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Abstract
Document corpora owned by law and regula-
tory firms pose significant challenges for text
classification; being multi-labelled, highly im-
balanced, often having a relatively small num-
ber of instances and a large word count per
instance. Deep learning ensemble methods
can improve generalization and performance
for multi-label text classification but using pre-
trained language models as base learners leads
to high computational costs.

To tackle the imbalance problem and im-
prove generalization we present a fast, pseudo-
stratified sub-sampling method that we use to
extract diverse data subsets to create base mod-
els for deep ensembles based on fine-tuned
models from pre-trained transformers with
moderate computational cost such as BERT,
RoBERTa, XLNet and Albert. A key feature of
the sub-sampling method is that it preserves the
characteristics of the entire dataset (particularly
the labels’ frequency distribution) while extract-
ing subsets. This sub-sampling method is also
used to extract smaller size custom datasets
from the freely available LexGLUE legal text
corpora. We discuss approaches used and clas-
sification performance results with deep learn-
ing ensembles, illustrating the effectiveness of
our approach on the above custom datasets.

1 Introduction

The increasing volume of regulations relating to ac-
tivities in the law and regulation domain require ef-
ficient methods for automated multi-label classifica-
tion (MLC), which can replace expensive and time-
consuming data labelling by domain experts. Ex-
amples include legal professionals who may need
to categorize the types of business activities a con-
tract relates to, or label types of individual clauses
(e.g. restrictive covenants, penalty clauses). Sim-
ilarly, companies involved in financial regulation
may need to label regulatory texts with the focus of
the regulation (e.g. fraud, accounting obligations
or mis-selling).

Since the creation of BERT (Devlin et al., 2018)
the “foundation model” for pre-trained transformer-
based language models, various new types of trans-
former models for NLP have been developed:
some improve the pre-training method such as
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020), the vocabulary size and specificity
such as LEGAL-BERT (Chalkidis et al., 2020), or
enable input sequence lengths larger than 512 to-
kens (Tay et al., 2020a) such as Reformer (Kitaev
et al., 2020), CogLTX (Ding et al., 2020), Long-
former (Beltagy et al., 2020), Big bird (Zaheer
et al., 2020).

The major advantage of using pre-trained trans-
formers for MLC is their large, context and seman-
tic aware language models (LM), which can signif-
icantly improve classification results even on small
datasets (Sun et al., 2019). Fine-tuning pre-trained
language models on legal texts can be challeng-
ing due to their uncommon vocabulary (containing
domain specific, rare, and conceptually complex
words) and the large text length in each document,
exceeding the maximum sequence input length of
pre-trained transformer-based models.

There is a trade-off between the pre-trained
model size and the available computational power.
The pre-trained model size increases with the vo-
cabulary size and with the number of parameters
(the number of bi-LSTM layers). The larger mod-
els enable improved performance at the cost of
increased computational effort (memory size and
processing units) (Tay et al., 2020b).

While pre-trained transformer models can pro-
vide efficient solutions for text classification, fine-
tuned models often lack flexibility as the fine-
tuning restricts generalization to the new (narrower)
domain. MLC based on deep ensemble models can
be improve generalization but these approaches are
constrained by high computational costs.

Here we present MLC results using deep-
learning ensembles of fine-tuned models discussing



their suitability for limited resources environments
and small size datasets (6000 to 7000 instances).
Our approach is based on ensembles of fine-
tuned models obtained by transfer learning from
pre-trained transformers. We use transformers
that require moderate fine-tuning costs as BERT,
RoBERTa, XLNet (Yang et al., 2019) and ALBERT
(Lan et al., 2020). This study includes homoge-
neous and heterogeneous ensembles of deep base-
learners each generated from data re-sampling with
replacement, using our custom pseudo-stratified
random sampling method.

Our contribution includes: a custom pseudo-
stratified sampling method for sub-sampling
and train/test splitting of imbalanced multi-label
datasets, used for generating diverse datasets; ag-
gregating ensemble models using fine-tuned base-
models (transfer learning from pre-trained NLP
transformers), and discussing results. The datasets
used in our work, sub-sampled from benchmark
legal text datasets are available.

2 Multi-label classification

Real-life datasets as multi-domain business docu-
mentation or collections of legal and regulatory
documents are multi-labelled and highly imbal-
anced, presenting a complex MLC problem, re-
lating one example to multiple categories.

The imbalanced label distribution increases the
complexity of the learning problem as stratified
sampling cannot be applied for creating a balanced
test/train split that includes all labels. Iterative
methods for test-train split have been proposed to
ensure a similar label distribution in both test and
train sets (Sechidis et al., 2011).

Several approaches are designed to enable
classic algorithms (Naive Bayes, SVM, Ran-
dom Forests, k-means) to perform on multi-label
datasets: (a) Algorithm Adaptation (Szyma, 2019)
(b) Problem Transformation (Binary Relevance,
Label Powerset and Classifier Chains methods)
and (c) Ensemble learning, described in recent
reviews dedicated to MLC (Bogatinovski et al.,
2022; Kowsari et al., 2019). Since neural networks
and deep learning methods can generate a multiple
prediction output by design, such methods sup-
port multi-label classification and can be applied
with or without approaches (a)-(c), although these
can significantly improve the performance of deep
learning methods also.

The multi-label data can produce ensembles

of models, using one-vs-all and one-vs-one tech-
niques. Other methods are based on re-sampling
and sub-sampling (Bagging and Boosting) or
re-arranging the data into convenient domains
matching labels’ distribution: random k-labelsets
(Tsoumakas and Vlahavas, 2007), hierarchical ar-
rangements, pruned sets (Read et al., 2008).

2.1 Performance measures and thresholding

A variety of performance measures have been de-
signed to assess the various goals in multi-label
classification: Hamming loss, ranking loss, one-
error, average precision, coverage, micro-F1 and
macro-F1. Used for imbalanced datasets, F-scores
(measures) can be optimized either as an empirical
utility maximization EUM (optimal classifier) or
as a decision-theoretic approach DTA (predictions
by optimal classifiers) (Lewis, 1995), DTA being
better for handling rare classes and for domain
adaptation tasks.

The F-measure optimization is usually per-
formed in two steps: learn a score function from a
ML algorithm (optimized for DTA) and then select
a threshold to maximize the empirical F-measure
(Ye et al., 2012).

3 Ensemble deep learning

Ensemble learning methods (Madjarov et al., 2012;
Read et al., 2008; Tsoumakas and Vlahavas, 2007;
Dong and Han, 2004) use multiple base learners
to form an ensemble learner (model) to improve
generalization and model performance.

The models can be generated using the same ML
algorithm or a combination of algorithms. Ensem-
ble methods are commonly used on imbalanced
datasets with data over-sampling techniques.

The ensemble prediction is obtained from a suit-
able aggregation rule: plurality or majority voting,
(weighted) predictions’ mean, best performance
model, or using learning systems to combine pre-
dictions (Zhou et al., 2002).

Through the use of multiple models, ensemble
deep learning can improve generalization as well as
prediction performance (Yang et al., 2021). Using
base models generated from fine-tuning pre-trained
language models is expected to further improve per-
formance due to the large context and semantically
aware base models.

Ensemble methods provide an improved perfor-
mance based on the diversity of multiple models.
Creating a diverse committee of base learners that



is still consistent with the training data was demon-
strated to be of high importance in generating a
good ensemble (Dietterich, 2000) as predictions
from each learner are combined into the classifica-
tion outcome.

Methods to generate diversity such as bag-
ging (Breiman, 1996) and boosting are usually ap-
plied. In bagging ensembles, multiple models are
created using data subsampling methods (i.e. ran-
dom drawing with replacement) and a joint predic-
tion is obtained through a voting mechanism. In
boosting using AdaBoost (Freund et al., 1996) and
its variants, data is sampled according to weights
assigned to instances and sampling weights are up-
dated based on classification outcomes to improve
the scores. These meta-learner methods can be ap-
plied to any base learner, including deep learners.

Using the disagreement of an ensemble member
with the ensemble’s prediction as a diversity mea-
sure, (Melville and Mooney, 2004) show that there
is a significant Spearman rank correlation between
diversity and error reduction of the ensemble. They
conclude that increasing ensemble diversity leads
to reducing generalization error of the ensemble.

The success of these meta-learners has led to
applications in a variety of fields, including text
categorization (Shapire and Singer, 2000; Dong
and Han, 2004) also revealing some weaknesses.
While bagging can reduce the error due to variance
of the base classifier, using stable learners, such as
Naive Bayes, will not reduce the error. Also, small
datasets can generate a limited amount of diversity.

Boosting can perform poorly with insufficient
data (Freund and Schapire, 1999) or noisy la-
bels (incorrect class labels in training) (Dietterich,
2000). Other drawbacks for deep model ensembles
are the high costs of computing power, memory and
process time when training multiple deep learners
(Yang et al., 2021).

Using transfer learning from pre-trained trans-
former language models and the available cloud
computing GPUs, our work investigates the feasi-
bility of deep learning ensemble models for text
classification. We use a bagging-type data resam-
pling with homogeneous and heterogeneous en-
sembles to assess how data diversity and type of
pre-trained model improve the ensemble model.

4 Legal Datasets

In recent years, curated collections of legal texts
have been made available, along with their ded-

icated language models as: CUAD (Hendrycks
et al., 2021), ECHR (Chalkidis et al., 2019), EU-
RLEX57k (Fergadiotis et al., 2018). Based on
these, several benchmark datasets included in
LexGLUE (available on the HuggingFace1 plat-
form) (Chalkidis et al., 2021) enable comparison
of various AI approaches using the same datasets
and metrics.

The LexGLUE multi-labelled datasets (ECtHR,
EUR-LEX) include the ECHR-A and ECHR-B
datasets containing case descriptions of the Euro-
pean Court of Human Rights, where labels repre-
sent articles of the European Convention on Hu-
man Rights that have been violated or allegedly
violated. LexGLUE also includes EUR-Lex data ,
which consists of EU legislation that has been la-
belled according to 7,000 EuroVoc concepts2 (with
4 granularity levels). The available EUR-Lex data
in LexGLUE contains 65,000 documents annotated
with the 100 most frequent concepts from level 2.

LexGLUE datasets are designed for Natural Lan-
guage Undersanding (NLU) and include a temporal
‘concept drift’ in the datasets for development and
test (i.e. data issued at a later time, within five
years of training set documents). Since in our study
we do not approach NLU problems, we use only
the original training datasets which we split into
new, smaller train/test sets that both include data
collected within the same time interval, limiting
the ‘concept drift’.

Here we only use the training data of the multi-
labelled datasets from the LexGLUE set (ECHR-A,
ECHR-B and EUR-Lex datasets) and sub-sample
from each, the datasets A, B and C (respectively)
without the ‘concept drift’. The datasets A and B
were sub-sampled using the custom function de-
scribed in Section 5.1 while for dataset C we select
from the EUR-Lex train data only the instances
labelled as ‘Regulations’ and take 50 of the most
frequent labels (out of 2941, see Table 1). The un-
labelled instances (where these are included in the
original train set) have also been removed.

The complexity characteristics of the new
datasets are shown in Table 1 in comparison to the
original data, where the labels’ Cardinality (Car)
and Density (Den) for a dataset with N the num-
ber of instances, Yi the set of labels for instance
i and L the number of instances are defined as:

1https://huggingface.co/datasets/lex_
glue

2https://eurovoc.europa.eu

https://huggingface.co/datasets/lex_glue
https://huggingface.co/datasets/lex_glue
https://eurovoc.europa.eu


Dataset N L Car Den IR
ECHR-A train 8086 10 1.32 0.39 114.00
ECHR-B train 8866 10 1.48 0.45 67.12
EUR-Lex train
(Regulations) 29600 2941 4.94 0.002 3554.00

A 5651 10 1.23 0.37 125.34
B 5925 10 1.35 0.41 89.98
C 7201 50 3.34 0.07 8.77

Table 1: Data complexity for the sub-sampled datasets

Car = 1
N

N∑
i=1

|Yi|; and Den = 1
N

N∑
i=1

|Yi|
L ; while the

maximum imbalance ratio (IR) is the ratio of the
most common label against the rarest one. The new
datasets have a smaller number of instances (close
to that of custom datasets) and an IR that is higher
for datasets A and B and much lower for dataset C.

4.1 Dealing with large text lengths

One characteristic of text in the law and regulatory
domains is the large text length, often exceeding
5000 words/entry. Using pre-trained transformers
with low to moderate computational demands (as
BERT, ALBERT, RoBERTa) is a cost-effective ap-
proach to perform MLC on legal text, with limita-
tions due to their maximum input sequence length.

General-purpose NLP transformers can process
a maximum input length of 512 tokens, much
smaller than the text length in legal datasets. This
problem is usually solved by applying ‘text trunca-
tion’, ‘hierarchical methods’ or ‘data transforma-
tion’. Text truncation uses only the ‘head’, ‘tail’
or ‘head + tail’ parts of the document, considered
to contain the key information. In ‘hierarchical’
methods, the text is split into sequences (of lengths
smaller than 510) their pre-trained embedded rep-
resentations are extracted from the [CLS] token in
the last hidden layer and then combined using max-
pooling or mean-pooling (attention weighted) to
obtain the embeddings representation of the entire
text for classification (Sun et al., 2019).

Other hierarchical methods use hierarchical
transformers that generate embeddings and encode
these again using a shallow transformer (Chalkidis
et al., 2021). The ‘data transformation’ method
(applied here) performs text splitting into sections
of suitable length using them to create an expanded
dataset (preserving the associated labels). For infer-
ence, these entries can be re-joined after fine-tuning
along with their predictions.

While truncation methods can miss important
information, the ‘hierarchical’ methods (which cre-
ate embedding representations of the whole input
text) and the ‘data transformation’ method that re-

joins text sections and predictions can both improve
prediction outcomes.

5 Methods

5.1 Generating diverse datasets

Real-life, custom legal datasets have a small num-
ber of instances and are highly imbalanced – re-
quiring efficient data sampling/splitting methods
that enable all labels to be represented in both train
and test sets. The iterative method for stratified
sampling of imbalanced multi-label datasets pro-
posed by Sechidis et al. (2011) requires reaching
convergence, which is time-consuming when used
for repeated sub-sampling.

Here we have designed a fast, pseudo-stratified
sampling function that provides a train/test split
configured to follow the label distribution in the
original data and ensuring that all labels are repre-
sented in both train and test sets.

Figure 1: Pseudo-code describing the basic algorithm
for the pseudo-stratified sampling function

This pseudo-stratified sampling method is de-
signed to randomly extract (without replacement)
instances that represent each label in a number pro-
portional to the frequency of each label. We define
two integer parameters: M (related to the minimum
number of instances per label) and ‘ratio_in’, which
configure the number of entries to be extracted for
the test set for each label (basic algorithm described
in Figure 1).



Figure 2: Train and Test size after split using the pro-
posed pseudo-stratified function, for a range of ‘ratio_in’
values (starting from the ECtHR-A train dataset).

Figure 3: Labels’ distribution when splitting the ECtHR-
A training dataset into train/test using ‘ratio_in’=7

For the training set we keep only the instances
that are not included in the test set. The ‘ratio_in’
values can be chosen from a value of 2 up to a
maximum depending on availability of instances
for each label. A plot of the train and test sizes for
various ratios is shown in Figure 2.

This method provides an efficient splitting en-
suring that all labels are represented in both train
and test sets. Low values of the ‘ratio_in’ (2 to
6) give a close representation of the original label
distribution, while values above 10 generate only a
roughly similar distribution. It can be argued that
more data diversity can be obtained using a more
distorted distribution. The typical label distribution
for the train and test sets is shown in Figure 3.

5.2 Data preparation
The main data is one-hot-encoded and split as
train/test datasets, then the train set is further split
by re-sampling into train/test sets to create the base-
models.

We apply the ‘data transformation’ method, split-
ting each text entry into sections of up to 120 words
(such that only entire sentences are included in
each sequence) while preserving the correspond-
ing labels, creating an expanded dataset. The split
sequences are then re-joined along with their pre-
dictions at testing or inference time.

The medium and average lengths of the se-

Datasets A B C
train test train test train test

Median length 108 108 103 105 73 64

Mean Length 104.29 104.42 94.84 96.11 72.51 69.5

Table 2: The medium and mean lengths of sequences in
the tran and test sets for the datasets A, B and C after
data transformation

quences in each dataset are shown in Table 2. Other
improvements of the sequence content (i.e. adding
to each sequence the last sentence from the previ-
ous sequence) are not applied here.

The ’data transformation’ method is context and
semantic aware within each sequence, as each is
expected to contain a representative amount of in-
formation, that enables classification. Moreover,
such phrases generally refer to a specific topic –
identified by a certain label group. The ‘data trans-
formation’ generates much larger train and test
datasets on which the model is defined, being a
type of boosting technique.

An advantage of text splitting into sequences is
that we obtain an increased number of instances,
improving the statistical basis of our model (and
its bias). This is a type of ‘data over-sampling’
leading to an ensemble model where predictions are
obtained by aggregating over each original instance,
which improves prediction variance.

5.3 Generating deep learning ensembles

The proposed method for generating diverse
datasets is applied for supervised multi-label clas-
sification of legal datasets, creating a train/test split
for each. The text for every entry in the train and
test datasets is split into sequences of up to 120
words (as described in Section 5.2) forming an ex-
panded dataset where each sequence keeps its orig-
inal labels, on which each base-model is defined.
For testing after fine-tuning, these ‘split’ entries are
re-joined along with their predictions generating
an aggregated prediction set.

We create homogeneous and heterogeneous en-
sembles of deep models, where base-models are
fine-tuned from the following pre-trained trans-
former models: BERT-based-uncased, RoBERTa-
base, ALBERT-base-v2 and XLNet-base-cased.
The simpletransformers3 library (based on Py-
Torch) has been used, taking advantage of the uni-
fied data, model output formats and default model
arguments available (i.e. batch sizes of 16, se-
quence length of 128, learning rate of 4.e-5).

3https://simpletransformers.ai/

https://simpletransformers.ai/


To enable generalization, the base learners can
be ‘incomplete’ (not fully trained) models and as
the fine-tuning reaches convergence fast (within 3
epochs), we have used only 2 epochs for fine-tuning
the base-learners when working on datasets sub-
sampled from ECtHR-A and ECtHR-B (10 labels)
and on 5 epochs for datasets sub-sampled from
the EUR-Lex dataset, (from which we selected
data including the most frequent 50 labels). Label
weights are applied during training of the model
as a means of regularization. Label weights are
proportional to labels’ frequency in each newly sub-
sampled dataset for each base model. The Label
Ranking Average Precision4 (LRAP) metric is used
for fine-tuning with the same threshold of 0.5 for
all labels.

A set of 10 base-models has been generated for
each homogeneous ensemble, each base-model
being fine-tuned on a newly resampled dataset.
The resampling is performed using the described
pseudo-stratified random sampling function, which
is used as a type of bagging technique (sampling
without replacement to generate the train and test
data). As the fine-tuning for the 10 base-models is
performed within a loop, to ensure independent
results, the model outputs and checkpoints are
deleted at the end of each fine-tune and the pre-
trained model type is re-initialized before starting
the fine-tuning for the next base model.

The base-model prediction arrays are obtained
from each ‘raw_output’ (as given by the prediction
outputs of the simpletransformers library) after
applying a sigmoid activation. We aggregate the
base-models as the mean of their prediction arrays
thus generating the ensemble model (which is also
a prediction array).

In the present study we use three types of opti-
mization: (i) we fine-tune (optimize) each classifier
using LRAP metrics (the average over each ground
truth label assigned to each instance, of the ratio
of true vs. total labels with lower score); (ii) we
use micro-F1 with thresholding to optimize the pre-
dictions on the expanded dataset and find the best
three models; (iii) to find the optimal prediction
threshold on the re-joined dataset, we use sample
averaged F1 as the harmonic mean of Precision
(P) and Recall (R) averaged over the sample size S
where Yi and h(xi) are the true and the predicted

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.label_
ranking_average_precision_score.html

Figure 4: Schematic of the workflow generating the
deep ensemble model.

Figure 5: Schematic of the workflow for test and infer-
ence using the deep ensemble model.

labels for an example xi: P = 1
S

S∑
i=1

Yi∩h(xi)
h(xi)

;

R = 1
S

S∑
i=1

Yi∩h(xi)
Yi

; F1 = 2 PR
P+R

The choice for the optimizations (ii) and (iii) was
made based on best results obtained using these
types of performance measures for the expanded
and re-joined datasets, respectively.

5.4 The workflows
The workflow for generating the ensemble model
of deep base-learners is shown in Figure 4 while
the workflow for testing and inference is shown in
Figure 5 . Both show a concise, intuitive overview
of the main steps in generating the models and
performing inference.

For inference, we load the saved models, gener-
ate the prediction array from each base model and
their ensemble as the mean prediction array. For
a given threshold in the range 0.1 - 0.9 we gener-
ate the predicted labels for the expanded dataset,
then aggregate (re-join) this back into the original,
while keeping all unique labels obtained from each
split text entry. The threshold optimization is per-

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.label_ranking_average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.label_ranking_average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.label_ranking_average_precision_score.html


formed by seeking the threshold that gives the F1
maximum (calculated as sample averaged).

6 Experiments

The ‘main’ datasets (A, B and C) have been sub-
sampled from each original dataset (ECtHR-A,
ECtHR-B and EUR-Lex, respectively) using the
pseudo-stratified sampling function at ratio_in=7,
extracting a ‘main’ dataset (Table 1) and a test
dataset (for inference) with a size of about 25-30%
of the ‘main’ dataset.

During fine-tuning, the ‘main’ dataset is split
into train/test using the pseudo-stratified sampling
function at ratio_in =5 to generate diverse models.
The train/test datasets are pre-processed (accord-
ing to the description in Section 5.2) obtaining ex-
panded datasets with a maximum text length of 120
words per entry. Fine-tuning is performed on the
expanded datasets optimizing the LRAP metrics
using model configuration arguments defaults from
the simpletransformers library.

Several types of deep ensembles are generated:
(a) homogeneous and (b) heterogeneous, where the
ensemble is created from base-models fine-tuned
on the same pre-trained model, or on different ones,
respectively. For each (a), and (b) two types of en-
semble predictions are then constructed: the ‘mean
model’ by averaging the prediction arrays of the 10
base-learners and the ‘best three’ model by averag-
ing the prediction arrays of the best three models.

The best three models are selected as those reach-
ing the highest micro-F1 values at the threshold that
maximizes micro-F1 on the expanded dataset, ob-
taining an optimal threshold at values of 0.2-0.3 for
the A and B datasets and of 0.5 for dataset C.

The ensemble prediction arrays are optimized us-
ing thresholding applied on the ‘re-joined’ dataset
with merged predictions, choosing as threshold the
value that maximizes the sample averaged F1. For
the A and B datasets the optimal threshold is 0.8-
0.85 while for dataset C the optimal threshold is
0.5. All predictions with probabilities above the set
threshold are kept for each instance.

7 Results and Discussion

Homogeneous ensemble models have been created
using the four pre-trained models considered. The
ensembles are aggregated as the mean prediction
over 10 models, the mean prediction over the best
three models, and compared to the best model. The

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

RoBERTa 0.73 0.73 0.72 0.81 0.8 0.78
XLNet 0.73 0.73 0.71 0.81 0.81 0.78
BERT 0.73 0.66 0.73 0.81 0.81 0.78
ALBERT 0.72 0.73 0.72 0.81 0.78 0.81
Table 3: Optimised micro-F1 scores for dataset A (ex-
panded and re-joined data) on homogeneous ensembles.

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

RoBERTa 0.71 0.71 0.69 0.79 0.79 0.77
XLNet 0.71 0.7 0.69 0.79 0.79 0.76
BERT 0.71 0.7 0.68 0.78 0.78 0.75
ALBERT 0.7 0.69 0.68 0.78 0.78 0.76

Table 4: Optimised micro-F1 scores for dataset B (ex-
panded re-joined data) on homogeneous ensembles.

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

ROBERTA 0.74 0.74 0.73 0.79 0.78 0.78
XLNET 0.75 0.75 0.74 0.80 0.79 0.78
BERT 0.74 0.73 0.72 0.78 0.78 0.77
ALBERT 0.73 0.74 0.73 0.77 0.80 0.76

Table 5: Optimised micro-F1 scores for dataset C (ex-
panded and re-joined data) on homogeneous ensembles.

Expanded dataset Re-joined dataset

F1 scores micro macro weigh. micro macro weigh.

dataset A 0.74 0.67 0.73 0.82 0.75 0.82
dataset B 0.73 0.65 0.68 0.79 0.67 0.80
dataset C 0.75 0.67 0.74 0.79 0.71 0.81

Table 6: Optimized F1 scores for the heterogeneous
ensemble model using the Best 3 models from each
model type on datasets A, B and C.

best models are those with the highest micro-F1
values after applying thresholding.

Comparative results for threshold optimized
micro-F1 for the ensemble models calculated as
the ‘Mean’ (over the 10 prediction arrays), ‘Best 3’
(mean of best three models’ predictions) and ‘best’
(predictions from the best model) are shown in Ta-
ble 3, Table 4 and Table 5 for datasets A, B and
C, respectively. Table 6 shows F1 scores for the
heterogeneous ensembles built on the four types of
fine-tuned models using the mean prediction from
each ‘Best 3’ models).

While scores’ improvements between the ho-
mogeneous models and heterogeneous ones are
only within 1-2%, there is an important increase of
about 5-8% in scores between the expanded model
(based on the sequence split dataset) where aver-
age optimized micro-F1 is 0.73 and the one for the
re-joined data with micro-F1 averages at 0.81 (i.e:



LinSVC MultinomialNB

micro macro weigh. micro macro weigh.

dataset A 0.8 0.69 0.79 0.47 0.09 0.33
dataset B 0.76 0.64 0.75 0.44 0.09 0.29
dataset C 0.85 0.71 0.83 0.58 0.33 0.44

Table 7: Baseline scores for micro, macro and weighted
averaged F1 from sklearn LinSVC and MultinomialNB
multi-output methods.

values from Table 3).
The expanded dataset created from sequences

with their original labels generates another type
of ensemble (a type of over-sampling) which is
aggregated at prediction time by joining predic-
tions belonging to each original entry. This type of
ensemble appears to be more efficient than aggre-
gating (as a mean) prediction arrays.

In Table 7 we show results obtained for the same
datasets, using a strong baseline, the tf-idf text pro-
cessing with LinSVC linear support vector classifi-
cation from sklearn multi-label classification. The
LinSVC baseline has high scores, especially for
dataset C, as the LinSVC algorithm with the one-vs-
rest approach performs very well for datasets with
a low imbalance ratio (Table 1). Other multi-output
classifiers as ‘Multinomial Naive Bayes’ cannot
handle the data complexity and obtains low scores.

8 Conclusions

We performed multi-label classification on imbal-
anced datasets sub-sampled from legal text datasets
provided in LexGLUE, using deep learning ensem-
bles of base-learners built as fine-tuned transfer
models on four well-known NLP transformer mod-
els (BERT, RoBERTa, ALBERT and XLNet).

We designed a pseudo-stratified sampling
method for imbalanced multi-label datasets to re-
sample diverse datasets which were used to gener-
ate base-models for homogeneous deep-ensembles.

Using the GPUs on Google-Colab the training
times per epoch for the base models were in the
range of 2 - 15 min/epoch. Training times increase
with the number of instances as do the inference
times (between 1 min - 3 min per model), leading
to acceptable times for generating and using such
ensemble models.

The values for micro-F1 scores from homo-
geneous and heterogenous ensembles on the ex-
panded datasets reach close values that improve
very little from the ‘best model’ score (only by
1% - 2%). This also occurs for the scores on the
re-joined datasets. Such small differences in the

overall outcomes show the close performance of
the fine-tuned models, even when starting from dif-
ferent transformer models. These results were also
due to the threshold optimization applied, which
levels out the original difference in outcomes.

Nevertheless, there is an important score im-
provement between the expanded and re-joined
datasets, indicating that the ensemble generated
by text splitting can substantially improve classifi-
cation outcomes at aggregation time, as threshold
optimized scores for the re-joined dataset are 7%-
10% higher than those obtained on the expanded
dataset.

Overall, the best micro-F1 scores obtained on the
re-joined dataset reach 0.78-0.82 which are satis-
factory results for imbalanced multi-label datasets
of up to 50 labels. Higher scores can be obtained by
fine-tuning with optimized model hyperparameters
to obtain improved base-models.

The text length in each entry and the degree of
label imbalance play a significant role in the fine-
tuning performance. For the deep learning models,
dataset C (50 labels) with short mean text length per
entry and low imbalance obtained similar scores to
those for datasets A and B (10 labels) with larger
text length/entry and high imbalance. The LinSVC
baseline (using one-vs-rest scheme) obtained lower
scores on datasets A and B than on dataset C, due
to difficulties of binary-relevance type algorithms
on highly imbalanced data.

As we have considered small datasets, these can
only generate a limited amount of diversity, leading
to less variability in the ensemble models. To im-
prove results using ensembles, improved methods
to create diversity in datasets should be tested.
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