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Abstract

In this paper, we describe our submission to the
’Text Complexity DE Challenge 2022’ shared
task on predicting the complexity of German
sentences. We compare performance of differ-
ent feature-based regression architectures and
transformer language models. Our best candi-
date is a fine-tuned German Distilbert model
that ignores linguistic features of the sentences.
Our model ranks 7th place in the shared task.1

1 Introduction

Texts are a basic form of human information ex-
change. Too high of a text complexity, however,
can result in text comprehension failures (Bormuth,
1966) and therefore miscommunication. Text com-
plexity and readability assessment are a long known
problem and several computational approaches
and metrics have been proposed (Dascalu, 2012;
Hancke et al., 2012; Collins-Thompson, 2014), re-
lying on different linguistic features and primarily
aiming at English.

Among other application objectives, an adequate,
quantificational metric for text complexity can be
of high benefit to the educational domain (as a
means of providing textual material according to
student levels), writing support systems (as feed-
back) or for other natural language processing tasks
like estimating the complexity of the output of
text simplification systems or chatbots. Most re-
lated tasks focus either on the prediction of com-
plex words (Paetzold and Specia, 2016; Shardlow
et al., 2021) or the assessment of readability lev-
els (Collins-Thompson, 2014). However, the goal
of the ’Text Complexity DE 2022’ shared task is
the prediction of an empirically determined com-
plexity score called ’Mean Opinion Score’ (MOS)
for German sentences. Overall, our best model is
ranked on the 7th place out of 10. In the following,

1Our code is available at
https://github.com/Vipitis/HHUplexity

we present the approach and results of our team
"HHUplexity" in more detail.

1.1 Shared Task Data
The training data (Naderi et al., 2019) for the shared
task contains 1000 sentences from 25 Wikipedia
texts. The development data and test data contain
100 and 210 sentences, respectively, for which the
document distribution is not known. The sentences
were rated by German language learners (between
CEFR level A and B) on a 7 point Likert-scale
regarding their complexity (1 – very easy to 7 – very
complex). The arithmetic mean of these ratings
is the target score – MOS score – of the shared
task. 7.6% of the training samples are rated as very
easy (score = 1), whereas 20.3% are rated as rather
complex (score > 4) and 3.4% have a score higher
than 5.

The root mean squared error (RMSE) after third
order mapping as well as a more balanced RMSE
score (RMSE𝑚𝑎𝑝𝑝𝑒𝑑) are used to evaluate the pre-
dicted MOS scores (Mohtaj et al., 2022).

2 Method

Our main approach is to combine hand-crafted fea-
tures with text embeddings of language models.
Therefore, we have calculated several features as
described in subsection 2.1. To compare the effect
of these features in combination with language mod-
els, we follow two baseline approaches: i) training
different regression models with the features (see
subsection 2.2), and ii) fine-tuning language models
without features (see subsection 2.3). Afterwards,
we combine the features with the language models
in a multimodal model (see subsection 2.4).

2.1 Features
We calculate 349 features of seven main categories:
features based on length, readability assessment fea-
tures, features based on language proficiency, mor-
phological features, syntactic features, morphosyn-
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number of words [♠]
number of types
number of characters [♠]
number of syllables [♠]
avg. word length in characters
max. word length in characters
avg. word length in syllables
number of sentences

R
ea

da
bi

lit
y

Flesch Reading Ease Score [♥]
Flesch-Kincaid Grade Level [♥]
Dale-Chall Readability Score
Linsear Write Formula
Automated Readability Index
difficult words

M
or

ph
ol

og
ic

al ratio of negations & negated words
ratio of compounded words & nouns
number of nominalizations
N-gram frequencies
ratio of nouns in cases

M
or

ph
os

yn
ta

ct
ic number of verbs, auxiliaries, nouns, pronouns

ratio of coarse-grained POS-tags [⬥] [♣]
ratio of fine-grained POS-tags (STTS) [⬥] [♣]
noun-to-verb ratio
number of stop words [◀]
ratio of function words [◀]
ratio of named entities

Feature

Sy
nt

ac
tic

max. depth of the dependency parse tree [◀]
max. & avg. distance between tokens in the parse tree
max. & avg. distance between verbs and verb particles in the parse tree
avg. length of NP & VP & PP [⬥]
± projective parse tree [▶]
± head of the parse tree is a noun or verb [▶]
± one child of the head of the parse tree is a subject [▶]
± passive voice [⬥]
± subjunctive mood [⬥]
ratio of multi-word expressions [▶]
number of clauses
ratio of all tokens of coordinating & subordinating clauses [⬥]
ratio of tokens marking relative clauses [⬥]
ratio of tokens marking prepositional phrases [⬥]
ratio of tokens marking referential phrases [▶]

Le
xi

ca
l

ratio of words that are in the vocabulary lists for CEFR levels A1, A2, & B1
type-token ratio [◀]
avg. lemma frequency & rank (based on deCOW)
lexical complexity based on ranks of German FastText embeddings [♥]
max. and avg. rank in the German FastText embeddings [♥]

O
th

er

perplexity score (based on GerPT2)
label of target group and their softmax scores predicted by a fine-tuned model
on this labeling task
cosine similarity between original sentence and backtranslated sentences
into German from English, Turkish, Hungarian, Chinese, and Georgian
avg. imagebility and concreteness score [◀]

Table 1: Overview table of all features per category. The symbols stand for the papers in which the features were
introduced: [♠] Scarton et al. (2018), [♥] Martin et al. (2018), [♣] Kauchak et al. (2014), [⬥] Gasperin et al. (2009),
[◀] Collins-Thompson (2014), [▶] Stodden and Kallmeyer (2020).

tactic features, and other features. An overview
of all features is provided in Table 1. In general
we find that 78% of the features have a significant
Pearson correlation with the MOS target value (p-
value > 0.05). Of those 66% have a weak cor-
relation (|𝑟| < .4), 21% a moderate correlation
(.4 ≤ |𝑟| < .6) and 12% a strong correlation
(.6 ≤ |𝑟|).

However, several features are absolute count fea-
tures such as e.g. syllables or character count that
depend on sentence length. If one transforms these
features into proportional features the rate of fea-
tures having a significant Pearson correlation with
the MOS target value drops to 57%.

Features based on Length. As basic features to
estimate the complexity of a sentence, we consider
the length of the sentence (in words, syllables and
characters) and the length of the words (in syllables
and characters).

Readability Assessment Features. The length
of words and sentences can also be jointly used to
estimate text complexity within traditional readabil-
ity formulas for texts, e.g., Flesch Reading Ease

score or Flesch-Kincaid Grade Level.2 The estab-
lished readability metrics have been calculated for
the original German sentences as well as for auto-
matically translated English sentences (altogether
24 features). It turns out that the German scores
correlate better than or equally well as the English
scores with the exception of the Dale-Chall Read-
ability Score. While Dale-Chall shows no signifi-
cant correlation with the MOS-values for the Ger-
man sentences it correlates with 𝑟 = 0.392 for the
English sentences.

It turns out that these quite simple formulas lead
to the features with the strongest MOS-correlations.
Only four significant features have a Pearson cor-
relation 𝑟-value above 0.7 of which three are estab-
lished readability scores: Linsear Write Formula
with 𝑟 = 0.745, difficult words with 𝑟 = 0.741, Au-
tomated Readability Index (ARI) with 𝑟 = 0.706,
and number of words 𝑟 = 0.701.

Lexical Features and Features based on Lan-
guage Proficiency. Even if a word is short, it
can be still unknown to a user and, therefore, diffi-
cult to understand. In our work, we include some

2We use several readability metrics of the textstat package
(https://pypi.org/project/textstat/).
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lexical and language proficiency-based features to
estimate the complexity of a sentence based on the
choice of words. Simple words are often frequent
and complex words more infrequent, so word fre-
quency might help to estimate the complexity of a
sentence (Martin et al., 2018; Collins-Thompson,
2014). We follow two approaches, first, we obtain
the frequency and rank per lemma based on the
deCOW-corpus (Bildhauer and Schäfer, 2014) and
build the average of them per sentence. Second, we
measure the lexical complexity based on the word
ranks in the German FastText Embeddings as well
as obtaining the highest and average position of the
tokens in the sentence.

Additionally, we select vocabulary lists per
CEFR level A1, A2, B1 by the Goethe institute3

and measure the ratio of words in the input sentence
that can be found in the CEFR vocabulary lists. Vo-
cabulary lists for other CEFR levels have not been
available. The correlations with the empirical MOS-
values indicate that the study participants judging
the complexity are familiar with the vocabulary up
to the B1 level. All three correlations (ratio of A1
/ A2 / B1 vocabulary words) are negative and lie
in the range −0.35 ≤ 𝑟 ≤ −0.4. That is the higher
the proportion of A1/A2/B1 vocabulary words, the
less complex the participants judged the sentence.

Morphological Features. Besides the length and
the choice of the words, a morphological analysis
of words can be helpful to assess the complexity
of the sentences. For example, some morphemes
can drastically change the meaning of a word, e.g.,
negation prefixes ("irr-" or "un-"), nominalization
suffixes ("-heit" or "-keit"), or one-token compound
nouns ("Staubecken", "Dampfschiff"). Therefore,
we calculate the number of nominalizations, nega-
tions based on a fix list of affixes, count the number
of n-grams4, as well as the ratio of compounded
words5. Furthermore, we include the ratio of nouns
per case, as the genitive is often difficult to un-
derstand. The non-ngram morphological features
exhibit a significant but weak correlation with the
MOS-values.

Syntactic Features. Besides an analysis of the
words, an analysis of the structure of a sentence
can give additional insights into its complexity be-

3https://www.goethe.de/de/spr/kup/prf/prf.html
4We consider all uni-grams in the training data (char vocab),

and top k n-grams for k=20, n=2, 3, 4, 5.
5The compounded words are obtained by

https://github.com/repodiac/german_compound_splitter.

cause some syntactic structures take longer to pro-
cess and comprehend (Gibson, 1998). To reflect
syntactic complexity in our features, we measure
the maximum depth of the dependency parse tree,
maximum and average distances between words
and number of clauses.6 Based on Gasperin et al.
(2009), we add the average length of noun, verb,
and prepositional phrases, and whether the sentence
is written in active or passive voice and indicative
or subjunctive mood. Furthermore, we check some
regularities in the parse tree based on Stodden and
Kallmeyer (2020) (see Table 1). Based on the parse
tree, we also count the ratio of multi-word expres-
sions and ratio of all tokens of some clauses (see
Table 1). Maximum tree depth has the strongest
correlation (𝑟 = 0.583) with the MOS-values. Tree
width features like average NP or VP length show
a moderate positive correlation as well (𝑟 ≈ 0.4).
A negative correlation is found for the number of
clauses normalized by sentence length (𝑟 = −0.46).

Morphosyntactic Features. Part-of-speech
(POS) tags combine some morphological infor-
mation with syntactic information, therefore we
use the number and ratio of coarse-grained /
fine-grained POS tags and noun-to-verb ratio to
estimate the sentence complexity as similar as in
Gasperin et al. (2009) and Kauchak et al. (2014).
Following Collins-Thompson (2014), we also
include the ratio of function words and stop words
to all tokens as a feature. However, none of these
features has a moderate or strong correlation with
the MOS-score.

Psycholinguistic Features. In readability liter-
ature, psycholinguistic-based features are often
named as relevant features (Collins-Thompson,
2014; Davoodi and Kosseim, 2016). In our
work, we obtain the imageability and concrete-
ness of each word per sentence based on the Con-
creteness and imageability lexicon MEGA.HR-
Crossling (Ljubešić, 2018) and measure the average
per sentence as another feature. Both of these fea-
tures do not show a moderate or strong correlation
which might be due to the absence of the words of
the sentences in the chosen resources.

Perplexity Feature. We calculate the perplexity
of the sentence with "GerPT-2"7. The higher the
perplexity score, the harder to predict the seen sen-

6The number of clauses is heuristically derived by the
clause-splitting method described in Dönicke (2020).

7https://huggingface.co/benjamin/gerpt2
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tence and the more unlikely is the input sentence
for the model. Hence, we hypothesize, the higher
the perplexity score, the more uncommon/complex
is the sentence. For the training data the hypothesis
can be confirmed but only by a weak correlation
(𝑟 = 0.214).

Translation-based Features. The idea is to test
whether translation difficulties indicate higher
MOS-values. Therefore, with GoogleTranslator
the sentences have been translated into English,
Turkish, Hungarian, Chinese, and Georgian and
backtranslated into German. These languages vary
in their morphological and syntactic similarity and
in their degree of genetic relationship to German.
For the original and the backtranslated sentences
contextualized embedding vectors have been deter-
mined with a transformer language model8. Finally,
the cosine similarity for the sentence pairs has been
calculated and added as a feature. It turns out that
only Georgian leads to a non significant feature (p-
value = 0.08), all others are significantly correlating
with the MOS-values indeed only weakly. The high-
est correlation is found for Chinese Simplified with
𝑟 = 0.146 and 𝑝 = 0.00.

Text Level. We fine-tune a 3-class text level clas-
sifier on the Lexica corpus (Hewett and Stede,
2021), a dataset with German Wikipedia texts for
three different target groups: younger children,
children and adults. From this dataset we sample
roughly 38k sentences (taken from roughly 1650 dif-
ferent texts), and fine-tune a German BERT model9
to predict one of the three labels: child, youth,
adult. The fine-tuned language model is applied
to the shared task dataset and the softmax scores
for the three labels, as well as the predicted la-
bels are used as additional text level features. All
four text level features have a rather high moderate
correlation with the MOS values: softmax adult
𝑟 = 0.589, softmax youth 𝑟 = −0.447, softmax
child 𝑟 = −0.519, and predicted label 𝑟 = 0.565.
The correlations show that the study participants
judge sentences as less complex if they have a
higher probability of being labeled as ‘child’ or
‘youth’ and as more complex the higher the proba-
bility of the label ‘adult’ is. This indicates that the
German language proficiency level of the partici-
pants is in between the youth and the adult level.

8https://huggingface.co/Sahajtomar/German-semantic
9https://huggingface.co/deepset/gbert-base

2.2 Predicting MOS from features

We have compared different methods to predict
MOS based on the features from the previous sec-
tion. To choose an appropriate model architecture
and hyperparameters, we train and test models on a
5-fold crossvalidation split of the shared task train-
ing data for which MOS scores are available. We
compare linear regression models with different
regularization (Ridge, ElasticNet), and XGBoost
(Chen and Guestrin, 2016). Because XGBoost
achieved the best crossvalidation performance by a
margin of > .05 RMSE compared to the other mod-
els, we only report results for this model. Using the
same 5-fold crossvalidation split, the best hyperpa-
rameters are determined. The best model is an XG-
BoostRegressor10 with n_estimators=2500, a
learning rate of eta=.005, and a max_depth of
5. This model achieves a RMSE of .545 (RMSE
mapped .502) on the final test data.

2.3 Fine-tuning

We have explored fine-tuning a language model
directly on the regression task using Huggingface’s
AutoModelForSequenceClassification for various
models available on Huggingface including English,
German and multilingual versions of BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019). To
select the best pre-trained model, we have trained
on 900 sentences of the training data and evaluated
RMSE on the remaining 100. With a learning rate
of 2 ∗ 10−5 and 5 epochs. Trading smaller batch
sizes for more steps led to better results where 10
did better than 30 or 50.
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Figure 1: Architecture of the multimodal model that
combines BERT embeddings with feature vectors

10https://docs.getml.com/1.1.0/api/getml.predictors.XGBoostRegressor.html
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2.4 Multimodal model
To combine text embeddings and numerical fea-
tures, we have written a custom version of Hugging-
face’s DistilbertForSequenceClassification heavily
inspired by Multimodal-Toolkit (Gu and Budhkar,
2021). BERT embeddings and text features are
combined by a feedforward neural network, the ar-
chitecture of which is displayed in Figure 1.

3 Results

RMSE
XGBoost no ngrams .545
XGBoost all feats .639
ElasticNet no ngrams .672
ElasticNet all feats .659
Ridge no ngrams .669
Ridge all feats .713
bert-base-cased .601
bert-base-german-cased .552
bert-base-german-dbmdz-cased .638
bert-base-multilingual-cased .565
distilbert-base-cased .600
distilbert-base-german-cased .486
xlm-roberta-base .511
distilbert-base-german-cased multimodal .622

Table 2: Results for all models. Boldface results indi-
cate performance on test data via a submission to the
evaluation system. In all other cases, the performance
is measured on a randomly selected held-out split of the
training data. The first line separates regression models
and fine-tuned language models, and the second line
separates the multimodal model.

Results are presented in Table 2. For feature-
based predictors, features and target MOS scores
are transformed by removing the mean and scaling
to unit variance. We find that gradient-boosting
methods (XGBoost) work significantly better than
linear models with ElasticNet or Ridge regulariza-
tion. As shown in Table 2, the ablation of n-gram
features clearly drops the RMSE score for XG-
Boost and Ridge regularization (> 0.04). XGBoost
without n-gram features achieves a RMSE𝑚𝑎𝑝𝑝𝑒𝑑
score of .502 on the test data. For fine-tuned mod-
els, distilbert-base-german-cased was trained on
990 sentences with batch size 10 and 5 epochs.
The submitted result reached .486 RMSE (.473
RMSE𝑚𝑎𝑝𝑝𝑒𝑑) on test data. When combining a
transformer language model and features (subsec-
tion 2.4), we found that our implementation did not
manage to improve results over the fine-tuning base-
line. The best submission for this method reached

.622 RMSE (.524 RMSE𝑚𝑎𝑝𝑝𝑒𝑑). A smaller feature
set based on their importance might improve the
results, similar as shown for the ablation of n-gram
features with XGBoost and Ridge regularization
(see Table 2).

3.1 Distribution of predictions

Figure 2: Distribution of MOS scores in the training
data (70 bins).

On crossvalidated results, we find that many of
our models do not predict the Gaussian distribution
of MOS scores with an additional peak at the low
end (Figure 2). All models correctly identify the
mean scores of the general dataset, but generally
tend to predict MOS scores of a lower standard de-
viation. Across feature-based models, the standard
deviation of predicted scores on validation data is
approximately 20% smaller than the standard devi-
ation of the gold labels. We do not know the true
labels of the validation and testing shared task data,
but assume that this systematic error is also present
in our submissions for these datasets.

4 Conclusion
In our contribution to the shared task, we have com-
pared predictions based on linguistic features with
an approach based on transfer learning, i.e., fine-
tuning a language model. We find that even though
linguistic features achieve relatively high correla-
tion with the MOS scores, they are outperformed by
a "simple" fine-tuned transformer language model.
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