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Abstract

It is often difficult to reliably evaluate models
which generate text. Among them, text style
transfer is a particularly difficult to evaluate,
because its success depends on a number of pa-
rameters. We conduct an evaluation of a large
number of models on a detoxification task. We
explore the relations between the manual and
automatic metrics and find that there is only
weak correlation between them, which is de-
pendent on the type of model which generated
text. Automatic metrics tend to be less reli-
able for better-performing models. However,
our findings suggest that, ChrF and BertScore
metrics can be used as a proxy for human eval-
uation of text detoxification to some extent.

1 Introduction

There exist many Natural Language Processing
(NLP) tasks whose output is a text (dialogue, sum-
marization, etc.). They often adopt the evalua-
tion techniques from Machine Translation (MT).
Namely, researchers often compare the output of
a model with a pre-defined reference answer and
measure the model quality as the similarity to
this reference. The similarity can be computed
at the level of words and phrases (e.g. BLEU
or METEOR) or be more semantically motivated
and compare the embeddings (e.g. BertScore or
BLEURT).

This approach has a number of drawbacks which
make it inapplicable to some generation tasks, e.g.
style transfer. This is a task of changing a text
such that its meaning stays the same and the style
changes. Style can refer to any attribute concerning
only the form of the text (e.g. degree of formality
or politeness) or its content (e.g. sentiment, au-
thor features, etc.). When evaluating the output of
a style transfer model, we need to pay attention
to both the style change and the content preserva-
tion. The traditional MT evaluation metrics mainly
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check the semantic similarity, which makes them
unsuitable for style transfer.

There exist evaluation metrics (Krishna et al.,
2020) which were devised to consider all important
aspects of style transfer quality (style, semantic
similarity and sometimes fluency). However, they
heavily rely on automatic models (e.g. style clas-
sifier) whose performance is not perfect. Many
works acknowledge the low reliability of such met-
rics and arrange manual evaluation to get the objec-
tive information on the models performance. Unfor-
tunately, such evaluation is laborious and cannot be
conducted often, so during development of models
researchers still have to resort to automatic metrics.

Although works on style transfer acknowledge
that automatic evaluation metrics are unreliable,
there is little work on the analysis of their perfor-
mance. There exist analysis of content preservation
metrics (Yamshchikov et al., 2021) and of all style
transfer evaluation metrics (Briakou et al., 2021a).
The latter work provides an evaluation where met-
rics are tested on different systems and different
style transfer directions.

We further extend this line of research by testing
the evaluation metrics on a new style transfer task
(detoxification) and a new language (Russian). For
this comparison we create a large parallel corpus
for detoxification. We compare the performance
of models based on different principles, which al-
lows more robust evaluation. Furthermore, since
we compare a large number of models, we can un-
derstand to what extent the automatic metrics can
rank the models correctly. Besides that, due to the
large number of tested models we decided to use
crowdsourced evaluation instead of experts. We
describe our crowdsourcing annotation setup and
analyse the performance of crowd workers. Finally,
the large-scale evaluation allows us to gain insights
on the performance of various style transfer models.
The research was based on the data of a competition
of detoxification models for the Russian language
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organized by the authors of this paper.1

2 Evaluation

2.1 Style Transfer Formulation
The style transfer task is formulated as follows. We
would like to rewrite a text so that it keeps most
of its content, but one particular attribute of this
text (denoted as style) changes. The “style” can
refer to various features of the text such as the level
of formality, politeness, simplicity, the presence
of bias or the features of the author (e.g. gender
or membership in a political party). The task is
usually to transfer between two “opposite” styles
(polite–impolite, positive–negative), but there can
exist models which support multiple exclusive or
non-exclusive styles.

Style transfer task can be formally defined as fol-
lows. We have a set of styles S = {ssrc, stg}2 and
two corpora Dsrc = {dsrc1 , ..., dsrcn } and Dtg =
{dtg1 , ..., dtgm} in the styles ssrc and stg, respectively.
Let us also define the following functions. The
style of a sentence is measured with σ : D → S.
A binary function δ : D ×D → {0, 1} indicates
the equivalence of meanings of the two styles. Fi-
nally, the function θ : D → {0, 1} defines if a text
belongs to well-formed sentences.

Text style transfer task is thus defined as a func-
tion α : S×S×D → D. Given a text dsrc and its
source and target styles ssrc and stg it transforms
the text to a new text dtg such that:

• the style of the text is changed from the source
ssrc to the target stg: σ(dsrc) ̸= σ(dtg),
σ(dtg) = stg,

• the contents of the original and the trans-
formed sentences match: δ(dsrc, dtg) = 1,

• the resulting sentence is well-formed (fluent):
θ(dtg) = 1.

Therefore, a style transfer model has to optimize
all three functions. Analogously, to evaluate the
performance of a style transfer model, we need to
check that all three conditions hold: the style is ap-
propriately changed, the content stayed intact, and
the text is fluent. However, these three conditions
are often inversely correlated (Pang and Gimpel,
2019). This makes style transfer evaluation a noto-
riously difficult problem. Since the three conditions

1https://www.dialog-21.ru/evaluation/2022/russe
2Style transfer task can be generalized for S with more

than two styles or for continuous styles. We use the binary
case for simplicity.

have to be explicitly checked, we cannot adopt the
techniques used for the evaluation of other text
generation models. In this work we make all evalu-
ation on a detoxification task for which more broad
definition of style transfer is fully applicable.

2.2 Automatic Evaluation of Style Transfer
In earlier works, reference-based evaluation met-
rics were considered a holistic evaluation tech-
nique (Li et al., 2018), by analogy with Machine
Translation. Even some recent works (Sudhakar
et al., 2019; Zhu et al., 2021) use BLEU or other
metrics such as GLEU as the only means of evalua-
tion. Unfortunately, they often cannot control style.
Thus, it became obvious that both content and style
have to be directly evaluated.

Some works settle for mere evaluation of style
and content (Malmi et al., 2020; Zhang et al.,
2020b). However, more often these two metrics
are combined by computing their geometric or har-
monic mean, as first suggested by (Xu et al., 2018).
This technique is often used to get the joint quality
score (Riley et al., 2021; Huang et al., 2021; Lai
et al., 2021a,b). Many (although not all) works also
evaluate the fluency of the generated text. This is
almost exclusively done via computing perplexity
of text in terms of a language model (e.g. GPT-
2 (Radford et al., 2019)). The only alternative used
in style transfer works is the use of classifier of lin-
guistic acceptability (Krishna et al., 2020) trained
on CoLA dataset (Warstadt et al., 2018). Fluency is
sometimes also included to the joint score together
with the style and content preservation. (Pang and
Gimpel, 2019) compute it as a document-level ge-
ometric mean, and (Krishna et al., 2020) multiply
the sentence-level scores. In our work we use the
latter approach.

2.3 Manual Evaluation of Style Transfer
The researchers have come to a conclusion that
these automatic metrics cannot provide an objective
evaluation. It has become a de-facto standard to
enhance the automatic evaluation with the human
evaluation experiments.

There are two main human evaluation scenar-
ios. Outputs of two models can be evaluated side
by side, in this case the authors report the number
of wins of each of the models (i.e. the number
of cases where a particular model generated a bet-
ter text) and the number of ties (Zhu et al., 2021;
Li et al., 2019; Cheng et al., 2020). Alternatively,
the outputs of different models are evaluated in-
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dependently. In this case the assessors evaluate
the outputs along three parameters: style, content
preservation, and fluency. The parameters are often
evaluated in terms of a 1-to-5 scale (Zhou et al.,
2020; Madaan et al., 2020; John et al., 2019; Lee
et al., 2021; Ma et al., 2021). Sometimes the style
is evaluated in terms of a 7-value scale (from -3
to 3), content preservation takes values from 1 to
6 (Chawla and Yang, 2020; Briakou et al., 2021b).
Other scales are also possible. Besides that, the
three individual metrics can be evaluated using the
side-by-side scenario (Sudhakar et al., 2019; Lin
et al., 2020).

3 Detoxification Competition Details

The evaluation was conducted under the scope of a
competition of detoxification models for the Rus-
sian language (Dementieva et al., 2022).3 For this
competition we created a Russian parallel corpus
of toxic sentences and their manually written non-
toxic equivalents. We also developed several base-
lines.

3.1 Parallel Dataset

We collected a parallel Russian dataset for detoxi-
fication for this competition. The corpus was col-
lected via the Yandex.Toloka4 crowdsourcing plat-
form. We used the data collection setup described
by (Logacheva et al., 2022) There, the crowd work-
ers were asked to rewrite a sentence so that it pre-
serves its content, but does not sound toxic. Then
other crowd workers checked the rewritten sen-
tence for toxicity and semantic similarity with the
original one. The platform of Yandex.Toloka has
a special mark for cases of inappropriate and toxic
content. Thus, all the crowd workers were notified
about possible unethical context of the task and we
get approvals for the experiment.

As it was noted, we need the toxic and corre-
sponding neutral sentences to be semantically simi-
lar. Therefore, during the generation of the dataset
we ask crowd workers to rewrite the sentence in
a non-offensive way and keep its content. If it is
impossible to detoxify a sentence, a worker can
choose to not change it. Such sentences are not
included to the resulting dataset. All the gener-
ated detoxified sentences are then checked for the
absence of toxicity and semantic similarity to the
original sentence.

3https://russe.nlpub.org/2022/tox
4https://toloka.yandex.ru/en

We use Russian toxic sentences from the cor-
pora of user utterances taken from Russian social
networks Odnoklassniki (Kaggle, 2019) and Pik-
abu (Kaggle, 2020), and from the Russian segment
of Twitter (Rubtsova, 2015). We select only the
sentences which were classified as toxic by a pre-
trained toxicity classifier. The classifier is a ru-
BERT model (Kuratov and Arkhipov, 2019) fine-
tuned on the same datasets. Overall, our dataset
contains 8,622 sentences. We use 6,947 of them as
training data, 800 for validation and 875 for testing
models.

3.2 Competition Rules

The competition rules allowed the participants to
use the collected dataset and any additional corpora
and pre-trained models as long as they are free and
publicly available. The participants could also use
our baseline models in any way.

We evaluated the participating models both man-
ually and automatically on the test set. We used
state-of-the-art techniques for both evaluations.
Due to the large amount of manual evaluation we
resort to crowdsourcing instead of expert annota-
tion.

4 Detoxification Models

4.1 Baselines

We provide four baselines for detoxification task:
a trivial Duplicate baseline, a rule-based Delete
approach, fine-tuning on the ruT5 model and the
continuous prompt tuning approach for ruGPT3
model.

Duplicate This is a trivial baseline which con-
sists in leaving the input text intact. It provides a
lower threshold for models.

Delete Delete is an unsupervised method that
eliminates toxic words based on a predefined toxic
words vocabulary. The idea is often used on tele-
vision and other media: rude words are bleeped
out or hidden with special characters (usually an
asterisk). We provide both the vocabulary and the
script that applies it to input sentences.

RuT5 Baseline Another approach is the super-
vised baseline based on the T5 model. We fine-tune
the ruT5-base model5 on the train part of the pro-
vided dataset.

5https://huggingface.co/sberbank-ai/ruT5-base
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RuPrompts The third baseline is based on the
library ruPrompts6 for fast language model tuning
via automatic prompt search. The method Contin-
uous Prompt Tuning (Konodyuk and Tikhonova,
2021) is to train with gradient descent embeddings
corresponding to the prompts, such approach is less
expensive to compare with classic fine-tuning of a
big language models. In the baseline we tuned the
prompts for the ruGPT3-large model. Pre-trained
prompts for the baseline is available in hugging-
face7.

4.2 Participants

We briefly describe the models developed by partic-
ipants. More details about the participating systems
can be found in (Dementieva et al., 2022)

Team 1 (ruT5-finetune) Authors approach is
based on the ruT5 model8. It was fine-tuned on
the part of competition train data with a learning
rate 1e-5 on 15 epochs. Only the samples with
fluency, similarity, and accuracy higher than 0.5
were selected from the train set. The best output
is selected from 32 generated samples using beam
search. It was decided not to use sampling.

Team 2 (ruGPT3-filter) This team’s solution
uses a model based on ruGPT3. The authors fil-
tered the dataset released by the organizers with the
following heuristics: (i) cosine similarity between
the original and transformed sentences ranges from
0.6 to 0.99; (ii) ROUGE-L between the sentences
ranges from 0.1 to 0.8; (iii) the transformed sen-
tence length is less or equal to the original sentence
length. This dataset was used to fine-tune ruGPT3.

Team 3 (lewis) solution is based on the LEWIS
framework (Reid and Zhong, 2021), a coarse-to-
fine editor for style transfer that transforms text us-
ing Levenshtein edit operation. First, the sequence
of coarse-grain Levenshtein edit types (keep, re-
place, delete or insert) was predicted for each sen-
tence pair. Next, the resulting tags were used to
train the conversational RuBERT9 for the sequence
tagging task. The ruT5-base model was trained to
fill in the tokens for coarse-grain edit type replace.

6https://sberbank-ai.github.io/ru-prompts
7https://huggingface.co/konodyuk/prompt_rugpt3large

_detox_russe
8https://huggingface.co/sberbank-ai/ruT5-base
9https://huggingface.co/DeepPavlov/rubert-base-cased-

conversational

Team 4 (ruGPT3-XL) trained RuGPT3 XL10 to
generate a non-toxic text on the competition train
data. The input is the concatenation of the toxic
and non-toxic sentences.

Team 5 (RoBERTa-replace) solution is based
on the RoBERTa-large11. The logistic regression
model on the FastText vectors trained on the com-
petition data was used as a toxic words classifier.
Toxic tokens were substituted by RoBERTa-large
model, where the best candidates were chosen by
the cosine similarity between the candidate and the
toxic token. In case it was not possible to find an
acceptable candidate, the toxic word was removed
from the sentence.

Team 6 (ruT5-clean) used the ruT5-large
model12 improved by data cleaning. The prepro-
cessing stage consitsts of emoticons and smiley
filtering and removing duplicate characters. The
Levenshtein Transformer (Susanto et al., 2020) was
used as an extra step in preprocessing to clean the
ruT5-large model output.

Team 7 (ruT5-large) modified the t5 baseline.
RuT5-base was replaced by ruT5-large with beam
search used as inference algorithm. 20 candidates
were generated for each toxic sentence, the best
candidate was selected by the largest J-score met-
ric.

Team 8 (ruT5-preproc) This solution is based
on ruT5-base model with additional pre- and post-
processing of the texts. Team finetuned the ruT5-
base model on the provided data and used heuristics
for text pre/processing.

Team 9 (adversarial) This team devised an ad-
versarial training setup where the training data was
enriched with the artificially generated sentences
which attained the highest scores of the automatic
metrics.

Team 10 (ruPrompts-plus) This team advanced
over the ruPrompts baseline. The solution is
based on RuGPT3-XL (Generative Pretrained
Transformer-3 for Russian) 13 adapted to the task
via prompt tuning. Using RuGPT3-XL as a frozen
backbone, team trains only a sequence of continu-
ous embeddings inserted before and after an input
text.

10https://huggingface.co/sberbank-ai/rugpt3xl
11https://huggingface.co/sberbank-ai/ruRoberta-large
12https://huggingface.co/sberbank-ai/ruT5-large
13https://huggingface.co/sberbank-ai/rugpt3xl
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5 Automatic Evaluation

In our automatic evaluation we follow the state-of-
the-art evaluation strategies. Namely, we replicate
the setup of Krishna et al. (2020). We evaluate the
three parameters of style transfer quality: style of
a text, content preservation, and fluency of a text.
The three metrics are then aggregated to a joint
score. We use the following techniques.

Style (STAa) is evaluated with a BERT-based
classifier for toxicity detection. We use the same
ruBERT-based classifier that was used for pre-
selection (see Section 3.1).

Content (SIMa) is evaluated as the cosine sim-
ilarity of embeddings of the source and the trans-
formed sentences. We use embeddings generated
by LaBSE model (Feng et al., 2020) because in
our preliminary experiments they showed the best
performance for Russian. We prefer the embedding
distance over BLEU-like metrics, as Yamshchikov
et al. (2021) showed that embedding-based metrics
are better correlated with human judgments than
ngram-based metrics such as BLEU. We do not use
references for the evaluation of content to mimic
the setup where references are unavailable, which
is very common for style transfer tasks.

Fluency (FLa) Although fluency is usually eval-
uated as perplexity, we follow Krishna et al. (2020)
and use an acceptability classifier. In this work this
classifier was trained on CoLA dataset (Warstadt
et al., 2018). Since there is no such dataset for
Russian, we create synthetic examples of corrupted
sentences by randomly replacing, deleting or shuf-
fling words in sentences as suggested by Kann et al.
(2018). We choose this method over perplexity,
because it ranges from 0 to 1 and its greater val-
ues mean higher quality, just like metrics we use
for evaluating toxicity and content. This makes it
easier to combine the three metrics easier.

Joint (Ja) Following Krishna et al. (2020), we
combine the three metrics at the sentence level
by multiplying them. The document-level score is
computed as the average of scores for all sentences.

ChrF We provide an additional reference-based
metric which follows the Machine Translation eval-
uation setup. We choose ChrF (Popović, 2015)
over BLEU, because it compares character ngrams
and is more suitable for languages with rich mor-
phology, such as Russian.

6 Manual Evaluation

The manual evaluation follows setups used in state-
of-the-art works. We separately evaluate the three
parameters of the transferred sentences, namely,
their style, content, and fluency. We conduct the
evaluation via crowdsourcing. For the evaluation
we also use Yandex.Toloka platform.

6.1 Evaluation Metrics

All three parameters are evaluated at the sentence
level in terms of a binary scale, where 0 refers to
the bad quality in terms of the parameter and 1 is
the good quality. Assessors are given the following
guidelines.

Toxicity (STAm) The toxicity level is defined as:

• non-toxic (1) — the sentence does not con-
tain any aggression or offence. However, we
allow covert aggression and sarcasm. Note
also that toxicity should not be mixed with
the lack of formality. Even if a sentence is
extremely informal, it is non-toxic unless it
attacks someone.

• toxic (0) — the sentence contains open ag-
gression and/or swear words (this also applies
to meaningless sentences).

Content (SIMm) In terms of content, sentences
should be classified as:

• matching (1) — the output sentence fully pre-
serves the content of the input sentence. Here,
we allow some change of sense which is in-
evitable during detoxification (e.g. replace-
ment with overly general synonyms: idiot be-
comes person or individual). It should also be
noted that content and toxicity dimensions are
independent, so if the output sentence is toxic,
it can still be good in terms of content.

• different (0) — the sense of the transferred
sentence is different from the input. Here, the
sense should not be confused with the word
overlap. The sentence is different from its
original version if its main intent has changed,
(cf. I want to go out and I want to sleep).
The partial loss or change of sense is also
considered a mismatch (cf. I want to eat and
sleep and I want to eat). Finally, when the
transferred sentence is senseless, it should also
be considered different.

94



Fluency (FLm) The fluency evaluation is differ-
ent from the other metrics. We evaluate it along a
ternary scale with the following values:

• fluent (1) — sentences with no mistakes, ex-
cept punctuation and capitalisation errors.

• partially fluent (0.5) — sentences which have
orthographic and grammatical mistakes, non-
standard spellings. However, the sentence
should be fully intelligible.

• non-fluent (0) — sentences which are difficult
or impossible to understand.

However, since all the input sentences are user-
generated, they are not guaranteed to be fluent in
terms of this scale. People often make mistakes,
typos and use non-standard spelling variants. We
cannot require that a detoxification model fixes
them. Therefore, we consider an output of a model
fluent if the model did not make less fluent than
the original sentence. Thus, we evaluate both the
input and the output sentences and define the final
fluency score as fluent (1) if the fluency score of
the output is greater or equal to that of the input,
and non-fluent (0) otherwise.

Joint Score (Jm) We aggregate the three metrics
by multiplying sentence-level scores. Since all
scores are binary, the joint score is 1 only if all
three metrics are 1. Therefore, it indicates fully
acceptable sentences.

6.2 Crowdsourcing Setup

Each of the three parameters is evaluated in a sep-
arate crowdsourcing project. For all the projects,
the evaluation was made by only native Russian
speakers.

6.2.1 Crowdsourcing tasks
In the toxicity detection task (see Figure 1) we show
workers the transferred sentence and ask them if
it is offensive. Then, in the content similarity task
we show both sentences and ask if they mean the
same (see Figure 2). Finally, we apply the fluency
evaluation task (see Figure 3) to both the source
and the target and compute the final fluency score
from the source and target scores.

Each sentence in each of the projects is labelled
by 10 to 12 workers. We aggregate their result
using Dawid-Skene aggregation method (Dawid
and Skene, 1979). It takes into account the dy-
namically defined reliability of workers. For each
example with multiple labels Dawid-Skene method

returns the label and its confidence. We use only
labels whose confidence is above 90%. The other
labels (around 3% of all examples) are later filled
by experts.

6.2.2 Quality Control
Before admitting users to accomplishing tasks we
need make sure they understand them correctly. For
that purpose we devise a pipeline of training and
exam tasks. First, a user needs to pass training (a
set of tasks with a known label and an explanation
of the task shown if the user makes a mistake) and
exam (same as training, but no explanations are
shown). We only admit users whose exam score
is above 80%. Similarly, we control their perfor-
mance with control questions during labelling. We
ban users whose performance on these control ques-
tion is below 70%.

Finally, we use other heuristics to control the
user performance:

• captcha — prevents workers from using

Does this text contain offenses or
swear words?

Yes

   I don't care about that.

No

Figure 1: Interface of the toxicity detection task.

Do these sentences mean the same?

  I don't f*ckin care about that shit 

Yes

  I don't care about that

No

Figure 2: Interface of the content similarity task.

Is this text grammatical?

YES, there are no or only minor mistakes

  I don't care about that.

NO, the text is difficult to understand

PARTIALLY, there are mistakes, but the
text is intelligible

Figure 3: Interface of the fluency evaluation task.

95



scripts and bots for labelling,
• fast answers — we ban users who accomplish

a page of tasks in less than 15 seconds (this
usually means that the user is not reading the
task and is giving random answers),

• skipped tasks — we ban users who skip 5
or more task pages (this indicates a user who
does not understand the task).

STAa SIMa FLa Ja ChrF

adversarial 0.97 0.94 0.96 0.87 0.53
ruT5-finetune 0.98 0.86 0.97 0.82 0.55
ruT5-large 0.95 0.86 0.97 0.78 0.57
ruT5-clean 0.95 0.82 0.91 0.71 0.57
lewis 0.93 0.80 0.88 0.66 0.56
ruGPT3-XL 0.94 0.73 0.89 0.61 0.50
RuT5 Baseline 0.80 0.83 0.84 0.56 0.57
ruPrompts-plus 0.80 0.80 0.83 0.54 0.56
ruPrompts 0.81 0.79 0.80 0.53 0.55
ruT5-preproc 0.85 0.76 0.78 0.52 0.53
human references 0.85 0.72 0.78 0.49 0.77
ruGPT3-filter 0.83 0.76 0.76 0.48 0.51
RoBERTa-replace 0.57 0.89 0.91 0.44 0.54
Delete 0.56 0.89 0.85 0.41 0.53
Duplicate 0.24 1.00 1.00 0.24 0.56

Table 1: The performance of the participating models in
terms of automatic metrics, sorted by Ja metric.

7 Results

In this section, first we present the data, namely
the outcome of the shared task on detoxification
evaluation. Second, we perform anlysis of corre-
spondance of human and automatic metics. Finally,
we conclude with a discussion of assessors’s per-
formance and overall difficulty of the task.

7.1 Models Performance

Table 1 shows the performance of the participating
models and our baselines in terms of the automatic
metrics. The adversarial example generation turns
out to be very effective — it attains the highest
scores of all metrics, thus yielding the highest Ja
score. The next three places in the leaderboard are
taken by the models based on our baseline ruT5
system. Notice that the human references are be-
low the majority of models in terms of all metrics
except ChrF whose score for the human references
is the highest by a large margin.

The manual scores (see Table 2) provide a com-
pletely different result. There, the human refer-
ences are significantly better than other models,
but closely followed by one of ruT5-based systems.

STAm SIMm FLm Jm

human references 0.89 0.82 0.89 0.65
ruT5-clean 0.79 0.87 0.90 0.63
RuT5 Baseline 0.79 0.82 0.92 0.61
ruT5-large 0.73 0.87 0.92 0.60
lewis 0.82 0.79 0.85 0.58
ruPrompts-plus 0.78 0.81 0.90 0.57
ruT5-finetune 0.80 0.78 0.87 0.56
ruT5-preproc 0.79 0.72 0.78 0.51
ruGPT3-XL 0.81 0.70 0.90 0.50
ruPrompts 0.80 0.70 0.87 0.49
ruGPT3-filter 0.77 0.72 0.83 0.45
RoBERTa-replace 0.43 0.62 0.79 0.17
Delete 0.39 0.71 0.73 0.16
Duplicate 0.11 1.00 1.00 0.11
adversarial 0.25 0.13 0.24 0.02

Table 2: Manual evaluation of the participating models,
the models are sorted by the Jm metric. The figures
in bold show the highest value of the metric with the
significance level of α = 0.05.

Metric STAa SIMa FLa Ja ChrF

STAm 0.376 -0.776 -0.398 0.278 0.223
SIMm -0.046 0.031 0.190 0.000 0.789
FLm -0.083 -0.032 0.288 0.070 0.619
Jm 0.326 -0.495 -0.211 0.350 0.735

Table 3: Spearman’s correlation coefficient between
automatic VS manual metrics on system level. Bold
numbers denote the statistically significant correlation
(p-value ≤ 0.05).

Metric STAa SIMa FLa Ja ChrF

STAm 0.695 -0.888 -0.398 0.305 0.264
SIMm -0.305 -0.153 -0.042 -0.431 0.276
FLm -0.237 -0.291 -0.116 -0.425 0.218
Jm 0.595 -0.746 -0.380 0.278 0.367

Table 4: Pearson’s correlation coefficient between auto-
matic VS manual metrics on system level. Bold num-
bers denote the statistically significant correlation (p-
value ≤ 0.05).

However, ruT5-clean (the best-performing partici-
pant) is not significantly better than the ruT5 base-
line. Interestingly, the adversarial model whose
automatic scores are the highest, in fact produces
sentences of an very low quality.

7.2 Automatic vs Manual Metrics

The automatic and manual metrics (Tables 1 and 2)
provide very diverse results in terms of participants
rankings. This suggests that they are weakly corre-
lated.

We check this assumption by computing the
Spearman ρ correlations at three different levels:
sentence level, system level and system ranking
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Figure 4: Correlations between automatic and manual metrics at the sentence level for different models.
(Right: STA metric; Center: SIM metric; Left: FL metric.)

Metric STAa SIMa FLa Ja

STAm -0.437 0.679 0.226 0.345
SIMm 0.187 -0.126 0.099 0.022
FLm 0.165 -0.314 0.037 -0.046
Jm -0.041 0.020 0.275 0.178

Table 5: Spearman’s correlation coefficient between au-
tomatic VS manual metrics based on system ranking.
Bold numbers denote the statistically significant corre-
lation (p-value ≤ 0.05).

Metric BertScore ROUGE-L BLEU ChrF

STAm -0.710 -0.550 -0.600 -0.296
SIMm 0.819 0.802 0.863 0.495
Flm 0.796 0.675 0.700 0.464
Jm 0.661 0.657 0.546 0.325

Table 6: Spearman’s correlation coefficient between
automatic style transfer VS manual metrics based on
system ranking. Bold numbers denote the statistically
significant correlation (p-value ≤ 0.05).

level. At sentence level, we compare automatic
metrics for each sentence and then compare them
across their manual analogies. For the system level
we first compute average scores for each partici-
pant and each metric and them uses such vectors of
scores to calculate correlations. As for the system
ranking level, we use the rank of the system in the
ranked system list instead of the scores, which al-
lows to not take the difference of score distributions
into account. The last metric is trying to assess the
capability of a metric to predict the outcome of a
competition.

7.2.1 System Level Correlations
At the system level we compute correlation scores
of all metrics. We highlight all high correlations
(the absolute value above 0.6) in Table 4. We
clearly see that none of automatic metrics correlate
with their manually measured counterparts. On
the other hand, there is strong negative correlation

between the manual style and automatic content
preservation score.

Moreover, manual content and fluency metrics
are correlated with ChrF score. This suggests that
ChrF can be used as an automatic evaluation score.
On the other hand, ChrF is not sensitive to sen-
tence style, which means that it can be deceived
(for example, the trivial Duplicate baseline per-
forms on par with strong T5-based models in terms
of ChrF). However, the power of ChrF was also
claimed by (Briakou et al., 2021a).

7.2.2 System Ranking Level Correlations

We also compute the correlation of rankings of
models produced by different metrics using Spear-
man’s ρ correlation. According to Table 5, we
mostly see weak or no correlation. The rankings
by automatic metrics of style, content preservation,
and fluency do not correlate with their counter-
parts produced by manual metrics, apart from the
correlation of manual metric of style evaluation
(STAm) and automatic metric of content preserva-
tion (SIMa).

Despite that ChrF metric counted as more suit-
able text generation metric for the Russian Lan-
guage, additionally we computed correlations for
other text generation metrics as BLEU (Papineni
et al., 2002), ROUGE-L (Sutherlin et al., 2011),
and BertScore (Zhang et al., 2020a). The results
are presented in the Table 6. Unexpectedly, ChrF
does not correlated at all with the manually com-
puted manual metrics, according to the ranking
evaluation. BertScore, ROUGE-L, BLEU demon-
strated quite strong correlations with the manual
metrics, which are statistically significant in com-
parison to the ChrF scores. At the same time, from
the Table 6 we can conclude that even the high-
est correlation numbers (0.661) in our case cannot
guarantee high-quality prediction of manual met-
rics, which still requires further manual evaluation
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steps.

7.2.3 Sentence-level Correlations
The sentence-level correlations show a slightly dif-
ferent picture. The highest correlation is seen for
the style metric, the Spearman ρ score of automatic
and manual judgments is 0.418 (moderate corre-
lation). The manual and automatic sentence-level
similarity, fluency, and joint scores show very weak
or no correlation: 0.251, 0.015, and 0.141, respec-
tively.

However, sentence-level correlations between
corresponding manual and automatic metrics differ
significantly across models (see Figure 4). We see
that automatic and manual toxicity scores are much
better correlated for the Delete and RoBERTa-
replace models, which are the only models to ex-
plicitly remove or replace toxic words identified
by a classifier or via a manually compiled list of
toxic words. These models apparently produce
texts which are easy to classify correctly. Con-
versely, adversarial model and human references
are the most difficult to classify. The former deliber-
ately “fools” the classifier with artificial examples,
while the latter contains non-trivial phrases whose
level of toxicity is difficult to grasp automatically.

Analogously, the similarity scores are also bet-
ter correlated for RoBERTa-replace model which
leaves the majority of words intact, so for it similar-
ity boils down to word matching. Instead, T5-based
models produce non-trivial paraphrases. These T5
outputs are also difficult to correctly classify for
fluency, unlike the models based on word replace-
ments (RoBERTa-replace and Delete). Overall,
we see that it is more difficult to correctly clas-
sify better-performing models and models based
on large pre-trained language models. This sug-
gests that the automatic evaluation might fail ex-
actly where we need it most, i.e. in discriminating
between the good models.

7.3 Assessors Performance

While in many works the human evaluation is con-
sidered as undoubtedly reliable, we notice that this
is not always true. Human evaluation can suffer
from: (i) the low reliability of crowd workers and
(ii) the difficulty and subjectivity of the tasks.

In crowdsourcing experiments, it is common to
give each example for labelling to 3–5 people and
aggregate the labels. It our case 3 annotations per
sample were not enough. They yielded a labelling
with around 10% mistakes. Thus, we collected 10

annotations per sample. Such labelling was more
reliable: the error rate did not exceed 3% for style
and content and 6% for fluency.

To measure the difficulty of the task, we com-
pute inter-annotator agreement coefficient Krippen-
dorff’s alpha (Krippendorff, 2011). It turns out that
the agreement is moderate: content: 0.522, 0.448,
and 0.394 for style, content, and fluency, respec-
tively. The expert Krippendorff’s alpha scores are
close: 0.584, 0.458, and 0.463. This confirms that
in the experiment with 10 annotations per example
the crowd workers are reliable enough, but the task
itself is subjective.

Interestingly, the style evaluation gains the high-
est inter-annotator agreement, just as it had the
highest correlation between the manual and the au-
tomatic labelling. This suggests that that toxicity is
more stable and better interpreted by both humans
and models.

8 Conclusion

We conducted an evaluation of detoxification mod-
els for Russian using both automatic and manual
metrics. This allowed us to analyse the relationship
between the metrics and assess the suitability of
automatic metrics for evaluation.

Our analysis shows that the metrics are overall
weakly correlated with the human judgements both
at the system and the sentence level. We found that
ChrF score has a strong correlation with the joint
score of style, content, and fluency. Thus, ChrF
could be used as a proxy for manual evaluation, but
its lack of correlation with the style score makes
this metric vulnerable to attacks. At the system
ranking level BertScore metric yielded the best
correlation with human judgements.

We also discovered that the correlation of man-
ual and automatic scores varies for different models.
This shows the necessity to consider diverse style
transfer models for metrics analysis.

Overall, although the state-of-the-art evaluation
setup for detoxification task (three parameters and
the joint score combined from them) is conceptu-
ally correct, the current performance of automatic
metrics is insufficient to use it as a replacement
for manual evaluation. A worse thing is that the
automatic metrics produce less reliable for better-
performing models, thus blocking the advance of
style transfer models.

98



Acknowledgements

This work was supported by MTS-Skoltech labora-
tory on AI.

References
Eleftheria Briakou, Sweta Agrawal, Joel Tetreault, and

Marine Carpuat. 2021a. Evaluating the evaluation
metrics for style transfer: A case study in multilin-
gual formality transfer. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1321–1336, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Eleftheria Briakou, Di Lu, Ke Zhang, and Joel Tetreault.
2021b. Olá, bonjour, salve! XFORMAL: A bench-
mark for multilingual formality style transfer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3199–3216, Online. Association for Computa-
tional Linguistics.

Kunal Chawla and Diyi Yang. 2020. Semi-supervised
formality style transfer using language model dis-
criminator and mutual information maximization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 2340–2354, Online.
Association for Computational Linguistics.

Yu Cheng, Zhe Gan, Yizhe Zhang, Oussama Elachqar,
Dianqi Li, and Jingjing Liu. 2020. Contextual text
style transfer. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2915–
2924, Online. Association for Computational Lin-
guistics.

Alexander Philip Dawid and Allan M Skene. 1979.
Maximum likelihood estimation of observer error-
rates using the em algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics),
28(1):20–28.

Daryna Dementieva, Irina Nikishina, Varvara Lo-
gacheva, Alena Fenogenova, David Dale, Irina Kro-
tova, Nikita Semenov, Tatiana Shavrina, and Alexan-
der Panchenko. 2022. RUSSE-2022: Findings of the
First Russian Detoxification Task Based on Parallel
Corpora. In Computational Linguistics and Intellec-
tual Technologies: papers from the Annual confer-
ence “Dialogue”.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2020. Language-agnostic
BERT sentence embedding. CoRR, abs/2007.01852.

Fei Huang, Zikai Chen, Chen Henry Wu, Qihan Guo,
Xiaoyan Zhu, and Minlie Huang. 2021. NAST: A
non-autoregressive generator with word alignment
for unsupervised text style transfer. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 1577–1590, Online. Association
for Computational Linguistics.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Kaggle. 2019. Russian language toxic comments.
https://www.kaggle.com/blackmoon/
russian-language-toxic-comments.
Accessed: 2021-03-01.

Kaggle. 2020. Toxic russian comments. https://
www.kaggle.com/alexandersemiletov/
toxic-russian-comments. Accessed:
2021-03-01.

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: References
help, but can be spared! In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 313–323, Brussels, Belgium.
Association for Computational Linguistics.

Nikita Konodyuk and Maria Tikhonova. 2021. Continu-
ous prompt tuning for russian: how to learn prompts
efficiently with rugpt3? In Proceedings of the Inter-
national Conference on Analysis of Images, Social
Networks and Texts.

Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020.
Reformulating unsupervised style transfer as para-
phrase generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, Online. Asso-
ciation for Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language.

Huiyuan Lai, Antonio Toral, and Malvina Nissim.
2021a. Generic resources are what you need: Style
transfer tasks without task-specific parallel training
data. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4241–4254, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Huiyuan Lai, Antonio Toral, and Malvina Nissim.
2021b. Thank you BART! rewarding pre-trained
models improves formality style transfer. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 484–494, Online.
Association for Computational Linguistics.

Dongkyu Lee, Zhiliang Tian, Lanqing Xue, and Nevin L.
Zhang. 2021. Enhancing content preservation in text
style transfer using reverse attention and conditional

99

https://doi.org/10.18653/v1/2021.emnlp-main.100
https://doi.org/10.18653/v1/2021.emnlp-main.100
https://doi.org/10.18653/v1/2021.emnlp-main.100
https://doi.org/10.18653/v1/2021.naacl-main.256
https://doi.org/10.18653/v1/2021.naacl-main.256
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://doi.org/10.18653/v1/2020.findings-emnlp.212
https://doi.org/10.18653/v1/2020.findings-emnlp.263
https://doi.org/10.18653/v1/2020.findings-emnlp.263
http://arxiv.org/abs/2007.01852
http://arxiv.org/abs/2007.01852
https://doi.org/10.18653/v1/2021.findings-acl.138
https://doi.org/10.18653/v1/2021.findings-acl.138
https://doi.org/10.18653/v1/2021.findings-acl.138
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041
https://www.kaggle.com/blackmoon/russian-language-toxic-comments
https://www.kaggle.com/blackmoon/russian-language-toxic-comments
https://www.kaggle.com/alexandersemiletov/toxic-russian-comments
https://www.kaggle.com/alexandersemiletov/toxic-russian-comments
https://www.kaggle.com/alexandersemiletov/toxic-russian-comments
https://doi.org/10.18653/v1/K18-1031
https://doi.org/10.18653/v1/K18-1031
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
http://arxiv.org/abs/1905.07213
http://arxiv.org/abs/1905.07213
http://arxiv.org/abs/1905.07213
https://doi.org/10.18653/v1/2021.emnlp-main.349
https://doi.org/10.18653/v1/2021.emnlp-main.349
https://doi.org/10.18653/v1/2021.emnlp-main.349
https://doi.org/10.18653/v1/2021.acl-short.62
https://doi.org/10.18653/v1/2021.acl-short.62
https://doi.org/10.18653/v1/2021.acl-long.8
https://doi.org/10.18653/v1/2021.acl-long.8


layer normalization. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 93–102, Online. Association for
Computational Linguistics.

Dianqi Li, Yizhe Zhang, Zhe Gan, Yu Cheng, Chris
Brockett, Bill Dolan, and Ming-Ting Sun. 2019. Do-
main adaptive text style transfer. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3304–3313, Hong Kong,
China. Association for Computational Linguistics.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Kevin Lin, Ming-Yu Liu, Ming-Ting Sun, and Jan Kautz.
2020. Learning to generate multiple style transfer
outputs for an input sentence. In Proceedings of the
Fourth Workshop on Neural Generation and Transla-
tion, pages 10–23, Online. Association for Computa-
tional Linguistics.

Varvara Logacheva, Daryna Dementieva, Sergey
Ustyantsev, Daniil Moskovskiy, David Dale, Irina
Krotova, Nikita Semenov, and Alexander Panchenko.
2022. ParaDetox: Detoxification with Parallel Data.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), Dublin, Ireland. Association for
Computational Linguistics.

Yun Ma, Yangbin Chen, Xudong Mao, and Qing Li.
2021. Collaborative learning of bidirectional de-
coders for unsupervised text style transfer. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9250–
9266, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barn-
abas Poczos, Graham Neubig, Yiming Yang, Ruslan
Salakhutdinov, Alan W Black, and Shrimai Prabhu-
moye. 2020. Politeness transfer: A tag and generate
approach. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1869–1881, Online. Association for Computa-
tional Linguistics.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. 2020.
Unsupervised text style transfer with padded masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8671–8680, Online. As-
sociation for Computational Linguistics.

Richard Yuanzhe Pang and Kevin Gimpel. 2019. Un-
supervised evaluation metrics and learning criteria
for non-parallel textual transfer. In Proceedings of
the 3rd Workshop on Neural Generation and Trans-
lation, pages 138–147, Hong Kong. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.
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