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Abstract
Auto regressive text generation for low-
resource languages, particularly the option of
using pre-trained language models, is a rela-
tively under-explored problem. In this paper,
we model Math Word Problem (MWP) genera-
tion as an auto-regressive text generation prob-
lem. We evaluate the pre-trained sequence-to-
sequence language models (mBART and mT5)
in the context of two low-resource languages,
Sinhala and Tamil, as well as English. For
the evaluation, we create a multi-way paral-
lel MWP dataset for the considered languages.
Our empirical evaluation analyses how the per-
formance of the pre-trained models is affected
by the (1) amount of language data used during
pre-training, (2) amount of data used in fine-
tuning, (3) input seed length and (4) context
differences in MWPs. Our results reveal that
the considered pre-trained models are capable
of generating meaningful MWPs even for the
languages under-represented in these models,
even though the amount of fine-tuning data and
seed length are small. Our human evaluation
shows that a Mathematics tutor can edit a gen-
eration question fairly easily, thus highlighting
the practical utility ofautomatically generating
MWPs.

1 Introduction

Despite being one of the most important sub-
jects, many school children find Mathematics diffi-
cult (Acharya, 2017), with many exams reporting
high failure rates in Mathematics (Rylands and
Coady, 2009). One way of improving Mathemat-
ics skills is to practice solving Mathematics prob-
lems (Thompson, 1985). However, this places extra
burden on the tutors - they have to create different
Mathematics questions and grade student answers.
The alternative is to automatically generate Mathe-
matics questions and grade student answers. The
need of such systems that support as many lan-
guages as possible, is even more pronounced dur-
ing the times of pandemics and war, where students

get confined to homes/shelters without access to
physical schools.

In this paper, we focus on the problem of auto-
matically generating Mathematical Word problems
(MWPs). Considering the fact that learning Math-
ematics is not a privilege to students speaking a
particular language, we want to investigate the pos-
sibility of MWP generation in multiple languages.
An MWP is a “narrative with a specific topic that
provides clues to the correct equation with numer-
ical quantities and variables therein” (Zhou and
Huang, 2019). MWPs can be in categories such
as algebra, geometry and statistics. An elementary
MWP written in English is shown in the below
example.

Rosy made cookies and she used 2 kg flour and
1.5 kg sugar. How much more flour than sugar did
Rosy use?

Early solutions to MWP generation relied on
template-based approaches (Polozov et al., 2015),
and question rewriting (Koncel-Kedziorski et al.,
2016). More recently, Recurrent Neural Networks
(RNN) (Zhou and Huang, 2019; Liyanage and
Ranathunga, 2020), fine-tuning pre-trained lan-
guage models (Wang et al., 2021) as well as Varia-
tional Autoencoders (VAE) (Liu et al., 2020; Cao
et al., 2021) have been proposed. Only Liyanage
and Ranathunga (2020) have tried their NN solu-
tion in a multilingual setting, however the results
are sub-optimal.

Thus, our objective is to investigate the use of
multilingual pre-trained models for MWP genera-
tion. Here, we treat MWP generation as an auto-
regressive problem - the system has to generate a
question starting with the provided seed (the start-
ing portion of the question that is expected to be
generated). Compared to text generation tasks such
as story generation (Roemmele, 2016) or news gen-
eration (Leppänen et al., 2017), MWP generation
is challenging because MWPs have mathematical
constraints, units and numerical values as shown in
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the above example.
As mentioned above, auto-regressive language

models such as GPT-x (Radford et al., 2019) have
been already used for MWP generation (Wang
et al., 2021). They are a common choice for
Natural Language Generation (NLG) tasks (Lee
and Hsiang, 2020; Mosallanezhad et al., 2020;
Budzianowski and Vulić, 2019). Sequence-to-
sequence models such as BART (Lewis et al., 2019)
and T5 (Raffel et al., 2019) have also been used
for NLG in an auto-regressive manner (Tan et al.,
2020; Lewis et al., 2020). However, this option has
been used to a lesser extent compared to GPT-x in
similar text generation tasks, and never for MWP
generation.

Despite their success on English text generation,
GPT-x models are not available for other languages.
Building multilingual or language-specific GPT
models is not practical for many languages, par-
ticularly the low-resource ones. In contrast, T5
and BART both have their multilingual versions:
mT5 (Xue et al., 2020) and mBART (Tang et al.,
2020) (respectively). We are only aware of the em-
pirical analysis of Chen et al. (2021), who tested
the auto-regressive text generation capabilities of
mT5 and mBART in the context of 4 high resource
languages (for four tasks: story, question and title
generation).

We carry out an empirical study on the mBART
and mT5 models for MWP generation, consider-
ing two low-resource languages Sinhala and Tamil,
along with English. All these languages are in-
cluded in mBART and mT5. For a more compre-
hensive analysis, we evaluate T5, BART and GPT-2
for English MWP generation as well. Our experi-
ments answer four important questions:

1. How the performance of mT5 and mBART
varies depending on the language - because,
for the related Machine Translation task, it has
been shown that the model performance on
individual languages depends on the amount
of language-specific data used during model
pre-training (Lee et al., 2022)

2. How the performance of the models varies
depending on the amount of fine-tuning data
- because for many languages, having a large
training set is not realistic

3. How much information (size of the seed)
should be provided to the model at the in-
ference stage for it to generate a meaningful

MWP - because a tutor should be able to gen-
erate a new MWP by providing minimal infor-
mation.

4. How the context of an MWP affects the gen-
eration performance - because there is a wide
variety of MWPs

As an additional contribution, we create a bench-
mark dataset by extending the dataset created by
Liyanage and Ranathunga (2020) for MWP gener-
ation. Each English question was manually trans-
lated to Sinhala and Tamil, creating a multi-way
parallel dataset. Our dataset is publicly released1,
and can be considered as a test set even for Machine
Translation.

We believe that our work is the first to conduct an
empirical analysis on the use of (1) GPT, BART, T5,
mBART and mT5 for auto-regressive generation of
MWPs and (2) mBART and mT5 for the general
task of auto-regressive text generation considering
low-resource languages. Our findings are indeed
very promising for low-resource languages. Even
for very small seeds and fine-tuning dataset sizes,
these models (mBART in particular) yield very
good results with very little grammar and spelling
errors. Thus we can present the use of these models
as a very promising avenue for auto-regressive text
generation for low-resource languages, at least for
those that are included in the pre-trained models.

2 Related Work

2.1 MWP Generation

Previous research has addressed the problem of
MWP generation using three main techniques:
question rewriting, template-based generation and
text generation with Neural Networks (NNs).

Question rewriting technique rewrites a human-
written question by replacing words with new ones
from different contexts (Koncel-Kedziorski et al.,
2016). However, the numerical values in all the
rewritten questions are the same.

In the template-based techniques, first a question
template is either provided by a tutor (Nandhini and
Balasundaram, 2011; Polozov et al., 2015; Wang
and Su, 2016), or generated from an MWP (Bekele,
2020). Most of these template-based techniques are
long and tedious processes, with some requiring
language specific tools or resources.

1https://huggingface.co/datasets/
NLPC-UOM/MWP_Dataset
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Zhou and Huang (2019) present a Deep Neural
Network model that has two encoders and one de-
coder, all based on RNNs. The equation encoder
takes in an equation template, and the topic encoder
takes in a topic (context). The system is trained in
a supervised manner, using an MWP dataset. Thus,
for training purposes, the equation and the topic
of each training MWP has to be extracted. Wang
et al. (2021) also take in an equation and context,
however MWP generation is done using GPT-2.
Additionally, they introduce constraints to satisfy
equation and context correctness. Liu et al. (2020)
also take in an equation as the input. However,
they expect an external knowledge graph to repre-
sent the context. Both the knowledge graph and
the equation are encoded using a Convolutional
Gated Neural Network model. A Variational Auto-
Encoder (VAE) is used to generate the MWP from
this encoding. Cao et al. (2021) also make use of
a VAE to bridge the gap between abstract math
tokens and text. In addition to the equation and
common sense knowledge graph as input, they take
in the question text, as well as a set of words repre-
senting a topic.

In contrast to above research, Liyanage and
Ranathunga (2019, 2020) train a single RNN en-
coder in an auto-regressive manner using the MWP
text. Liyanage and Ranathunga (2019) impose
Mathematical constraints during post processing,
while Liyanage and Ranathunga (2020) achieve
the same using POS embeddings as input to the
model. As for NN-based solutions, only Liyanage
and Ranathunga (2019, 2020) considered MWP
generation in languages other than English.

2.2 Bench-marking NLG with Pre-trained
Models

NLG is an umbrella term used for a set of tasks
where the objective is to generate a text as the out-
put. In addition to auto regressive text generation,
NLG covers tasks such as text summarization, text
simplification, and graph to text generation.
The GEM benchmark (Gehrmann et al., 2021) eval-
uates BART, T5, mBART and mT5 for 11 different
NLG tasks. However, there is no evaluation on an
auto regressive text generation task. Moreover, ex-
cept for one dataset, all the others are focused only
on high-resource languages. The GLGE bench-
mark (Liu et al., 2021), which evaluated BART
and MASS pre-trained models also does not have a
dataset for auto regressive text generation. Further,

evaluation is only done for English.
Several shared tasks have been organized for

multilingual NLG tasks such as surface realiza-
tion (Mille et al., 2020) and RDF triples to text (Fer-
reira et al., 2020). Submissions to these shared
tasks have experimented with various pre-trained
models. However, the datasets focus only on high
and mid-resource languages. In contrast to the
above datasets, Kumar et al. (2022)’s multilingual
NLG dataset suit covers many low-resource Indic
languages. They use mT5 and IndicBART for eval-
uation. However, an auto regressive text genera-
tion task is not included in this suit. As for auto-
regressive text generation evaluation, we are only
aware of Chen et al. (2021), who considered mT5
and mBART. However, evaluation was done only
on 4 high-resource languages.

3 Methodology

All the models considered in this research
are trained using the Transformer architec-
ture (Vaswani et al., 2017), which is an Encoder-
Decoder model that contains a set of encoder layers
and decoder layers. GPT, BART and T5 are pre-
trained with English data. mBART and mT5 are
pre-trained with data from multiple languages (50
and 101, respectively). Here, pre-training means,
the models have been trained with a self-supervised
objective such as ‘span corruption’ (Xue et al.,
2020). All these models have to be fine-tuned for
the selected downstream task.

GPT models are decoder based. Here, the
encoder-decoder cross attention block is discarded
because there is no encoder. Self-attention has
been replaced by masked self-attention. We follow
the standard training procedure of GPT-2 model
in training it for MWP generation. T5, BART,
mBART and mT5 are encode-decoder models.
They expect a text sequence as the input and out-
put. For auto-regressive text generation, we use
the conditional generator option of BART/mBART
and T5/mT5, which makes the output of the model
conditioned on the preceding input sequence. In
both these cases, the models generate the rest of
the MWP for a given seed.

4 Experiments

4.1 Dataset
Liyanage and Ranathunga (2020)’s dataset contains
two types of MWPs: simple MWPs and algebraic
MWPs. The simple MWP dataset contains 2000
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questions and the Algebraic MWP dataset contains
2350 questions. This dataset contains questions in
English, Tamil and Sinhala, but is not multi-way
parallel.

We extended this dataset using the Dolphin18K
dataset (Huang et al., 2016) and the allArith dataset
(Roy and Roth, 2016) to add more diversity to
the dataset. We selected questions that are simi-
lar or slightly higher in complexity compared to
Liyanage and Ranathunga (2020)’s corpus. Ques-
tions that have lengthy descriptions and those corre-
sponding to complex Mathematical equations were
omitted. The extended dataset now contains 4210
Algebraic MWPs and 3160 simple MWPs. Simple
MWP dataset contains simple arithmetic questions
as the example shown in the introduction. These
questions contain constraints such as ‘first number
is always larger than the second one’. Algebraic
MWPs are more logical and require two or more
equations to solve.

E.g.: The sum of two numbers is twenty-three,
and the larger number is five more than the smaller
number. Find these numbers.

Corresponding Sinhala and Tamil examples are
given in the Figure 1 in Appendix.

Table 1: Statistics of the multi-way parallel dataset

Dataset type
Avg. Num.

of words per
question

Avg. Num.
of characters
per question

English Simple (ES) 15 54
English Algebraic (EA) 14 62
Sinhala Simple (SS) 19 61
Sinhala Algebraic (SA) 17 59
Tamil Simple (TS) 13 49
Tamil Algebraic (TA) 16 57

Mathematics tutors translated these questions to
Sinhala and Tamil. They were asked to retain the
same sentence count and syntactic structure as the
English source question, as much as possible. On
average, there are two sentences per question, with
a maximum of four sentences. Other statistics of
the dataset are given in Table 1.

In order to verify the quality of the manual
translations, we used the Direct Assessment (DS)
method (Bojar et al., 2016). We selected three
bilingual speakers (undergraduate students who are
proficient in Mathematics) for each language pair
(English-Sinhala, English-Tamil). Each evaluator
was assigned 200 translated MWPs along with the
original English question. They were asked to rate
the translated version with respect to adequacy and

Table 2: Quality estimation results of the translated
dataset

Data
set Rank

0-10 11-29 30-50 51-69 70-90 91-100
SS 0% 1.6% 3% 6.3% 22.6% 66%
SA 0% 0% 0.3% 2.6% 12.6% 84.3%
TS 0% 1% 4% 8.3% 27.6% 59%
TA 7% 12% 6.3% 6% 11.3% 57%

Table 3: Language Coverage of pre-trained models

Model English Tamil Sinhala
BART Storage(GB) 160 - -

T5 Storage(GB) 700 - -
mT5 Token(B) 2733 3.4 0.8

Pages(M) 3,067 3.5 0.5
mBART Token(B) 55.61 0.595 0.243

Storage(GiB) 300.8 12.2 3.6

fluency and give a rating between 1-100, where
0-10: incorrect translation, 11-29: a translation
with few correct keywords, but the overall meaning
is different from the source, 30-50: a translation
with major mistakes, 51-69: a translation which is
understandable and conveys the overall meaning
of the source but contains typos or grammatical
errors, 70-90: a translation that closely preserves
the semantics of the source sentence and 91-100: a
perfect translation (Bojar et al., 2016). As shown
in Table 2, except for the Tamil Algebraic dataset,
all the others report a quality level greater than 85.

4.2 Model Selection

According to Huggingface2, GPT2-Medium, T5-
base and BART-large variants have approximately
300M model parameters. Therefore these were
used for further experiments. For multilingual
MWP generation, we selected mT5-base and
mBART50-large models, to correspond to their
monolingual counterparts. As shown in Table 3,
Sinhala and Tamil are largely under-represented in
both multilingual models.

4.3 Experiment Setup

Fine-tuning for the selected Huggingface models
was set-up with 20 epochs, 4-batch size and 1e-4
learning rate. All the experiments were done on
a system that has 15 Intel(R) Core(TM) i9-9900K
CPUs and Quadro RTX 6000 GPU with 24GB
memory.

2https://huggingface.co/transformers/
v3.3.1/pretrained_models.html
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4.4 Evaluation Metrics

Test BLEU (Papineni et al., 2002) and ROUGE
(ROUGE-1 and ROUGE-2) (Lin, 2004) scores
were used as the automatic evaluation metrics, as
they are still very commonly used (Gehrmann et al.,
2021). For all the experiments, we use BLEU-1
for results analysis, with ROUGE results reported
in the Appendix. We note that results reported via
these two metrics show a correlation.

The generated MWPs should have correct
spelling/grammar and satisfy different Mathemat-
ical constraints. A Maths tutor should be able to
edit a generated MWP in less time compared to
writing a question from scratch. We carried out
a human evaluation to validate the quality of the
generated questions and the time taken by a tutor
to correct a generated MWP.

5 Results and Evaluation

5.1 Pre-trained models vs Baseline

Since Liyanage and Ranathunga (2020) have pro-
vided the evaluation results for their dataset of En-
glish, Tamil and Sinhala, we considered this as
our baseline. Our first experiment is to determine
whether fine-tuning the pre-trained models is better
than the selected RNN baseline.

For this experiment, we used only Liyanage and
Ranathunga (2020)’s dataset, and used the same
data split (train:validation:test 80:10:10) they have
used3. Note that for English, results are obtained
using the monolingual models.

As mentioned earlier, during training and infer-
ence of auto-regressive text generation models, the
input to the model is the initial portion of text. This
is called a seed. In this experiment, we tested our
models with a quarter of a question (quarter seed).
In contrast, Liyanage and Ranathunga (2020) used
the first (50-100) characters. Usually, this attributed
to more than half of the question. Note that this
means the length of the seed varies from question
to question.

Results are shown in Table 4. All our models,
even when using just the quarter seed, outperform
the baseline by a significant margin, thus highlight-
ing the robustness of the pre-trained models even
for low-resource language text generation. Sample
questions generated from the models are shown
in Table 5. Here, compared to the output of the
pre-trained models, the question generated by the

3They reported results only using BLEU

baseline is incomplete, not in a question format and
has spelling errors.

Table 4: BLEU for the baseline experiments of English,
Sinhala and Tamil MWPs.

Dataset
type Model Seed

size En Si Ta

Simple Baseline >Half 22.97 24.49 20.74
GPT-2 Quarter 67.00 - -
BART/
mBART Quarter 80.93 74.52 71.07

T5/
mT5 Quarter 88.42 68.02 66.45

Algebraic Baseline >Half 33.53 - -
GPT-2 Quarter 48.93 - -
BART/
mBART Quarter 62.99 58.13 68.21

T5/
mT5 Quarter 72.69 47.19 55.33

5.2 Effect of Fine-tuning Dataset Size

We conducted comprehensive experiments on our
models to analyze how the quality of the results
varies with different fine-tuning dataset sizes. We
split the dataset for train:validate:test in such a man-
ner that the training set has 80, 40, and 20 percent
of the total dataset per MWP category, and con-
ducted three exeriments. Validation and test sets
were always kept to be 10% of the total dataset per
MWP category. Results are shown in Table 6.

The obvious observation is that the performance
of all the models drop when the fine-tuning dataset
size drops, which of course is not surprising.

As for English auto-regressive text generation
results with monolingual models, both sequence-
to-sequence models outperform GPT-2. This is in
line with observations for other types of text gen-
eration tasks such as graph-to-text generation and
question answering (Ribeiro et al., 2021). Further,
T5 outperforms BART. We believe this is due to
T5 being trained with more data, and this observa-
tion confirms with what has been reported for tasks
such as machine reading comprehension (Tanaka
et al., 2021) and text summarization (Garg et al.,
2020). English results with mBART and mT5 lag
behind their monolingual counterparts. This is to
be expected - the multilingual models do not have
English data in the same quantities as their mono-
lingual counterparts. However, this lag is usually
around 2 BLEU.

As for multilingual models, mBART outper-
forms mT5 in all the cases except for the 20%
train set scenario of the English Algebraic dataset.
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Table 5: Sample English MWPs generated using the baseline and the fine-tuned models. Seed size: Quarter of the
question

Model Generated MWPs

Reference The sum of two numbers is 56, their difference is 22,
Find the larger number.

Baseline the sum of two numbers is 12. their differenct are the two
consecutive integers if the sum of the second integers is 10.

Fine-tuned GPT2 The sum of two numbers is 76, the second is 8 more than
3 times first, what are these 2 numbers?

Fine-tuned BART The sum of two numbers is 60. three times the smaller number
minus twice the larger number is 56. Find the larger number.

Fine-tuned T5 The sum of two numbers is 91. the larger number is 1 more
than 4 times the smaller number. Find the numbers.

Table 6: Effect of the fine-tuning Dataset Size reported in BLEU (for quarter seed length)

Dataset
size

Train
Size

Test
Size English Tamil Sinhala

GPT2 BART T5 mBART mT5 mBART mT5 mBART mT5
ALG
4210

3370
(80%)

420
(10%) 55.88 60.22 65.32 67.06 62.78 52.68 50.65 45.46 42.44

1679
(40%)

420
(10%) 54.23 57.76 62.2 60.76 58.86 50.344 49.34 42.58 38.32

835
(20%)

420
(10%) 51.87 54.93 59.64 53.27 56.34 47.37 42.26 41.03 34.26

SIM
3160

2530
(80%)

316
(10%) 57.65 65.13 67.82 67.74 66.67 65.85 61.67 65.44 61.71

1264
(40%)

316
(10%) 55.56 57.99 64.43 64.08 62.25 60.24 58.60 60.48 54.08

632
(20%)

316
(10%) 54.48 55.52 62.09 61.47 57.13 59.5 53.87 56.81 50.92

This is surprising, because as reported in Table 3,
mT5 has more Sinhala and Tamil data compared
to mBART. Noting that mT5 has more language
coverage than mBART, one possible reason for this
could be the problem of curse of multilinguality -
where the cross-lingual transfer in a multilingual
model degrades when the language coverage in-
creases in a model (Conneau et al., 2019).

5.3 Effect of Pre-training Dataset Size

An interesting observation is that, although the
dataset is multi-way parallel, the result of a model
for the same train-test split is not the same across
languages. This difference is the highest for the
algebraic dataset. Specifically, always English has
the highest result, followed by Tamil, and then Sin-
hala. We attribute this to the amount of language
data included in model pre-training (refer Table 3).
Moreover, the results gap between Sinhala and En-
glish is higher for mT5 compared to mBART. This
could be due to the effect of curse of multilinguality
that we mentioned earlier - suficient cross-lingual
transfer does not happen between Sinhala and En-
glish due to mT5’s high language coverage.

5.4 Effect of the Context of MWPs

We note that all the models find the algebraic MWP
generation more difficult than simple MWP genera-
tion. This indicates that text generation capabilities
of pre-trained models depend on the context of
the text - algebraic MWPs have more Mathemati-
cal context than the simple MWPs, which contain
more open-domain text that is similar to the text
used to pre-train the models.

This may be the reason for the simple MWP
dataset to have less language-wise difference in
model performance compared to the Algebraic
dataset as discussed above - the maximum differ-
ence is about 5 BLEU between the best performing
English and least performing Sinhala. Given the
context of simple MWPs is more similar to the
pre-training data, simple MWP generation bene-
fits better from cross-lingual knowledge transfer
between related languages.

In order to further evaluate this effect, we car-
ried out an additional experiment - for the 40%-
50% train-test split, we trained the models with
one dataset, and tested with the other. Results are
reported in Table 7. Compared to the results re-

149



ported in Table 6, we see a substantial drop in the
results, when the models are fine-tuned with the
other dataset. This highlights the model’s inabil-
ity to generalize to the general problem of MWP
generation, if the dataset contains MWPs only rep-
resenting a specific context.

Table 7: BLEU score results for different domain train
and test sizes

Train
ID

Train
Size

Test
ID

Test
Size mBART mT5

SA 1679
(40%) SS 1580

(50%) 32.39 29.23

SS 1264
(40%) SA 2088

(50%) 27.01 17.87

TA 1679
(40%) TS 1580

(50%) 35.27 33.44

TS 1264
(40%) TA 2088

(50%) 32.12 27.75

5.5 Zero-shot MWP Generation

Motivated by the results we obtained in Table 6 for
small amounts of fine-tuning data, we carried out
zero-shot text generation experiments. However,
as seen in Table 8, all the models miserably fail
on zero-shot text generation. The sample gener-
ations shown in Table 9 evidence that the gener-
ated sentences are not questions but more like sto-
ries. This is because these pre-trained models are
not specifically trained on a question-type dataset.
However, when fine-tuned with just 100 data sam-
ples, the performance increases by a significant
margin. This result agrees with the observations
of Burnyshev et al. (2021) on few-shot text gener-
ation of task-oriented utterances. This provides a
ray of hope for low-resource languages - at least for
those that are covered by pre-trained multilingual
models, even with a very small training dataset, a
descent result can be expected. We also note that
this zero-shot/few-shot observation in in-line with
those reported for other pre-trained models such as
mBERT (Lauscher et al., 2020).

5.6 Effect of Seed Length

The next experiment is to determine the impact of
seed length. For this, we fixed the train set size
to 40% and tested with 50% of the dataset. Ex-
periments are run on mBART, which is shown to
outperform mT5. We varied the seed length from
10%-40%. Table 10 reports the results for Sinhala
and Tamil. As expected, the quality of the gener-
ated text goes up when the seed length increases.
However, even 10% of the seed is enough to pro-

Table 8: Zero-shot and few-shot results for Sinhala and
Tamil

Test
Dataset

Train
Size

Test
Size mBART mT5

ES 0 986 5.96 0.05
EA 0 1175 8.50 0.42
SS 0 986 6.37 0.01
SA 0 1175 7.50 0.03
TS 0 986 4.57 0.02
TA 0 1175 6.54 0.03
ES 100 986 23.24 4.30
EA 100 1175 34.50 3.93
SS 100 986 52.72 5.42
SA 100 1175 18.21 2.36
TS 100 986 48.86 2.87
TA 100 1175 39.95 0.60

Table 9: Sample Zero shot Generation results

Model Generated MWPs

Reference
The difference between two
numbers is 24, Find the numbers
if their sum is 88.

GPT2

The difference between a "first,"
and an ordinary, job is that the
former often requires significant
skills.What’s next?Well. . . not much
really right nowthough!

BART
The...
The difference between the two

T5

The difference between
the two is that the difference
between the two is the difference
between the

vide an acceptable result - the lowest is 30 BLEU
reported for Sinhala Algebra MPW dataset. The
impact of question type and the pre-training data
amount of the language can be seen here as well.

Table 10: Text generation results for different seed sizes

Seed
size SS TS SA TA

10% 48.9 45.48 30.19 36.77
20% 58.25 57.74 39.91 45.82
30% 65.47 65.02 47.38 54.21
40% 71.51 72.39 53.85 62.5

5.7 Human Evaluation
We analysed the questions generated by the differ-
ent models to identify the types of errors in MWP
generation. The identified errors are given in Table
11.

We also wanted to identify the actual utility of
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Table 11: Identified errors in the generated MWPs

Error Type Description Example

Co-reference inconsistent co-reference Murali had 9 balls in his house and his friend gave him 4. How many balls does Sam have?.
Here, the second sentence has the proper noun Sam, instead of Murali

Unit A numerical quantity is associated with
an inconsistent unit

Kamal built a house and he used 90 kg cement and 40 l sand. How much more cement than sand did Kamal use?.
Here, sand is given the unit liter (l), insted of kg

Spelling Spelling mistakes in a word What three consecutie odd integers have a sum of -105?
Word ‘consecutie’ is mispelled.

Grammar A sentence has grammar mistakes The difference of the squares of a number and 6 are 18. Find the number.
Here, the noun ‘difference’ is associated with the auxiliary verb ‘are’.

Math constraints The given numerical values do not lead
to a meaningful Mathematical equation

The sum of three consecutive odd integers is 194, what are the integers?
This question cannot be solved without changing the values

the generated questions - whether it is more ef-
fective for a tutor to correct a generated question,
rather than generating a question from scratch. This
experiment was conducted only for Sinhala and
English, considering mBART-large and mT5-base
models. We gave 20 MWPs (10 simple MWPs and
10 Algebraic MWPs) generated by both mBART
and mT5 using 50:40 train:test fine-tuning dataset
sizes for quarter input seed to 5 university students4

who are proficient in English and Sinhala. They
were asked to record the time taken to correct each
question (refer Table 12 & 13 ). Then they were
given the list of errors we identified in Table 11,
and were asked to mark the type of errors they iden-
tified. Results of the manual analysis are reported
in Tables 14. Note that one generated question may
contain more than one type of error.

Table 12: Time taken for a human to correct Simple
MWPs (reported in minutes). TTE: Time to Edit 10
generated MWPs, TTG: Time To Generate 10 MWPs

mBART mT5
TTG TTE TTE TTE

SE SS SE SS SE SS SE SS
T1 18 15 2 2.5 0.5 0.38 0.66 0.66
T2 20 25 2.2 3 0.75 0.45 0.48 0.58
T3 15 17.5 1 1.5 0.55 0.38 0.71 0.51
T4 15 28 2.5 1 0.6 0.83 0.6 0.75
T5 21 26.5 3 2 0.63 0.91 0.45 0.6
Av 17.8 22.4 2.14 2 0.60 0.59 0.58 0.62

Table 13: Human evaluation results for Algebraic
MWPs in minutes AE: Algebraic English, AS: Alge-
braic Sinhala, (Number of minutes taken to Edit 10
generated MWPs)

mBART mT5
AE AS AE AS

Tutor 1 2 0.66 1.16 2
Tutor 2 0.73 0.65 0.58 0.73
Tutor 3 0.42 0.75 0.83 0.78
Tutor 4 0.9 0.88 1.26 1.41
Tutor 5 1.25 1.08 0.91 0.95

Average 1.06 0.80 0.95 1.17

For English MWPs, mT5 model takes the short-
est time to correct. For Sinhala MWPs, mBART

4Not the same ones who did the translation evaluation

Table 14: Percentages of different types of errors found
in simple MWPs

Errors% mBART mT5
SE AE SS AS SE AE SS AS

Co-reference 4 4 6 4 8 2 6 2
Unit 4 1 1 1 2 1 1 1

Spelling 0 0 4 2 2 0 0 2
Grammar 16 12 16 10 8 10 14 10

math constraint % 12 38 22 30 14 22 24 32

model takes the shortest time to correct. Note that
all these times are less than what Liyanage and
Ranathunga (2020) have reported, who in turn have
shown that writing questions from scratch takes
considerably more time than text generation from
their technique.

Co-reference, unit, spelling and grammar are
usually less than 20% even in the worst performing
model. However, errors related to Math constraint
violations are relatively high. This implies that
the pre-trained models do not have sufficient infor-
mation to capture constraints specific to a domain,
which of course is not surprising.

6 Conclusion

We evaluated several multilingual and monolin-
gual pre-trained models for the task of MWP gen-
eration considering four factors - the amount of
language-specific pre-trained data, amount of fine-
tuning data, length of the seed and type of the MWP.
We also presented a multi-way parallel dataset for
MWP evaluation, which includes two languages
under-represented in these pre-trained models. Our
results are very promising - even with a small
amount of parallel data and a short seed, all the
models are capable of producing acceptable results
for all the considered languages. Human evaluation
showed that a Mathematics tutor can take benefit
of this automated MWP generation, as it saves time
compared to writing an MWP from scratch.

In this research, we did not specifically focus on
how to satisfy Maths constraints in an MWP. The
effect of this was shown in human evaluation - the
questions had a noticeable number of issues related
to Math constraints. Thus in the future, we plan

151



to focus on constraint-based generation of MWP.
A starting point would be the work of Wang et al.
(2021), who investigated this problem for MWP
generation with GPT-2. A major criticism of the
pre-trained models is that they support a very small
fraction of languages. Thus we want to investigate
how the model performance can be improved in the
context of languages not included in the model.

7 Ethical Considerations

We have obtained the permission to republish the
baseline (Liyanage and Ranathunga, 2020) datasets.
In Dolphin18K dataset (Huang et al., 2016) and al-
lArith dataset (Roy and Roth, 2016), they have
not mentioned any restrictions on using the data.
We cited their papers as requested in their repos.
We paid the workers according to the rates defined
in our university. We verbally explained the pur-
pose of the dataset and the process they have to
follow. Worker information was not collected nor
included in the dataset, as this is not relevant to
the task. In the fine-tuning process, we only fo-
cused on elementary-level MWPs. This dataset is
publicly released. It does not have any offensive
content, nor specific references to individuals or
organizations. Thus the fine-tuning process can-
not introduce any additional harmful content to the
models. We believe that MWP generation in multi-
ple languages has a long-term positive benefit for
school children, and the education sector in general.
Thus, the positive impact of this research would
outweigh any unforeseen negative impacts it could
bring.

8 Acknowledgement

Dataset creation of this project was funded by a
Senate Research Committee (SRC) grant of Uni-
versity of Moratuwa (UoM), Sri Lanka. The au-
thors would like to thank the National Language
Processing Center (NLPC) of UoM for funding the
publication of this paper at INLG.

References
Bed Raj Acharya. 2017. Factors affecting difficulties in

learning mathematics by mathematics learners. In-
ternational Journal of Elementary Education, 6(2):8–
15.

Andinet Assefa Bekele. 2020. Automatic generation of
amharic math word problem and equation. Journal
of Computer and Communications, 8(8):59–77.
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A Appendix

Figure 1: Sinhala and Tamil Example MWPs

.

Table 15: Zeroshot result ROUGE score for Sinhala and
Tamil

Test
Dataset

Train
Size Test

Size
mBART mT5

R-1 R-2 R-1 R-2
ES 0 986 0.467 0.342 0.026 0.005
EA 0 1175 0.439 0.322 0.022 0.003
SS 0 986 0.411 0.275 0.013 0.001
SA 0 1175 0.378 0.248 0.010 0.001
TS 0 986 0.423 0.286 0.007 0.001
TA 0 1175 0.363 0.247 0.005 0.001
ES 100 986 0.241 0.172 0.057 0.024
EA 100 1175 0.352 0.129 0.117 0.022
SS 100 986 0.539 0.362 0.156 0.048
SA 100 1175 0.212 0.074 0.050 0.010
TS 100 986 0.494 0.221 0.076 0.018
TA 100 1175 0.411 0.189 0.031 0.001

Table 16: ROUGE score results for different domain
train and test sizes

Train
Dataset

Train
Size

Test
Dataset

Test
Size mBART mT5

R-1 R-2 R-1 R-2

SA 1679
(40%) SS 1580

(50%) 0.354 0.246 0.372 0.249

SS 1264
(40%) SA 2088

(50%) 0.301 0.193 0.271 0.142

TA 1679
(40%) TS 1580

(50%) 0.384 0.276 0.467 0.324

TS 1264
(40%) TA 2088

(50%) 0.355 0.253 0.323 0.209
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Table 17: Effect of the fine-tuning Dataset Size reported in ROUGE (for quarter seed length)

Dataset
size

Train
Size

Test
Size English Tamil Sinhala

GPT2 BART T5 mBART mT5 mBART mT5 mBART mT5
R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2

ALG
4210

3370
(80%)

420
(10%) 0.61 0.44 0.61 0.42 0.66 0.50 0.68 0.53 0.65 0.47 0.56 0.40 0.54 0.36 0.49 0.30 0.48 0.28

1679
(40%)

420
(10%) 0.60 0.42 0.59 0.39 0.64 0.62 0.63 0.46 0.61 0.43 0.54 0.38 0.53 0.36 0.46 0.28 0.44 0.26

835
(20%)

420
(10%) 0.59 0.51 0.57 0.38 0.62 0.44 0.57 0.38 0.59 0.40 0.51 0.35 0.50 0.34 0.45 0.27 0.42 0.24

SIM
3160

2530
(80%)

316
(10%) 0.64 0.46 0.66 0.51 0.72 0.58 0.72 0.59 0.71 0.57 0.70 0.56 0.66 0.50 0.67 0.52 0.62 0.47

1264
(40%)

316
(10%) 0.63 0.45 0.61 0.44 0.68 0.68 0.68 0.54 0.66 0.52 0.65 0.49 0.64 0.47 0.63 0.58 0.56 0.53

632
(20%)

316
(10%) 0.62 0.45 0.59 0.42 0.66 0.52 0.66 0.51 0.62 0.45 0.64 0.48 0.60 0.44 0.59 0.43 0.53 0.36
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