
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 531 - 538
December 7, 2022 ©2022 Association for Computational Linguistics

Exploring a POS-based Two-stage Approach for Improving Low-Resource
AMR-to-Text Generation

Marco Antonio Sobrevilla Cabezudo and Thiago Alexandre Salgueiro Pardo
Interinstitutional Center for Computational Linguistics (NILC)

Institute of Mathematical and Computer Sciences, University of São Paulo
São Carlos/SP, Brazil

msobrevillac@usp.br, taspardo@icmc.usp.br

Abstract

This work presents a two-stage approach for
tackling low-resource AMR-to-text generation
for Brazilian Portuguese. Our approach con-
sists of (1) generating a masked surface real-
ization in which some tokens are masked ac-
cording to its Part-of-Speech class and (2) infill-
ing the masked tokens according to the AMR
graph and the previous masked surface realiza-
tion. Results show a slight improvement over
the baseline, mainly in BLEU (1.63) and ME-
TEOR (0.02) scores. Moreover, we evaluate
the pipeline components separately, showing
that the bottleneck of the pipeline is the masked
surface realization. Finally, the human revision
suggests that models still suffer from halluci-
nations, and some strategies to deal with the
problems found are proposed.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism that encodes the meaning of a
sentence into a labeled directed and rooted graph
(Banarescu et al., 2013). This representation com-
prises semantic information related to semantic
roles, named entities, and co-references, among
others.

AMR is a widely-studied research topic in the
semantic representation field and has been proven
helpful in many Natural Language Processing tasks
(Liao et al., 2018; Song et al., 2019). Its success is
partially based on its broad use of mature linguistic
resources, such as PropBank (Palmer et al., 2005),
and its attempt to abstract away from syntax. Fig-
ure 1 shows an example of an AMR graph and its
corresponding PENMAN notation for the sentence
“The boy must not go.".

AMR-to-text generation aims to “translate" an
Abstract Meaning Representation graph into its
corresponding text. This task has been widely tack-
led by diverse approaches, starting from statistical,
transducer-based and transition-based ones (Pour-

(o / obligate-01
:ARG2 (g / go-02

:ARG0 (b / boy)
:polarity -))

o / obligate-01

g / go-02

b / boy

-

:ARG2

:ARG0

:polarity

(A) Graph Representation

(B) PENMAN notation

Figure 1: AMR example for the sentence “The boy must
not go."

damghani et al., 2016; Flanigan et al., 2016; Lam-
pouras and Vlachos, 2017), until end-to-end neural
ones (Mager et al., 2020; Ribeiro et al., 2021a),
recently.

In particular, end-to-end neural models -mainly
those based on pre-trained models- have largely
outperformed the initial methods, achieving state-
of-the-art results (Ribeiro et al., 2021b). These
models can generate fluent text. However, they are
prone to generate hallucinations, i.e., texts that are
irrelevant to or contradicted with the input (Reiter,
2018).

Another drawback is that these models are usu-
ally data-hungry, i.e., they need to be trained on
a large dataset to achieve a good performance. It
can be a problem when we deal with low-resource
domains, languages, or tasks (Sobrevilla Cabezudo
and Pardo, 2022). Even when the results may be
better than those obtained by statistical methods,

531

they are still far from good results. For example,
Ribeiro et al. (2021b) show that fine-tuning T5
(Raffel et al., 2020) on a small portion of a big
dataset (∼500 instances) produces a ∼10-15 BLEU
score.

In general, an approach to have more control
over the decoding process (and avoid hallucina-
tions) is to use a pipeline-based method in which
the model of each pipeline’s module is imple-
mented with neural models (Castro Ferreira et al.,
2019; Ma et al., 2019; Puduppully and Lapata,
2021). Another alternative is to use templates, infill
concepts in these templates, and then define a strat-
egy to transform them into sentences/paragraphs
(Kasner and Dušek, 2020; Mota et al., 2020). Both
approaches have proven to be helpful in text gener-
ation tasks. However, the main issue for the latter
one is that it only can be applied in restricted do-
mains as it is necessary to define a set of templates.

In this work, we approach the AMR-to-text gen-
eration task in two stages. Firstly, generating a
masked surface realization in which some tokens
are masked according to its Part-of-Speech (POS)
classes. Then, finally, infilling the masked tokens
according to the AMR graph and the previous
masked surface realization1.

The intuition for masking some tokens this way
is that some POS classes are more difficult to be
predicted during text decoding and can harm the
performance. On the other hand, filling-in-the-
blank is commonly used on current SotA archi-
tectures, such as T5 (Raffel et al., 2020) during the
pre-training phase. This way, we can leverage the
learned knowledge to infill the masked tokens in
the previous stage adequately.

Experiments are conducted on low-resource an
AMR-to-text generation task for Brazilian Por-
tuguese (Inácio et al., 2022) to show how this
method behaves even when a large dataset is un-
available.

In general, our main contributions are:

• we propose a simple two-stage method that
consists of generating masked surface realiza-
tion and infilling the masked tokens with a
transformer-based architecture;

• we conduct a manual revision on the outputs
of the best approaches and the end-to-end ap-
proach.

1The code is available at https://github.com/
msobrevillac/DICO-AMR2Text.

2 Related Work

AMR-to-Text generation Modular approaches
have been mainly focused on converting AMR
graphs into syntax trees via transition-based meth-
ods (Lampouras and Vlachos, 2017), end-to-end
methods (Cao and Clark, 2019) or rule-based graph-
transducers (Mille et al., 2017) and use an off-the-
shelf method (neural or statistical) to generate the
text. These methods usually have got a low perfor-
mance on test sets (May and Priyadarshi, 2017).

AMR is more open-ended than other datasets
such as WebNLG (Gardent et al., 2017). This way,
extracting templates can be a complex task. Some
attempts to get templates in the form of rules are
presented by Flanigan et al. (2016) and Song et al.
(2017). However, these approaches need some
manually created rules and have been surpassed
by current models.

On the other hand, current neural models have
achieved SotA results. However, they need a large
dataset to get high performance. On the contrary,
a small portion of an extensive dataset produces
lower scores (Ribeiro et al., 2021a,b)2.

Data-to-Text generation Currently, most data-
to-text methods are based on end-to-end neural
approaches. In particular, methods that fine-tunes
a pre-trained model, such as BART (Lewis et al.,
2020) or T5 (Raffel et al., 2020), on its specific
generation task have achieved SotA results.

Other works have tried to approach this kind of
tasks using pipeline approaches (Castro Ferreira
et al., 2019; Ma et al., 2019; Puduppully and Lap-
ata, 2021) and template-based approaches (Kasner
and Dušek, 2020; Mota et al., 2020). In partic-
ular, pipeline approaches have advantages in low-
resource settings and unseen domains. On the other
hand, template-based approaches tend to infill the
templates with concepts and then use them to gen-
erate the complete sentence.

3 Experimental Setup

3.1 Dataset
We conduct all experiments on the journalistic sec-
tion of the AMR-PT corpus (Inácio et al., 2022)
(named AMRNews)3. The AMRNews corpus com-
prises 870 sentences with up to 23 tokens each from

2Ribeiro et al. (2021b) show an impressive improvement
using structural adapters. However, this is not part of this
study.

3AMRNews is freely available at https://github.com/
nilc-nlp/AMR-BP/tree/master/AMRNews.

532

https://github.com/msobrevillac/DICO-AMR2Text
https://github.com/msobrevillac/DICO-AMR2Text
https://github.com/nilc-nlp/AMR-BP/tree/master/AMRNews
https://github.com/nilc-nlp/AMR-BP/tree/master/AMRNews

Brazilian news texts manually annotated according
to adapted AMR guidelines (Sobrevilla Cabezudo
and Pardo, 2019). Besides, it is divided into 402,
224, and 244 instances for training, development,
and testing, respectively.

3.2 Architecture

Aiming to leverage the “fill-in-the-blank" potential
of current pre-trained neural models, we propose
a two-stage approach consisting of generating a
masked surface realization and then infilling the
masked tokens using a pre-trained model. Figure 2
shows an example of the whole process.

3.2.1 Masked Surface Realisation

The first stage involves generating a sentence corre-
sponding to an AMR graph in which some tokens
are masked. The idea behind this is that some to-
kens can be more difficult to be predicted. This
way, we can mask them and let the next stage com-
plete the masked tokens.

To decide what tokens should be masked, we use
Part-of-Speech-based criteria. This way, we group
all Part-of-Speech (POS) classes into main classes
according to their function. For example, pronouns,
nouns, and proper nouns are usually actors/places
in a sentence, while verbs represent relations. This
way, the main classes are: “substantivos" (nouns),
“verbos" (verbs), “qualificadores" (qualifiers), and
“outros" (others). Table 1 shows the main and POS
classes included in each.

Main Class Part-of-Speech
Substantivos (nouns) pronoun, noun, proper noun
Verbos (verbs) auxiliary verb, verb
Qualificadores (qualifiers) adverb, adjective
Outros (others) other Part-of-Speech

Table 1: Main and POS classes used in experiments

We train a model for each main class separately.
Besides, we train a model for all main classes to-
gether. The input consists of a prefix and an AMR
graph in the PENMAN notation (eliminating the
frameset numbers). We use the expression “mas-
carar X desde amr:" (“Mask X from amr:") as pre-
fix for each instance, where “X" is an specific main
class. The output is the corresponding sentence,
but words that belong to the target main class are
masked. Box 1 from Figure 2 shows an example of
this sub-task.

For experiments, we fine-tune the Portuguese

T5 (PTT5) (Carmo et al., 2020)4 on our corpus.
Among the hyperparameters, we use AdamW op-
timizer with a learning rate of 5e-4, a max source
and target length of 120 and 80 tokens, a batch
size of 8, and a gradient accumulation of 4. The
model trains by 12 epochs and is evaluated after
each epoch. We use perplexity as evaluation crite-
ria, and the training is halted if the model does not
improve after 4 epochs.

3.2.2 Word Infilling
The second stage in the pipeline consists of infill-
ing the masked tokens. In general, the task can be
defined as follows: given an AMR graph in a simi-
lar format to the one used at the previous stage and
a masked sentence, the model predicts the masked
words.

Each instance in the corpus is formatted as fol-
lows: a prefix, the AMR graph similar to the one
used in the previous stage, the word “contexto:"
(context), and the masked sentence. Box 2 from
Figure 2 shows an example of the input and out-
put. We use the expression “preencher amr:" (“fill
amr:") as prefix and train a model for each main
class separately and another model for all main
classes together.

Similar to the previous stage, we fine-tune PTT5
on our task. The main reason use PTT5 is that it
was pre-trained for a similar task (’filling-in-the-
blank’) (Carmo et al., 2020; Raffel et al., 2020).
This way, we aim to leverage the learned knowl-
edge in our use case. We use the same hyperparam-
eters as the used ones in the first stage; however,
we modify the source length to 200 tokens.

4 Results and Discussion

Table 2 shows the overall results for all the trained
models on test set in terms of BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
chrF++ (Popović, 2017), and BERTScore (Zhang
et al., 2020) evaluation metrics56. In addition, we
report the results for a baseline that generates sen-
tences with no masked tokens. This baseline is
obtained by fine-tuning PPT5 on our task. How-
ever, the input consists of a prefix “gerar texto
desde amr:" (“generate text from amr:"), followed

4Available at https://huggingface.co/unicamp-dl/ptt5-base-
portuguese-vocab.

5We execute 4 runs for each experiment and show the mean
and standard deviation.

6Metrics are calculated by using the code available at
https://github.com/WebNLG/GenerationEval.

533

https://github.com/WebNLG/GenerationEval

preencher amr: (a / alegar :arg0 (e / ela) :arg1 (p / possible :polarity - :arg1
(f / falar :arg0 ela-ref :arg1 (c / cliente :poss ela-ref)))) contexto: ela
<extra_id_0> que não <extra_id_1> <extra_id_2> sobre seus clientes .

mascarar verbos desde amr: (a / alegar :arg0 (e / ela) :arg1 (p / possible
:polarity - :arg1 (f / falar :arg0 ela-ref :arg1 (c / cliente :poss ela-ref))))

ela <extra_id_0> que não <extra_id_1> <extra_id_2> sobre seus clientes .

<extra_id_0> alega <extra_id_1> pode <extra_id_2> falar

IN:

OUT:

IN:

OUT:

(a / alegar-01
:ARG0 (e / ela)
:ARG1 (p / possible-01

:polarity -
:ARG1 (f / falar-01

:ARG0 e
:ARG1 (c / cliente

:poss e))))

Ela alega que não pode falar sobre seus
clientes.
(She claims she can't talk about her
customers.)

(A) AMR (B) Reference
1

2

Figure 2: Pipeline Example. Box 1 describes the input and output for the masked surface realization module, and
Box 2 illustrates the input and output for the word infilling module.

by an AMR graph represented by the PENMAN
notation in a similar way as all already mentioned
models, and the output is the original sentence.

Overall, results show a slight improvement over
the baseline when we use the model trained on all
main classes, mainly in BLEU (+1.63) and ME-
TEOR (+0.02) scores. Moreover, the best main
classes to be masked seem to be “verb" and “quali-
fier". On the other hand, masking nouns and other
POS classes harm the decoding performance. We
might interpret this result as the characters in a sen-
tence, and some connections between chunks are
the most important in the realization of a sentence.

Another point to note is that it is better to train
models on all main classes together instead of sep-
arately. A possible explanation is that more data
can lead to better results. Also, examples from
other main classes serve as negative examples for
a specific main class, and it helps to improve its
performance.

In order to verify which stage of the pipeline
is affecting the overall performance, we evaluate
each module separately. Table 3 and 4 shows the
performance on both modules in terms of BLEU,
METEOR and chrF++. However, for word infill-
ing, we only evaluate BLEU-2 and BLEU-3, as the
number of tokens to be predicted is three as most.

In addition, we evaluate METEOR.

Concerning the Mask Surface Realization task,
Table 3 indicates that verb masking leads to the
best performance. A possible explanation for this
result is that, as mentioned before, participants, sit-
uations, or locations in a sentence and connections
between chunks are the most important and the
easiest classes to predict during decoding. Also,
it is worth noting that the verbs and qualifiers are
less frequent in our dataset, as we can find 1.37-
1.47 verbs/qualifiers per sentence. Therefore, it can
make decoding easier than nouns (2.23 nouns per
sentence).

Table 4 shows the opposite result, as the verb
infilling is the most challenging task. However,
we note that the values for BLEU-3 in the case
of nouns and others are small. This way, it can
confuse the infilling order in sentences with more
tokens belonging to these classes. Moreover, we
note that METEOR score for verbs less penalizes
the performance (in comparison with BLEU), sug-
gesting that the model can predict a different con-
jugation of the expected word.

It is worth noting that, in general, the bottle-
neck of the whole pipeline is the masked surface
realization task, as values are similar to the over-
all performance. Even the verb-focused decoding,

534

BLEU METEOR chrF++ BERTScore
Baseline 10.39 ± 0.48 0.29 ± 0.01 0.41 ± 0.01 0.82 ± 0.00

SEP

Noun 5.32 ± 0.56 0.22 ± 0.01 0.35 ± 0.01 0.80 ± 0.01
Verb 8.95 ± 1.46 0.27 ± 0.01 0.39 ± 0.02 0.81 ± 0.00
Qualifier 9.44 ± 0.87 0.27 ± 0.01 0.39 ± 0.01 0.81 ± 0.00
Other 8.21 ± 0.99 0.27 ± 0.01 0.39 ± 0.02 0.81 ± 0.01

ALL

Noun 8.87 ± 0.69 0.28 ± 0.01 0.40 ± 0.02 0.81 ± 0.01
Verb 12.02 ± 2.13 0.31 ± 0.03 0.42 ± 0.03 0.83 ± 0.01
Qualifier 10.34 ± 1.34 0.30 ± 0.02 0.42 ± 0.02 0.83 ± 0.01
Other 7.74 ± 1.71 0.28 ± 0.01 0.42 ± 0.02 0.81 ± 0.00

Table 2: Overall Results on test set. Experiments in block “SEP" are the ones in which a model is trained on each
main class separately, and “ALL" are the ones in which a model is trained on all main classes together, but we
evaluate it individually.

having the worst performance on the word infilling
task, achieves the highest performance because the
previous task gets the best one. A possible expla-
nation for this problem is how the generation is
performed. We use an encoder-decoder architec-
ture in which the generation of a token depends on
the previously generated tokens. This way, adding
mask tokens in training could make it more diffi-
cult as the pre-trained model never saw these tokens
in a generation task (these were used for training
the blank infilling task). Among the alternatives to
solve this issue, we could explore other strategies to
determine the less confident tokens in a generated
sentence and mask them for the next stage. Also,
we could try a non-autoregressive model that can
overcome the problem of dependency mentioned
before (Su et al., 2021).

BLEU METEOR chrF++

SEP

Noun 6.90 ± 1.05 0.45 ± 0.02 0.48 ± 0.02
Verb 10.91 ± 0.48 0.42 ± 0.02 0.47 ± 0.02
Qualifier 8.43 ± 0.82 0.30 ± 0.01 0.39 ± 0.01
Other 10.11 ± 0.74 0.53 ± 0.03 0.56 ± 0.03

ALL

Noun 9.41 ± 1.65 0.49 ± 0.03 0.51 ± 0.03
Verb 12.31 ± 1.52 0.45 ± 0.03 0.49 ± 0.04
Qualifier 10.31 ± 1.27 0.32 ± 0.03 0.40 ± 0.03
Other 10.22 ± 2.67 0.54 ± 0.04 0.56 ± 0.04

Table 3: Results on Mask Surface Realisation on dev
test.

5 Manual Revision

We conduct a manual revision of the outputs for
each model in order to check the main and most
common errors. In particular, we select the two best
models in our experiments, i.e., the ones trained
on all main classes but focusing on masking/filling
verbs and qualifiers.

BLEU-2 BLEU-3 METEOR

SEP

Noun 33.80 ± 3.83 11.45 ± 3.33 0.46 ± 0.03
Verb 18.53 ± 2.22 - 0.41 ± 0.01
Qualifier 44.98 ± 9.12 - 0.57 ± 0.01
Other 40.35 ± 3.99 18.48 ± 4.02 0.52 ± 0.02

ALL

Noun 41.20 ± 3.07 22.20 ± 3.43 0.57 ± 0.02
Verb 20.95 ± 3.77 - 0.50 ± 0.02
Qualifier 39.05 ± 10.21 - 0.65 ± 0.01
Other 40.90 ± 4.70 19.55 ± 4.13 0.53 ± 0.03

Table 4: Results on Word Infilling on dev set

We analyze 35 instances from the test set and
classify the outputs into four classes: (1) Accu-
rate (“Acc"), for accurate outputs,(2) Hallucination
(“Hall"), for outputs that are not related to the refer-
ence, (3) Cut chunk, for outputs that contains only
a portion of the reference, and (4) Small Changes,
for outputs with slightly different from the refer-
ence (some tokens are different). Table 5 shows the
frequency of each class for all evaluated models.

In general, the model trained on all main classes,
but focusing on verbs got the best results. It is
worth noting the high number of hallucinations in
all models, mainly when longer sentences are eval-
uated. Also, the cut chunks happen in the same
cases. Moreover, there are several instances where
only changing a simple word (or two) would be
necessary to make the output similar to the ref-
erence. This problem happens mainly with con-
nectors such as “em" (“in" or “at") or “de" (“of")
(words highlighted in red in Figure 3) and with bad
conjugations in the case of the verbs.

Figure 3 shows three examples. The first exam-
ple shows that the model focused on verbs gets an
accurate output (example 1). The second example
shows that the outputs for models focused on verbs
and qualifiers can generate paraphrases instead of

535

Acc Hall Cut Chunk Small Changes
Baseline 9 16 4 6
ALL-Verb 14 12 1 8
ALL-Qualifier 9 18 1 7

Table 5: Number of accurate outputs ("Acc") and errors
in the human evaluation.

the same sentence; however, these are accurate too.
Finally, the third example is a case in which the
models generate hallucinations (“eua investiram
em 2010."), outputs with cut chunks (“investir em
os eua.") or small changes.

Reference

Baseline

ALL-Verb

ALL-Qualifier

nada disso é criminoso .
none of this is criminal.
nada de isso .
none of that.
nada de isso é criminoso .
none of this is criminal.
nada de criminoso .
nothing criminal.

Reference

Baseline

ALL-Verb

ALL-Qualifier

no vestiário , passou mal .
in the locker room , he felt sick .
passou mal .
he was feeling sick
ele passou mal no vestiário .
he got sick in the locker room.
passou mal no vestiário .
he got sick in the locker room.

Reference

Baseline

ALL-Verb

ALL-Qualifier

desde 2010 , o empresário investe nos eua .
since 2010, the businnessman invests in the usa.
eua investiram em 2010 .
usa invested in 2010.
investir em os eua .
invest in the usa.
em 2010 , o empresário não investiu no eua .
in 2010, the businessman did not invest in the usa.

Figure 3: Outputs comparison between the reference,
the baseline, and the two best models in our experiments.
The first lines for each model are the sentences gener-
ated in Brazilian Portuguese, and the next ones are the
corresponding English translations.

6 Conclusion and Further Work

This work presents a simple two-stage approach
to the low-resource AMR-to-text generation task.
The approach consists of generating a masked sur-
face realization in which some tokens are masked
according to a POS class criteria and infilling the
masked tokens according to the AMR graph and
the previous masked surface realization.

Results show a slight improvement over the base-
line, mainly in BLEU (1.63) and METEOR (0.02)
scores. However, it is necessary to fine-tune the
model on all the sub-corpus created together. Be-
sides, we can note that verb masking seems to be
the best strategy in this approach.

On the other hand, we note that the bottleneck
of this approach is the masked surface realization
model, as some generated tokens are different and
unrelated to the original reference (hallucinations),
and some tokens are omitted from the original refer-
ence. Some possible explanations for this problem
are how the generation is performed -as each out-
put word is conditioned on previously generated
outputs-and the need to constrain the decoding pro-
cess.

As further work, we plan to explore strate-
gies to enforce the model to cover all the AMR
concepts in the masked generated sentence and
non-autoregressive text generation with pre-trained
models, similar to Su et al. (2021). Besides, we
plan to explore other strategies to mask tokens ac-
cording to its confidence in decoding instead of
using a POS-based one as the later can add more
complexity to the task. Finally, we plan to extend
this work to English AMR corpus, in order to make
a better comparison in terms of generalization.

Limitations

This work tackles the AMR-to-Text generation task
with a pipeline approach, and the results are similar
to those obtained for previous work with the same
amount of data (∼10-15 BLEU score). However,
the performance could be different as the lengths
of the sentences in our task are up to 23 tokens, and
the sentences evaluated in works for English are
longer.

Other limitation is related to the criteria used
for masking some tokens as it can introduce more
complexity, mainly for low-resource languages.

Acknowledgments

The authors of this work would like to thank the
Center for Artificial Intelligence (C4AI-USP) and
the support from the São Paulo Research Founda-
tion (FAPESP grant 2019/07665-4) and from the
IBM Corporation. Besides, this research carried
out using the computational resources of the Center
for Mathematical Sciences Applied to Industry (Ce-
MEAI) funded by FAPESP (grant 2013/07375-0).

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic

536

Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Kris Cao and Stephen Clark. 2019. Factorising AMR
generation through syntax. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2157–2163, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Diedre Carmo, Marcos Piau, Israel Campiotti, Rodrigo
Nogueira, and Roberto Lotufo. 2020. Ptt5: Pretrain-
ing and validating the t5 model on brazilian por-
tuguese data. arXiv preprint arXiv:2008.09144.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. Generation from abstract meaning
representation using tree transducers. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 731–739, San
Diego, California. Association for Computational
Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Marcio Lima Inácio, Marco Antonio Sobrevilla
Cabezudo, Renata Ramisch, Ariani Di Felippo, and
Thiago Alexandre Salgueiro Pardo. 2022. The amr-pt
corpus and the semantic annotation of challenging
sentences from journalistic and opinion texts. Sci-
ELO Preprints.

Zdeněk Kasner and Ondřej Dušek. 2020. Data-to-text
generation with iterative text editing. In Proceed-
ings of the 13th International Conference on Natural
Language Generation, pages 60–67, Dublin, Ireland.
Association for Computational Linguistics.

Gerasimos Lampouras and Andreas Vlachos. 2017.
Sheffield at SemEval-2017 task 9: Transition-based
language generation from AMR. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 586–591, Vancouver,
Canada. Association for Computational Linguistics.

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An automatic metric for MT evaluation with high
levels of correlation with human judgments. In Pro-
ceedings of the 2nd Workshop on Statistical Machine
Translation, pages 228–231, Prague, Czech Republic.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li,
Jie Zhou, and Xu Sun. 2019. Key fact as pivot: A
two-stage model for low resource table-to-text gener-
ation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
2047–2057, Florence, Italy. Association for Compu-
tational Linguistics.

Manuel Mager, Ramón Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. GPT-too: A
language-model-first approach for AMR-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1846–1852, Online. Association for Computa-
tional Linguistics.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 task 9: Abstract Meaning Representation pars-
ing and generation. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 536–545, Vancouver, Canada.
Association for Computational Linguistics.

Simon Mille, Roberto Carlini, Alicia Burga, and Leo
Wanner. 2017. FORGe at SemEval-2017 task 9:
Deep sentence generation based on a sequence of
graph transducers. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 920–923, Vancouver, Canada.
Association for Computational Linguistics.

Abelardo Vieira Mota, Ticiana Linhares Coelho da
Silva, and José Antônio Fernandes De Macêdo. 2020.
Template-based multi-solution approach for data-to-
text generation. In Advances in Databases and Infor-
mation Systems: 24th European Conference, ADBIS
2020, Lyon, France, August 25–27, 2020, Proceed-
ings, page 157–170, Berlin, Heidelberg. Springer-
Verlag.

537

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob.
2016. Generating English from abstract meaning rep-
resentations. In Proceedings of the 9th International
Natural Language Generation conference, pages 21–
25, Edinburgh, UK. Association for Computational
Linguistics.

Ratish Puduppully and Mirella Lapata. 2021. Data-
to-text Generation with Macro Planning. Transac-
tions of the Association for Computational Linguis-
tics, 9:510–527.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Ehud Reiter. 2018. Hallucination in neural NLG.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021a. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021b. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4269–4282, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Marco A. Sobrevilla Cabezudo and Thiago A.S. Pardo.
2022. Low-resource amr-to-text generation: A study
on brazilian portuguese. Procesamiento del Lenguaje
Natural, 68.

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo.
2019. Towards a general abstract meaning representa-
tion corpus for Brazilian Portuguese. In Proceedings
of the 13th Linguistic Annotation Workshop, pages
236–244, Florence, Italy. Association for Computa-
tional Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine
translation using amr. Transactions of the Associa-
tion for Computational Linguistics, 7:19–31.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. AMR-to-text gener-
ation with synchronous node replacement grammar.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 7–13, Vancouver, Canada.
Association for Computational Linguistics.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021. Non-
autoregressive text generation with pre-trained lan-
guage models. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 234–243,
Online. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

538

https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/

