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Abstract

The task of quantifying the complexity of writ-
ten language presents an interesting endeavor,
particularly in the opportunity that it presents
for aiding language learners. In this pursuit,
the question of what exactly about natural lan-
guage contributes to its complexity (or lack
thereof) is an interesting point of investigation.
We propose a hybrid approach, utilizing shal-
low models to capture linguistic features, while
leveraging a fine-tuned embedding model to en-
code the semantics of input text. By harmoniz-
ing these two methods, we achieve competitive
scores in the given metric, and we demonstrate
improvements over either singular method. In
addition, we uncover the effectiveness of Gaus-
sian processes in the training of shallow models
for text complexity analysis.

1 Introduction

In this paper, we present a novel approach for the
quantification of text complexity in the German
language, as part of the Text Complexity DE Chal-
lenge 2022 (Mohtaj et al., 2022). Specifically, we
emphasize a hybrid method for building a text com-
plexity model, which combines a feature-based,
shallow regression model with a fine-tuned XLM-
RoBERTa model. In doing so, we hope to capture
to the fullest both the linguistic aspects that con-
tribute to text complexity, as well as the semantic
factors. In the following Section 2, we briefly de-
scribe the task at hand, as well as the data used to
train and test our models. Next, Section 3 intro-
duces Gaussian Processes, which become central to
our hybrid system. Likewise, fine-tuning RoBERTa
for use in regression tasks is covered in Section 4.
These concepts are brought together in 6, which
describes our overall model architecture for the
task. Before this, the feature set used to train both
models is illustrated in Section 5. In Section 7,
we present results from the training and validation
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phases, in which our model achieved the best score
for this task’s chosen metric. In the ensuing Sec-
tion 8, we perform a qualitative analysis of our ap-
proach and lessons learned. Finally, Section 9 pro-
vides a few concluding remarks. The systems (and
code used to create them) are publicly available un-
der https://github.com/sebischair/
Text-Complexity-DE-2022.

2 Dataset and Task

The dataset used in this task was first presented by
Naderi et al. (2019). It consists of 1000 German
language sentences sourced from 23 Wikipedia
articles. These articles have been classified into
three different genres. These sentences are anno-
tated with ratings of 1-7 in the category of Com-
plexity, Understandability, and Lexical complexity.
These ratings are presented as a Mean Opinion
Score (MOS), which is represented as the aver-
age scoring of the annotators. The sentences were
scored by German language learners from A2 to
B2 levels. For example, the sentence “Eine Seifen-
blase entsteht, wenn sich ein dünner Wasserfilm mit
Seifenmolekülen vermischt.” is scored with 2.9.

For this challenge, one unified MOS score was
given. How this score was derived from the original
three scores is not explained. The original 1000
sentences are the same.

With this dataset, the task becomes to train a
regression model that predicts the complexity of a
sentence (i.e. MOS) from the sentence text. This
score is intended to aid in the quantification of text
complexity for language learners, as well as in the
evaluation of the simplified text.

3 Gaussian Processes

A popular area in Machine Learning, particularly
near the turn of the century, rested in the study
of “kernel machines”, which include the popular
Support Vector Machines, but also the lesser known
Gaussian Process Models (Rasmussen, 2003). At
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their core, Gaussian Processes (GPs) are powerful
in the way they incorporate probabilistic thinking
into kernel machines, making them a particularly
suitable tool for supervised machine learning in
small data settings (Urtasun and Darrell, 2007).

Literally, Gaussian processes are built upon mul-
tivariate Gaussian (normal) distributions, defined
by a mean vector µ and covariance matrix Σ, i.e.:

X⃗ =
[
X1 X2 ... XN

]
∼ N (µ,Σ)

This particular distribution has the useful property
of being closed under marginalization (probability
distribution of partitions) and conditioning (proba-
bility of one variable depending on another).

The main goal of Gaussian processes is to learn
the underlying distribution of training data. Key
to this process is the utilization of Bayesian infer-
ence, in which one assumes a prior and updates this
hypothesis based upon new data. When modeling
using Gaussian processes, a prior with dimension-
ality equal to that of the unseen points is chosen. A
kernel is used to generate the covariance matrix Σ
by evaluating it on all training points.

In order to form the posterior distribution (i.e.
train the model), the model observes training data,
and conditions the current distribution based upon
these new points. As new data comes in, the set
of functions that the model can take is constrained,
as only those functions exactly containing the new
points are valid. The change in distribution induced
by observing new points is reflected in an adjust-
ment of the mean and standard deviation (achieved
through marginalization). In addition, uncertainty
in the data is modeled by adding an error term to
the training points, modeled by ϵ ∼ N (µ, ψ2).

Predictions from a trained Gaussian process
model are made simply by sampling from the dis-
tribution of the model. In this way, Gaussian pro-
cesses interestingly combine the ability to model
(understand) the underlying distribution of the data
at hand, as well as make accurate predictions from
unseen instances. They, therefore, present a promis-
ing, powerful, and efficient method for tackling
regression tasks (Williams and Rasmussen, 1995).

4 XLM-RoBERTa for Regression

Large pre-trained language models (PLMs) based
on the transformer architecture (Vaswani et al.,
2017) have achieved state-of-the-art performance
on a wide array of common NLP tasks. Devlin

et al. (2019) introduced BERT as a powerful lan-
guage representation model that learns deep con-
textual representations of words. RoBERTa (Liu
et al., 2019) is a robustly optimized extension of the
BERT model. Both of these models work primarily
on English text, so we decided to use the multilin-
gual model XLM-RoBERTa (XLM-R), a variation
of RoBERTa trained on data written in one hundred
languages (Conneau et al., 2020). This model can
recognize the language of an unseen textual input
and achieves remarkable performance on a variety
of non-English tasks, beating even the monolingual
models optimized for specific languages.

The key benefit of using PLMs is the ability to
load the already pre-learned contextual word em-
beddings and then to fine-tune them for the spe-
cific downstream task at hand. We tried out dif-
ferent pre-trained models for XLM-R and the best-
performing ones for this task were the original xlm-
roberta-base, twitter-xlm-roberta-base, and xlm-
roberta-base-wikiann-ner. While PLMs like XLM-
R are more commonly used for classification tasks,
they can also be adapted for regression tasks. We
achieved this by adding a new linear layer on top
of the XLM-R. This linear layer had as its input
the outputs of the final (12th) layer of XLM-R and
learned what weights to assign to them.

Since our dataset contains only around 1000 ex-
amples, the process of fine-tuning had to be carried
out carefully in order to prevent overfitting. Hyper-
parameters used were: number of folds 5, number
of epochs 3, batch size 16, max. length of 100,
no weight decay. The starting learning rate was
10−5, after one third of all layers 5 · 10−5, and af-
ter two thirds it was 10−4. The idea behind this
was that lower encoder layers can be understood
as learning the lexical and syntactical features of
the text, whereas higher layers model the semantic
representation of it. For the task of text complex-
ity, low-level features are more important so more
emphasis was placed on them.

5 Feature Selection

The complete set of crafted features for model train-
ing is listed in Table 1. These features are separated
into categories, followed a brief description, with
supporting notes at the bottom. The character-,
token-, and POS-based features were inspired by
Falkenjack et al. (2013) and Chatzipanagiotidis
et al. (2021). Before feature creation, preprocess-
ing included stopword removal and lemmatization.



Feature Description

CHARACTER-BASED*

Avg_chars Average number of characters per token in sentence
Tokens_N Number of tokens in sentence with length > N1

TOKEN-BASED*

Type_token Distinct number of token types
Carroll_TTR Carroll’s Corrected TTR measure

COMMON WORDS*

Num_common Number of tokens found in the top 500 most common German words2

Common_score Cumulative score based upon rank in top 500 list
SENTENCE ATTRIBUTES*

Sentence_length Length of sentence, i.e. number of tokens
Longest_word Length of the longest word in a sentence
Commas Number of commas in the sentence
Parentheses Number of (open) parentheses characters
Digits Number of numerical digits in the sentence
Quotes Number of quotation characters (ór )̈ in the sentence
Avg_word_length Average length of words in the sentence
Wordrank_score Overall score calculated from German Wiki frequency list3

POS TAGS*

POS_ratio Ratio of (spaCy.pos_) POS Tags in sentence 4

TAG_ratio Ratio of (spaCy.tag_) detailed POS Tags in sentence5

SPACY FEATURES*

Dep_length Cumulative length (width) of dependencies in sentence
Ne_length Total length of all named entities in sentence
Ne Number of named entities in sentence
L2_norm L2 Norm of spaCy word vector representations
Vec_exists Number of sentence tokens for which a spaCy vector exists

SYNTAX TREE

Syn_height Height of syntax tree
Leaves Number of leaves in syntax tree
Subtrees Number of subtrees in syntax tree
Leaf_distance Cumulative distance between the leave nodes in the sentence

SYLLABLES

Tot_syl Total number of syllables in sentence
Avg_syl Average number of syllables per word
Single_syl Number of single syllable words in sentence

READABILITY6

Flesch Flesch reading ease score
Flesch_mod Modified Flesch score
Easy_words Number of words in sentence with ≤ 2 syllables
Hard_words Number of words in sentence with > 2 syllables
Gunning_fog Gunning Fog readability index
Mod_smog SMOG readability index
Mod_forcast Forcast readability formula
Ari Automated readability index
Linsear Linsear write readability metric

WORDNET7,†

Synset_exists Number of lemmas in sentence for which a synset exists
Synset_depth Cumulative maximum depth of all existing synsets in sentence
Hyponyms Cumulative number of hyponyms for existing synsets
Senses Cumulative number of word senses for existing synsets
Syn_def Total length of synset definitions for all existing synsets
Avg_path Average path length from one synset to the next, in sequential order

EXPERIMENTAL†

Scrabble_new Scrabble score using the new German Scrabble point values
Scrabble_old Scrabble score using the old German Scrabble point values

1 for N ∈ {2, 6, 7, 8, 10}
2 https://www.thegermanprofessor.com/top-500-german-words/
3 https://github.com/gambolputty/dewiki-wordrank
4 for POS ∈ {’ADJ’, ’ADP’, ’ADV’, ’AUX’, ’NOUN’, ’NUM’, ’PRON’,’PROPN’, ’VERB’, ’X’}
5 for TAG ∈{’ADJA’, ’ADJD’, ’ADV’, ’APPR’, ’ART’, ’KON’, ’KOUS’, ’NN’, ’PRELS’, ’VAFIN’, ’VVFIN’, ’VVPP’}
6 Where applicable, scores are modified for single sentences (denoted by mod)
7 Using the Open German WordNet: https://github.com/hdaSprachtechnologie/odenet
* Features in these categories are calculated on the logarithmic scale, with either add-1 or add-0.1 smoothing, where necessary
† These features were not used in the final model (best test score)

Table 1: Feature Set
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6 A Hybrid System

The development of the eventual final model took
place in an iterative fashion. First, an array of
popular shallow models were tested. In this pro-
cess, the discovery of the effectiveness of Gaussian
processes for this specific task led the authors to
choose these particular models for tuning. The ker-
nel used was the sum of Constant, Matern, and
White kernels, optimized with 10 restarts. As the
training of Gaussian process models seemed to hit
a plateau, a deeper approach was pursued, namely
using RoBERTa. This achieved good results (see
Section 7), leading the authors to believe that some
deep component was key to the task at hand.

Due to the documented success of stacking and
ensemble methods (Pavlyshenko, 2018; Ganaie
et al., 2021), the authors considered a third ap-
proach in which the best shallow and deep mod-
els (GPs and RoBERTa) were to be stacked. Con-
cretely, the predictions of the two models could be
harmonized in a way that combines the strengths
of both. Traditionally, stacking is performed by
training a “meta-model”, which learns the optimal
way to combine the outputs of the “level 0” models.

With this in mind, the authors took a simplified
approach to stacking, in which the output predic-
tions of the Gaussian process model and the fine-
tuned XLM-RoBERTa were simply averaged. This
resulted in the “meta” predictions, which were then
used for submissions. In the development phase,
this method proved to be the most effective, far out-
performing both individual models. As such, a hy-
brid system was created, which was later utilized in
the test phase. Results from the development phase
are outlined in Section 7, where the performance
of the individual and hybrid models are displayed.

7 Training and Results

In the following Table 2, we present the results
from the development phase of the challenge. In
particular, we include both the traditional Root
Mean Squared Error (RMSE) for each model, as
well as the RMSE_Mapped metric used for this
specific task. Since the MOS of human annotators
inherently includes subjective biases and offsets,
some statistical uncertainty is always present in
the scores (Yi et al., 2022). Therefore, a linear
mapping function is applied to the RMSE in order
to compensate for the possible variance between
several subjective experiments. It should be noted
that the specifics on how to calculate this mapped

Model RMSE RMSE_mapped
Lasso Regression – 0.515
Ridge Regression – 0.507
XGBoost Regression 0.520 0.490
Partial Least Sq. Regression 0.492 0.462
LightGBM Regression 0.465 0.434
Random Forest Regression 0.457 0.427
Gaussian Process Regression 0.453 0.401

w/ 50% train data 0.447 0.380
+ 20-dim PCA 0.442 0.377
+ noisy targets 0.427 0.373

XLM-RoBERTa (SQuAD 2.0) 0.443 0.442
XLM-RoBERTa (WikiAnn) 0.434 0.424
XLM-RoBERTa (Twitter) 0.434 0.420

w/ 70% train data 0.430 0.393
XLM-RoBERTa (Base) 0.426 0.415

w/ 150 features 0.438 0.403
w/ 20-dim PCA 0.440 0.399
w/ 70% train data 0.433 0.384

XLM-R (0.415) + GP (0.377) 0.395 0.349
XLM-R (0.399) + GP (0.377) 0.415 0.342
XLM-R (0.384) + GP (0.373) 0.397 0.331
XLM-R (0.384) + GP (0.377) 0.408 0.328
XLM-R (0.393) + GP (0.373) 0.394 0.328
XLM-R (0.393) + GP (0.377) 0.401 0.324

Table 2: Development Phase Results

metric were not provided for this challenge.
In Table 2, bolded are the best-performing

shallow and deep models, as well as the best-
performing stacked model, which did not use either
of the two best single models. The most effective
shallow model was the Gaussian process regressor
that used our handcrafted features described in Sec-
tion 5 and Table 1 to learn the optimal distribution
over the training data. Only 50% of training data
was randomly selected and used to train the model
since this provided the optimal performance, as
measured by the mapped RMSE metric.

Model RMSE RMSE_mapped
XLM-R (Base, 70% train)

0.514 0.489
+ GP (20-dim PCA, 50% train)
XLM-R (WikiAnn, 70% train)

0.518 0.488
+ GP (20-dim PCA, 50% train)
XLM-R (Twitter, 70% train)

0.518 0.465
+ GP (20-dim PCA, 50% train)
XLM-R (Base + 20-dim PCA)

0.473 0.459
+ GP (20-dim PCA, 50% train)
XLM-R (Twitter, 60% train)

0.485 0.457
+ GP (20-dim PCA, 50% train)

Table 3: Final Phase Results

The best-performing deep model was the base
model of XLM-RoBERTa. Although adding our
handcrafted features to it improved the perfor-
mance, the trick of using a reduced training data
set again provided us with the best results (70% of



the training data). For the final stacked model, vari-
ous combinations of GP and XLM-R models were
tried out. The optimal combination turned out to be
the XLM-RoBERTa fine-tuned on a Twitter dataset
and the Gaussian Process using a 20-dimensional
PCA representation of handcrafted features. This
hybrid model achieved the mapped RMSE score of
0.324, which was the winning score (1st place) of
the development phase of the competition.

Table 3 shows the results of the models sub-
mitted for the final phase of the competition. The
authors decided to submit the best-performing mod-
els from the previous phase. The best-scoring
model was later revealed to be the stacked combi-
nation of the XLM-RoBERTa pre-trained on Twit-
ter and the Gaussian process with 20-dimensional
PCA features, both models trained on reduced
data. This came as no surprise as this was also the
best-performing model in the previous phase. The
model achieves the mapped RMSE score of 0.457,
which resulted in 6th place in the final phase.

8 Discussion

Here, the authors reflect on lessons learned, useful
findings, and possible future directions.

A useful and somewhat surprising finding came
with the excellent performance of Gaussian pro-
cesses, particularly during the development phase.
In pondering why this occurred, one can look to
the nature of GPs in conjunction with the specifics
of the text complexity task. At their core, Gaussian
process models aim to capture the underlying dis-
tribution of data that is complex. Furthermore, GPs
seem to shine when the amount of training data
is relatively small, e.g. under 1000 instances. As
such, GPs may have been a logical choice for this
task, which comprised of a quite small dataset and
whose goal represents a quite complex regression
task. Indeed, the quantification of text complexity
proves to be challenging to reason about. Neverthe-
less, the effectiveness shown by GPs merits their
consideration in future, related tasks.

Regarding XLM-RoBERTa, it cannot be denied
that its inclusion greatly strengthened the final
model. It is interesting, though, that the model
performance quite significantly varied based upon
the particular pre-trained model that was chosen.
In this light, a potential future direction would in-
volve further investigation into better models, as
well as why these might be superior. Similarly, a
more focused tuning of the hyperparameters for

the fine-tuning process could have been performed.
This likewise remains as future work.

In the creation of the hybrid model which was
eventually used in the test phase, an interesting
lesson was learned regarding how to “stack” our
two best models. A more systematic way of doing
so would be to learn a meta-model, i.e. a simple
linear regression model, to stack on top of our GP
+ RoBERTa hybrid. As it turns out, learning such
a model actually performed worse than a simple
average of the two models’ predictions. In this way,
simplicity won the day in regards to the design of a
well-performing hybrid regression model.

The analysis of our feature set also produces in-
teresting insights. As a cursory analysis, heatmaps
illustrating the correlation amongst features and
to the target values are presented in Figures 1 and
2 in the Appendix. The question then becomes
whether more features should have been included,
particularly those with a firm linguistic foundation.

This notion is grounded in the authors’ initial
intuition that was used to produce the feature set.
Interesting findings were gained here, too, such as
the relatively high correlation of complex linguistic
concepts (e.g. passive voice, genitive case, depth of
syntax tree) to the MOS. We pose that such linguis-
tic thinking is important for further improvements.

As already alluded to, the complexity of the data
itself, or rather the ability to describe it effectively
via features, proved to be a central problem in tack-
ling the task at hand. In the process of studying
the datasets, the authors noticed particular charac-
teristics that could be crucial to feature creation.
Of these, notable observations include the pres-
ence of rare-occurring symbols (e.g. §), as well as
sentences that are clearly “simplified” sentences,
rather than sourced directly from Wikipedia. Pos-
sible discrepancies between the dev and test sets
were also observed. Accounting for such factors in
the features is likely key to model performance.

9 Conclusion

In this paper, we discuss our novel approach to the
quantification of text complexity in the German
language. In particular, we present a hybrid model
using Gaussian Processes and a fine-tuned XLM-
RoBERTa. We also provide our full feature set,
which to be best of the authors’ knowledge includes
features not previously presented in the literature.
Finally, we discuss our results in the challenges
and reflect upon their implications for future work.
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A Appendix

Figure 1 shows a correlation heatmap of (selected)
features. Figure 2 shows the correlation of these
selected features to the target MOS score.

Figure 1: Feature - Feature Correlation Heatmap

Figure 2: Feature - MOS Correlation Heatmap

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/1273496.1273613
https://doi.org/10.1145/1273496.1273613
https://doi.org/10.1145/1273496.1273613
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2203.16032
https://doi.org/10.48550/arXiv.2203.16032
https://doi.org/10.48550/arXiv.2203.16032
https://doi.org/10.48550/arXiv.2203.16032

	Introduction
	Dataset and Task
	Gaussian Processes
	XLM-RoBERTa for Regression
	Feature Selection
	A Hybrid System
	Training and Results
	Discussion
	Conclusion
	Appendix

