year submission (Papi
et al., 2021a) focused on reducing the impact of this
distributional shift, both by increasing the robust-
ness of the model with a fine-tuning on a random
re-segmentation of the MuST-C training set (Gaido
et al., 2020a), and by means of a hybrid method for
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audio segmentation (Gaido et al., 2021c), which
considers both the audio content and the desired
length of the resulting speech segments. The exper-
iments showed that the two approaches accounted
for complementary gains, both contributing to ob-
tain our best scores.

Recently, Tsiamas et al. (2022) presented a novel
Supervised Hybrid Audio Segmentation (SHAS)
with excellent results in limiting the translation
quality drop. SHAS adopts a probabilistic version
of the Divide-and-Conquer algorithm by Potapczyk
and Przybysz (2020) that progressively splits the
audio at the frame with highest probability of being
a splitting point until all segments are below a spec-
ified length. The probability of being a splitting
point is estimated by a classifier fed with audio
representations generated by wav2vec 2.0 (Baevski
et al., 2020) and trained to approximate the man-
ual segmentation of the existing corpora, i.e. to
emit 1 for frames representing splitting points and
0 otherwise. Since this approach involves a pre-
diction with neural models of considerable size, its
superiority over the VAD-based ones comes with a
significant computational cost and overhead. In ad-
dition, SHAS is not applicable to audio streams, as
it requires the full audio to be available before start
splitting. In the context of this competition, how-
ever, these limitations do not represent a significant
issue.

Tsiamas et al. (2022) compare SHAS with pre-
vious segmentation methods only using models
trained on well-formed sentence-utterance pairs.
In this work, we validate their findings also on
models fine-tuned on randomly segmented data
to check: i) whether this fine-tuning brings bene-
fits also with audio segmented with SHAS, and ii)
whether the gap between SHAS and other segmen-
tation is closed or not by the fine-tuning.

4 Simultaneous

In light of the recent work that questions the ne-
cessity of a dedicated training procedure for si-
multaneous model (Papi et al., 2022), we partici-
pate in the Simultaneous task with the same model
used for the Offline task. Their finding is perfectly
aligned with the spirit of this submission toward
the reduction of training computational costs. We
determine when to start generating the output trans-
lation adopting the wait-k strategy (Ma et al., 2019)
that simply prescribes to wait for k words before
starting to generate the translation, where k is a

hyper-parameter controlled by the user that can be
increased or decreased to directly control the la-
tency of the system. The number of words in a
given input speech is determined with an adaptive
word detection strategy (Ren et al., 2020), because
of its superiority over the fixed strategy (Ma et al.,
2020b) in strong models trained in high-resource
data conditions (Papi et al., 2022). Our adaptive
word detection mechanism exploits the predicted
output of CTC module in the encoder (Ren et al.,
2020; Zeng et al., 2021) to count the number of
words in the source speech.

The number of words to wait – k – is not the
only hyper-parameter that controls the wait-k strat-
egy. Another important factor is how often we
check the number of uttered words that is the length
of the speech segment. A short speech segment
means that the system decides more frequently
whether to wait for more input or to produce a
part of output. This can reduce the latency, but it
increases the number of forward passes through
the encoder and hence the computational cost. In
addition, a longer speech segment implies that the
system takes decision with more context at dis-
posal, possibly improving the quality. For this
reason, we performed preliminary experiments ex-
ploring different speech segment dimensions (ev-
ery 40ms ranging from 120ms to 720ms) and
we found 320ms and 640ms to be superior to
other values. Accordingly, we report the results
of our systems for these two speech segment du-
rations varying the value of k to achieve differ-
ent latency. In particular, we test our model with
k = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} in
order to lie in the latency intervals prescribed by
the Simultaneous Shared Task.9 The latency in-
tervals are determined by the Average Lagging
(Ma et al., 2020b) – or AL – on MuST-C v2 tst-
COMMON and are: Low Latency with AL ≤
1000ms, Medium Latency with AL ≤ 2000ms,
and High Latency with AL ≤ 4000ms. We use
a standard AL-BLEU graph to report the system
performance, where in the x axis we find the AL
values ranging from 700ms to 4000ms and in the
y axis the corresponding BLEU values. Moreover,
we also report the ALCA, the computational aware
version of the AL metric (Ma et al., 2020b) ac-
counting also for the computational time spent by
the model during inference, in an ALCA-BLEU
graph that will be used to additionally score the

9https://iwslt.org/2022/simultaneous
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performance in the simultaneous task.

5 Data

As training set, we use the ASR and ST datasets
allowed for the offline task,10 which are the same
allowed for the simultaneous one. The ASR data
consist in (speech, transcript) pairs that, in our case,
are in English. The ST data consist in (speech, tran-
script, translation) triplets from a source language
(here English) to a target language (here German).
The ASR data we used are: LibriSpeech (Panay-
otov et al., 2015), TEDLIUM version 3 (Hernandez
et al., 2018), Voxpopuli (Wang et al., 2021), and
Mozilla Common Voice.11 The ST data we used
are: MuST-C version 2 (Cattoni et al., 2021), CoV-
oST version 2 (Wang et al., 2020a), and Europarl-
ST (Iranzo-Sánchez et al., 2020).

The ASR-native corpora were included in our
ST training by applying Sequence Knowledge Dis-
tillation (Kim and Rush, 2016; Gaido et al., 2021b)
– or SeqKD –, a popular data augmentation method
used in the past IWSLT editions (Ansari et al.,
2020; Anastasopoulos et al., 2021a) in which a
teacher MT model is used to translate the source
transcripts into the target language. To avoid ad-
ditional computational costs, we choose as MT
teacher the freely available pre-trained model by
Tran et al. (2021) for WMT2021 that was trained on
the corresponding WMT2021 dataset (Akhbardeh
et al., 2021), allowed by the IWSLT2022 Offline
Task. The SeqKD method was also applied to
MuST-C v2 in order to augment the scarce ST avail-
able data. As such, our training set comprised the
synthetic data built using SeqKD and the native
ST data, both filtered with the method described
in Section 2.2. The two types of data were distin-
guished by means of a tag pre-pended to the target
text (Gaido et al., 2020b; Papi et al., 2021a).

6 Experimental Settings

All the models used for our participation were im-
plemented on Fairseq-ST (Wang et al., 2020b).12

All the architectures (Transformer, Speechformer,
Speechformer Hybrid, and Conformer) consist in
12 encoder layers and 6 decoder layers, 512 fea-
tures for the attention layers and 2,048 hidden units

10https://iwslt.org/2022/offline
11https://commonvoice.mozilla.org/en/

datasets
12Code available at: https://github.com/

hlt-mt/FBK-fairseq.

in the feed-forward layers. We used 0.1 dropout
for the feed-forward layer and attention layer. For
Conformer convolutional layers we also apply 0.1
dropout and we set the kernel size to 31 for the
point- and depth-wise convolutions. We trained
with the Adam optimizer (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.98). The learning rate was
set to increase linearly from 0 to 2e − 3 for the
first 25,000 warm-up steps and then to decay with
an inverse square root policy. Differently, it was
kept constant for model fine-tuning, with a value of
1e−3. The vocabularies are built via SentencePiece
models (Sennrich et al., 2016). In our preliminary
experiments only on MuST-C, the number of merge
operations was set to 8,000 (Di Gangi et al., 2020)
for the German translations and 5,000 (Wang et al.,
2020b) for the lowercase punctuation-free English
transcripts. In the experiments on high-resource
data condition, we doubled these values. We nor-
malize the audio features before passing them to
our models with Cepstral Mean and Variance Nor-
malization. Specifically, in offline ST the mean
and variance are estimated at utterance level, while
for simultaneous ST inference the normalization is
based on the global mean and variance estimated
on the MuST-C version 2 training set.

Trainings were performed on 4 NVIDIA A100
GPUs with 40GB RAM. We set the maximum
number of tokens to 40k per mini-batch and 2 as
update frequency for the Conformer with CTC-
compression. The other models were trained with
20k tokens per mini-batch and 4 as update fre-
quency. We trained each model for 100,000 up-
dates, corresponding to about 28 hours for the Con-
former with CTC-compression. For offline gen-
eration, the maximum number of tokens was de-
creased to 25k, since we used a single K80 GPU
with 12GB RAM and we applied the beam search
strategy with num_beams=5. For simultaneous
generation based on SimulEval (Ma et al., 2020a),
we used a K80 GPU and greedy search.

7 Results

In this section, we report our experiments in high-
resource data conditions and we discuss our submis-
sion to the Offline (section 7.1 and Simultaneous
(section 7.2) tasks.

7.1 Offline

Fine-tuning on in-domain data. In addition to
training our models in the high-resource data con-
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Model BLEU
I. Conformer 30.6

II. + in-domain fn 31.6
III. Conformer_pretrain 31.5
IV. + in-domain fn 31.7
V. Ensemble (II, III) 32.0

VI. Ensemble (III, IV) 31.7
VII. Ensemble (II, IV) 32.2

Table 3: BLEU on MuST-C v2 tst-COMMON for Con-
former with pretraining (Conformer_pretrain) and with-
out it (Conformer). We also report the scores after
fine-tuning on in-domain data (+ in-domain fn).

dition, we also investigate whether fine-tuning on
in-domain data brings advantages or not. The re-
sults are reported in Table 3. As we can notice,
the Conformer with pre-training outperforms its
version trained from scratch by 0.9 BLEU. How-
ever, when both the systems are fine-tuned on the
in-domain data (rows II and IV), this difference be-
comes negligible (0.1 BLEU) meaning that the pre-
training phase can be skipped in favor of a single
fine-tuning step. This might also suggest that the
learning rate scheduler and the hyper-parameters
we used – tuned on MuST-C corpus – may be sub-
optimal when a large amount of data is available.
For time reasons, we did not investigate this as-
pect, which we leave to future work. In addition,
we compared several model ensembles: the Con-
former with fine-tuning (II) and the pre-trained
Conformer (III); the pre-trained Conformer (III)
and the pre-trained Conformer with fine-tuning
(IV); the Conformer with fine-tuning (II) and the
pre-trained Conformer with fine-tuning (IV). Our
results show that ensembling the pre-trained Con-
former and its fine-tuned version (VI) does not
bring benefits, while selecting the Conformer with-
out pre-training fine-tuned on in-domain data and
the Conformer with pre-training (V) leads to some
improvements, which are enhanced when the two
fine-tuned models are used (VII). We also tested
ensembles with more than 2 models without obtain-
ing any advantage in terms of translation quality.

Fine-tuning on re-segmented data. As intro-
duced in Section 3, we tested two audio segmen-
tation methods: the Hybrid segmentation (Gaido
et al., 2021c), and the SHAS segmentation (Tsiamas
et al., 2022). Also, we fine-tuned our ST models
on automatically re-segmented data to reduce the
mismatch between train and evaluation conditions.
The results are shown in Table 4. First, we no-
tice that the SHAS segmentation method improves

over the Hybrid one, with gains from 0.7 to 3.4
BLEU. Secondly, we see that the fine-tuning on re-
segmented data – useful with the Hybrid segmenta-
tion – becomes useless if using SHAS. In fact, the
best overall results are obtained using SHAS on a
model that is not fine-tuned on resegmented data
(row 2), which scores 30.4 BLEU on the MuST-C
v2 tst-COMMON and 26.8 BLEU on the IWSLT
2020 test set. As such, we can conclude that fine-
tuning on resegmented data is not needed if the
audio is segmented with SHAS.

Ensembles. Since in the experiments on in-
domain fine-tuning the best overall score was ob-
tained by an ensemble of models, we compared
the best combination (Ensemble VII in Table 3)
with other ensembles obtained by combining mod-
els fine-tuned on re-segmented data and models
without this fine-tuning. As we can see from rows
7-10 of Table 4, the best scores are realized by
adding a model fine-tuned on re-segmented data
(6) to Ensemble VII, although the gap between all
the ensembles is small on both test sets (≤ 0.4
BLEU). This 3-models ensemble (10) obtained
the best overall BLEU of 31.3 on MuST-C v2 tst-
COMMON and 27.6 on IWSLT 2020 test set, out-
performing by 1.6 BLEU the best result reported
last year (Inaguma et al., 2021).

Offline Submissions. Given the results of the
Ensemble (1, 2, 6), we chose its output as our pri-
mary submission for the Offline Shared task. On
the basis of the small performance drop on both
test sets (0.4 BLEU) and to verify the possibility
of avoiding the fine-tuning on re-segmented data,
we choose the Ensemble (1, 2) as contrastive sub-
mission. Lastly, we can notice that the single Con-
former model without pre-training (1) falls behind
the best Ensemble by only 1 BLEU for MuST-C
v2 tst-COMMON and 1.2 BLEU for IWSLT 2020
test set. This suggests that users can be served
with sound and competitive translations even with
a single model obtained with less than 30 hours of
total training time on 4 GPUs. To test this hypothe-
sis, we sent the translations generated by the latter
system as additional contrastive submission. We
report in Table 5 the official results for the tst2022
and tst2021 sets. The scores confirm our findings
that the gap between the best ensemble and the
single model without pre-training is limited to less
than 1 BLEU. Most significantly, this single model
outperforms the best direct system reported last
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Model Hybrid SHAS
tst-COMMON iwslt2020 tst-COMMON iwslt2020

1. Conformer + in-domain fn 27.4 23.8 30.3 26.4
2. Conformer_pretrain + in-domain fn 28.1 24.4 30.4 26.8

with fine-tuning on resegmented data
3. Conformer + resegm. fn 28.3 25.2 29.3 26.1
4. Conformer + in-domain fn + resegm. fn 29.1 25.0 29.9 26.2
5. Conformer_pretrain + resegm. fn 29.0 25.9 29.8 26.7
6. Conformer_pretrain + in-domain fn + resegm. fn 29.0 25.7 29.7 26.8

Ensembles
7. Ensemble (1, 2) 28.6 24.7 30.9 27.2
8. Ensemble (4, 6) 29.7 26.0 30.5 27.2
9. Ensemble (2, 6) 28.9 25.7 30.8 27.4

10. Ensemble (1, 2, 6) 28.9 25.8 31.3 27.6

Table 4: BLEU scores of Hybrid and SHAS audio segmentation methods of the models with and without fine-tuning
on re-segmented data (resegm. fn) on the MuST-C v2 tst-COMMON and the IWSLT2020 test set.

Model tst2022 tst2021
ref2 ref1 both ref2 ref1 both

Best direct IWSLT 2021 (Bahar et al., 2021b) - - - 22.6 18.3 31.0
Best cascade IWSLT 2021 HW-TSC (Anastasopoulos et al., 2021b) - - - 24.6 20.3 34.0

This work
primary Ensemble (1, 2, 6) 23.6 21.0 32.9 25.5 21.3 35.6
contrastive1 Ensemble (1, 2) 23.4 20.6 32.5 25.4 20.9 35.2
contrastive2 Conformer + in-domain fn 22.8 20.1 31.6 24.5 20.2 33.9

Table 5: BLEU scores on the official blind tst2022 and tst2021 sets of our primary and contrastive submissions.

year (Bahar et al., 2021b) by 1.9 BLEU on the
two single references and 2.9 BLEU on both ref-
erences. Our primary submission increases these
gains to 2.9-3.0 BLEU on the single references and
4.6 BLEU on both references, and beats the best
cascade system from last year campaign (HW-TSC
– Anastasopoulos et al. 2021b) by 0.9-1.0 BLEU on
the single references and 1.6 BLEU on both refer-
ences. All in all, we can conclude that this work
has shown that a lightweight training procedure is
possible without dramatically sacrificing the qual-
ity and competitiveness of the system. We believe
that our results are promising for future works in
this direction.

7.2 Simultaneous

For the SimulST task participation we use the best
performing offline model, namely the Conformer
with pre-training and fine-tuning on in-domain data,
to which we apply the wait-k policy with adaptive
word detection. The AL- and ALCA-BLEU graphs
are shown in Figure 1.

As we can see from the AL-BLEU graph, the sys-
tems with speech segment 320ms and 640ms have
similar behaviour in terms of quality. The main dif-
ference between them is the minimum latency from
which they start: the system with speech segment
320ms starts at an AL of about 800ms while the

system with speech segment 640ms starts at about
900ms. On average, if the k value increases, the
AL increases by 300ms for both systems, with a
wider latency interval at the beginning that progres-
sively shrinks at high latency values. In spite of this,
the system with speech segment 320ms achieves
the highest BLEU slightly before the Medium La-
tency (25.1) and High Latency thresholds (30.1),
making it the best candidate for submission. If we
look at the ALCA-BLEU graph, the results partially
change because the system with speech segment
640ms has a lower computational burden, achiev-
ing up to 2 BLEU points improvement at low la-
tency against the other system. Thus, looking at
the computational aware metric, the best candidate
is the system with speech segment 640ms. We can
conclude that 320ms is the best speech segment
value for the AL ranking while 640ms is the best
for the AL computational aware version. Since
the organizers encourage multiple submissions, we
participate with both the speech segment values.

8 Conclusions

We described the FBK participation in the IWSLT
2022 offline and simultaneous tasks (Anastasopou-
los et al., 2022). Our focus was to build a system
with the least number of training steps but capa-
ble of obtaining competitive results with state-of-
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Figure 1: AL- and ALCA-BLEU curves on MuST-C v2
tst-COMMON.

the-art models, which typically undergo complex
and longer training procedures. To this aim, we
i) showed that ASR pre-training of the encoder
can be avoided without a significant impact on the
final system performance, ii) proposed a simple
yet effective data filtering technique to enhance
translation quality while reducing the training time,
and iii) compared different solutions to deal with
automatic audio segmentation at inference time.
Our results on the IWSLT2020 test set indicate
that a single Conformer-based model without pre-
training falls behind our best model ensemble by
only 1.2 BLEU and outperforms the best score
reported last year by 0.4 BLEU. The same trend
occurs on the blind tst2021 and tst2022 sets, with a
0.8-1.1 BLEU gap from our best model ensemble,
which in turn beats by ∼1 BLEU the best reported
result last year. These promising results are also
confirmed in the simultaneous scenario in which,
using the offline-trained model without any adap-
tation for the simultaneous task, we reach good
quality-latency balancing, especially in the more
realistic computational aware evaluation setting.
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A Dataset Statisctics for Data Filtering

In this Section we report the histograms created
when defining our data filtering mechanism (Sec-
tion 2.2).
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Figure 2: Histogram of the negative log-likelihood (NLL) of the samples for all the training set of the competition.
The ST model used to estimate the NLL has been trained on all the data and was scoring 29.6 BLEU on MuST-C.

Figure 3: Histogram of the ratio between the number of target translation character and 10ms audio frames for all
the training set of the competition.

Figure 4: Histogram of the ratio between the number of characters in the target translation and the source punctuation-
free transcript for all the training set of the competition.
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