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Abstract

This paper describes insights into how different
inference algorithms structure discourse in im-
age paragraphs. We train a multi-modal trans-
former and compare 11 variations of decod-
ing algorithms. We propose to evaluate image
paragraphs not only with standard automatic
metrics, but also with a more extensive, “under
the hood” analysis of the discourse formed by
sentences. Our results show that while decod-
ing algorithms can be unfaithful to the refer-
ence texts, they still generate grounded descrip-
tions, but they also lack understanding of the
discourse structure and differ from humans in
terms of attentional structure over images.

1 Introduction

What are the properties of the well-generated text?
This question has been in the centre of many de-
bates in the natural language generation community
(Dale and White, 2007; Gatt and Krahmer, 2018).
While human evaluation has always been the gold
standard in the quality assessment of generated
texts, the field is often reluctant to run such evalua-
tion due to the lack of standardisation in evaluation
reports and generally high cost (Howcroft et al.,
2020). Therefore, a number of simpler and cheaper
automatic metrics were introduced, specifically in
the field of machine translation, although their va-
lidity has been questioned (Reiter and Belz, 2009).

As computer vision and NLP started to merge,
automatic metrics became an important part of the
evaluation process of image descriptions. In gen-
eral, image descriptions are evaluated with means
of BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), ROUGE (Lin, 2004), CIDER

(Vedantam et al., 2015) and WMD (Kusner et al.,
2015). However, Kulkarni et al. (2011) and Elliott
and Keller (2014) have demonstrated that such met-
rics only weakly correlate with human judgements
in the context of image description generation task.
The discrepancy between human and automatic

evaluation is deeply rooted in the differences be-
tween the fields of machine translation which orig-
inally introduced aforementioned metrics and im-
age captioning, which adopted them. In principle,
text-only evaluation is highly constrained: the key
requirement for high-quality translation is the per-
severance of semantics between two parallel texts.
In comparison, evaluation of texts generated in
multi-modal tasks is influenced by many factors
as the generated texts might mention a different
set of objects, attributes and relations which are
not described in reference texts. Such generations
would cause low values from reference-based met-
rics, although they could be completely plausible
and truthful to the image. As such, the tasks of
machine translation and image captioning are in-
herently dissimilar in terms of evaluation. To mit-
igate this problem, metrics that directly compare
texts against image objects have been proposed
(Jiang et al., 2019; Madhyastha et al., 2019; Wang
et al., 2021; Hessel et al., 2021). They are typi-
cally better than BLEU in that they assign a more
accurate score to image-correct descriptions. A
relatively recent trend has been to develop a set
of metrics that would evaluate goal-oriented cap-
tions, produced with specific communicative intent
(Inan et al., 2021) or for a specific group of users
(Fisch et al., 2020), for example, if an image of a
snowdrop is described as “the spring flower”.

A notable feature of the aforementioned met-
rics is their sole focus on evaluation of image cap-
tions. Different from captions, multi-sentence im-
age descriptions impose additional challenges for
generation systems including understanding of the
textual discourse in the multi-modal context. Anal-
ysis of discourse has been in the focus of both
text-only (Poesio et al., 2004; Poesio, 2004) and
language-and-vision tasks (Takmaz et al., 2020;
Dobnik et al., 2022). However, given a huge in-
terest in generation of longer image descriptions,
e.g. image paragraphs (Kong et al., 2014; Krause
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et al., 2017; Ilinykh and Dobnik, 2020), recipes
(Nishimura et al., 2019) and stories (Huang et al.,
2016), we believe it is important to gain a deeper
insight into how humans and models structure and
realise discourse in such descriptions. In this pa-
per, we understand discourse as a match between
linearisation of the semantic knowledge (e.g., a fit
of non-linear concepts into linguistic linear order)
and underlying planning (Reiter and Dale, 1997).
We build on previous intuitions about evaluation
in NLG and look under the hood of how differ-
ent decoding algorithms build discourse in image
paragraphs. We compare a number of decoding
strategies for correspondence with how humans
distribute and describe objects in longer texts. The
main purpose of this study is to gain insights into
whether decoding strategies generate texts similar
to humans and whether these texts exhibit the corre-
sponding discourse structure. There is a limitation
on what and how things can be communicated and
decoding algorithms have a direct control over it.
The choice of decoding algorithm also has an effect
on how information is expressed in the communica-
tive channel (Shannon, 1948) and how successful
its reconstruction by the perceiver will be (Lazari-
dou et al., 2017). Our results shed more light on the
differences between decoding algorithms in terms
of (i) the discourse structure, (ii) faithfulness to the
reference texts, (ii) groundedness into the image
and (iv) attentional structure.

2 On the importance of decoding

It is impossible to neglect the impact of the choice
of the decoding on the structure of the generated
texts1. Discourse in multi-modal descriptions can
be affected by many factors, including scene struc-
ture (Linde and Goguen, 1980), the desire to have
more accurate or more diverse texts (Massarelli
et al., 2020; Zhang et al., 2021) and aspects of the
task (Kiddon et al., 2016; Narayan et al., 2022).
Other constraints include adherence to a specific
topic as in poetry generation by controlling for
content and form (Hopkins and Kiela, 2017) and
incorporating pragmatic reasoning when describing
images with text (Cohn-Gordon et al., 2018; Vedan-
tam et al., 2017) or optimising model’s predictions
for a specific metric (Rennie et al., 2017; Gu et al.,
2017; Zarrieß and Schlangen, 2018) in the spirit
of reinforcement learning. Notably, Balakrishnan

1For a broader overview of the factors that influence infer-
ence in generation we refer the reader to Zarrieß et al. (2021).

et al. (2019) have shown that using tree-structured
semantic representations, similar to those used in
traditional rule-based NLG systems, helps to evalu-
ate generated texts during decoding for the specific
discourse. In this work, we describe analysis on
what and when different algorithms generate, com-
paring their outputs with the human gold standard.

3 Task and model

As our modelling task, we choose the task of image
paragraph generation and the Tell-me-more corpus
described in (Ilinykh et al., 2019). In this task, a hu-
man is given an image and five (5) text fields. The
describer writes sentences about the image so that
they help a potential listener to identify it within a
set. The describer is also asked to write sentences
in a sequence, keeping in mind that after each sen-
tence the listener needs more information to iden-
tify the image, e.g. thus, tell-me-more. Ilinykh
et al. (2019) show that collected multi-sentence de-
scriptions have a fixed intentional structure, in the
sense of Grosz et al. (1995), but attention structure
demonstrates a different behaviour as supported by
the analysis in (Dobnik et al., 2022).

As our model, we use the architecture of the
object relation transformer proposed by Herdade
et al. (2019)2. This is a two-stream multi-modal
transformer, which consists of three self-attention
blocks, operating on the image, text and across
modalities. Each block has the standard parts of
the transformer (Vaswani et al., 2017): multi-head
self-attention followed by a feed-forward network,
residual connection and layer normalisation.

On the vision side, the model takes the set of
pre-extracted visual features of detected objects,
which we receive by using the object detector re-
leased by Anderson et al. (2018)3 and pre-trained
on Visual Genome (Krishna et al., 2016). Specif-
ically, every object oj in the the set of detected
image objects O = (o1, . . . , o|O|) has a visual fea-
ture vn ∈ R1×D, where |O| = 36 and D = 2048.
In addition, we store other outputs of the object
detector, including object labels, attributes and con-
fidence scores. They will be used in later stages
to link paragraphs with objects in the image. The
benefit of the object relation transformer is its abil-
ity to encode complex geometric relations between
bounding boxes. Thus, we also extract the set of

2https://github.com/yahoo/object_relation_
transformer

3https://github.com/peteanderson80/
bottom-up-attention
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geometric features G = {x, y, w, h}, which are
fused with visual features inside the model4.

On the textual side, the model generates a para-
graph word by word in auto-regressive fashion.
Specifically, it takes the current token wj and con-
structs its representation based on previously gen-
erated tokens w1, . . . ,wj−1. All the future tokens
in the paragraph wj+1, . . . ,w|W| are replaced with
the MASK token, framing the task as the classic
next word prediction task. The generation starts
with the START token and ends when either the
maximum length of the paragraph L is reached or
when the END token is generated. As the last step,
representation from two self-attention blocks are
processed by the cross-attention which outputs the
probability of all tokens from the vocabulary V .

In terms of model’s parameters, we keep all of
them untouched, thus they correspond to the orig-
inal set of parameters described in Herdade et al.
(2019). We train the model on the full Tell-me-
more dataset, consisting of 3590 image-paragraph
pairs in the train set and 410 pairs in both vali-
dation and test sets. The analysis in this paper is
performed on the test set only.

4 Decoding algorithms

Given the model vocabulary V and L as the maxi-
mum length of the generated sequence, the space
of possible sequences has |V|L members, thus, be-
coming intractable. Rather than traversing through
such space, a number of different decoding meth-
ods are used to find the most likely sequence. The
most straightforward heuristics is to take the most
probable word w at timestamp j until either the
maximum length of the generated sequence w is
reached (L = 100) or the END token is generated.
We employ standard greedy search:

wj = argmax
w′

j

log p(w′j | w<j ,O; θ), (1)

where w<j = (w1, . . . ,wj−1) is the sequence of
previously predicted words, O = (o1, . . . , o|O|) is
the set of detected image objects and θ is the set
of model parameters. Despite its simplicity and
low complexity, greedy search is known for its sub-
optimality on the global sentence level (Gu et al.,
2017; Chen et al., 2018), often leading to gener-
ation problems such as the garden path sentence
issue (Gibson, 1991).

4We refer the reader to (Herdade et al., 2019) for more
details.

A more popular and standardized approach is
to use beam search, a version of the breadth-first
search, that tracks multiple candidate sequences
W = (w1, . . . ,wk) and chooses the one with the
highest cumulative probability score, frequently
computed as summation of word scores in each
sequence. Typically, the most probable sequence
is picked as the final one, but other sequences can
also be considered. The search starts with the word
sequence w1 = {START} and continues until the
length of every predicted sequence reaches the max-
imum length L or all of them are completed with
the END token:

wj = argmax log
w′

j ⊆Bj ,
|w′

j |= k

p(w′j | wj−1,O; θ). (2)

In beam search, the parameter k denotes the num-
ber of desired sequence candidates and B stands
for the set of sequences currently under generation.
Beam search is computationally more expensive,
but it is also more efficient in finding the optimal
sequence due to more sophisticated exploration of
the word space. However, bigger k often leads to
“safe” and generic texts and candidate generations
themselves can resemble each other a lot, lacking
diversity (Li et al., 2016) or becoming repetitive
(Holtzman et al., 2020).

The problems of beam search have been ad-
dressed by many different approaches, mostly fo-
cused on increasing intra-set diversity of gener-
ated sequences (Kulikov et al., 2019; Meister et al.,
2021). In one of such approaches, Vijayakumar
et al. (2018) propose to extend beam search by in-
corporating a dissimilarity term in the objective
function. Specifically, diverse beam search splits
beam sets into G groups W 1, . . . ,WG and at each
word generation timestamp j for every sequence in
the current group wg

j ∈ W g, it encourages diver-
sity with sequences from previous groups W h, h≤g

using a metric of dissimilarity ∆:

W g
j = argmax

∑

k∈ [B′]

log p(wg
k,[j])

+λ

g−1∑

h=1

∆(wg
k,[j], W

h
[j]), (3)

where B′ is the number of beams in each group,
λ is the parameter that controls the diversity, ∆ is
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the Hamming distance, which negatively penalises
sequences sharing identical n-grams. Diverse beam
search has been specifically designed to boost di-
versity in the multi-modal description generation
task, where focus is to mimic human texts with
shifts between many objects, relations and specific
details. However, as reported by the authors, the
best results in terms of diversity are achieved by
using a simple n-gram-based heuristics, which does
not take the multi-modal nature of the task into ac-
count. In addition, diversity is encouraged between
beam sets on the group level rather than between
sentences within a single group, limiting the scope
of diversity on the sentence level. Finally, the look-
up over groups is constrained to the current word
position at each generation step, shrinking the con-
text window for the currently generated word and
possibly capping the number of satisfactory gener-
ations at this timestamp.

A very different method to encourage more di-
verse output is to sample from the word distribution.
For obvious reasons pure sampling leads to incoher-
ent and grammatically incorrect texts. Therefore,
top-k sampling has been proposed by Fan et al.
(2018): the method cuts the probability distribution
and keeps the distribution p′ consisting of top k
tokens with the highest probability:

wj ∼ log p′(wj | w<j ,O; θ). (4)

A known issues with the top-k sampling algo-
rithm is that it is hard to find the optimal value
for the parameter k since setting it too low could
remove highly probable words or, on the contrary,
keep the less probable words if it is too high.

Instead of relying on pre-defined number of to-
kens, nucleus sampling (Holtzman et al., 2020)
takes words from the subset of the vocabulary in
which the defined probability mass is concentrated:

p′ =
∑

wj ∈V ′
log p(wj | w<j ,O; θ) ≥ p, (5)

where V ′ is the top-p part of the vocabulary V , in
which only the words that accumulate most of the
probability mass are kept. Parameter p is typically
used to define the maximum value of accumulated
probability. The original distribution is then re-
scaled and the next word is sampled from the new
distribution P :

P =

{
log p(wj | w<j ,O; θ)/p′ if wj ∈ V ′
0 otherwise.

(6)

The main advantage of nucleus sampling is its
ability to track the shape of the probability distribu-
tion, allowing for dynamic control of the number
of candidates at each timestamp. A different, but
related method to introduce controlled randomness
is to use temperature scaling. The diversity is
achieved by controlling the peaks in the distribu-
tion and dividing it by the parameter τ :

p(wj | w<j ,O; θ) =
exp(ϕj/τ)∑

wj∈V
exp(ϕj/τ)

, (7)

where ϕj is the logit for a word wj in the vocab-
ulary. Lower temperatures are known to enforce
the high probability events and choosing a proper
value for this parameter can lead to better texts in
terms of quality and diversity (Caccia et al., 2020).

We note that in this work we mainly focus on the
most frequently used decoding strategies, exclud-
ing analysis of the result of more direct manipula-
tions with texts such as length normalisation and
coverage penalty (Wu et al., 2016), n-gram block-
ing or introduction of the noise model (Hill et al.,
2016; Lample et al., 2018).

For our experiments with decoding algorithms,
we set the following set of parameters. We set the
beam size k = 2. Vijayakumar et al. (2018) argue
that setting setting G = k leads to the best results
in terms of generation with diverse beam algorithm,
therefore, we set G = k = 2 and λ equals 0.5. For
top-k sampling, we try multiple values for k, aiming
to investigate the impact of this parameter on gener-
ation. Specifically, we generate texts with k being
the value from the following set: {25, 50, 75, 100}.
For nucleus sampling, we set p to one of the fol-
lowing values: {25, 50, 95}. We also run pure sam-
pling with k = 100 and temperature scaling with
τ = 0.5. Our parameters for different inference
algorithms are chosen based on experiences from
the corresponding research that introduces these
algorithms. They also reflect our goal of evaluating
how results generated by different searches can be
affected by a single hyperparameter.

5 Linking

In the context of the image paragraph generation
task, discourse structure in texts is affected by both
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Metric g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

BLEU-1 37.16 30.79 33.82 34.57 33.84 33.91 36.48 34.11 34.36 33.61 37.08
BLEU-2 23.90 19.86 18.54 19.20 18.54 18.29 22.20 18.70 19.07 18.46 23.85
BLEU-3 15.53 13.13 10.07 10.77 10.09 9.99 13.67 10.30 10.67 10.25 15.51
BLEU-4 9.54 8.02 4.81 5.40 4.95 5.00 7.89 5.29 5.62 5.15 9.52
METEOR 14.22 12.97 12.53 12.79 12.53 12.46 14.00 12.67 12.80 12.58 14.20
ROUGE-L 30.64 30.71 23.86 23.77 23.56 23.29 28.48 23.15 23.75 23.79 30.55
CIDER 16.62 12.30 10.48 11.30 9.78 9.54 16.51 10.54 10.76 10.56 16.80
WMD 39.80 39.10 38.40 38.41 38.17 38.06 40.26 38.28 38.34 38.33 39.84

Table 1: Scores of automatic metrics for different inference algorithms. The best scores per metric are in bold,
while second best scores are in italics. The notation for searches should be read as follows throughout the paper:
“g” - greedy, “b2” - beam search with the width k = 2, “sk” - sampling, where k is the top tokens from which the
prediction is sampled, “st50” - sampling from the full probability distribution with temperature scaling τ = 0.5,
“np” - nucleus sampling with p denoting the part of the vocabulary with the most probability mass, “db2” - diverse
beam search with the width k = 2.

text and image. To evaluate such structure, we re-
quire a mapping between object descriptions and
objects in the image. While images in the Tell-me-
more corpus were originally annotated with objects
as part of the ADE20k corpus of house environ-
ments (Zhou et al., 2017), the descriptions were
collected separately, hence, there are no annota-
tions between texts and images. We decided to
map noun phrases and image objects automatically,
using linking, which is based on similarity between
object labels and noun phrases in texts5.

Primarily, linking is performed by taking both
attribute and object label from the object detector
and merging them into a single string, e.g. “white
couch”. Next, spaCy (Honnibal et al., 2020) is used
to extract noun phrases from image paragraphs, and
we seek to connect each noun phrase with one of
the objects in the image on ∈ O by embedding
them both with a Sentence Transformer (Reimers
and Gurevych, 2019) and comparing them based
on the cosine similarity with the threshold of 0.56.
If there are multiple similarity values that exceed
these threshold for a single noun phrase, we map
this phrase with the object that has the highest sim-
ilarity value. Otherwise, if the noun phrase is in
plural form, we map multiple objects that also share
the same lemma. We perform linking for both ref-
erence texts and texts generated by each of the
decoding algorithms.

6 Automatic evaluation

Table 1 shows scores for the most common met-
rics in multi-modal automatic evaluation. As we

5We use the linking from Dobnik et al. (2022).
6Different methods of linking noun phrases and object

labels have been evaluated in Ilinykh and Dobnik (2022).

can see, greedy search and diverse beam perform
the best. The worst performance is demonstrated
by a variety of sampling algorithms and, some-
what surprisingly, nucleus sampling. Beam per-
forms relatively well, achieving the highest score
in ROUGE-L. When looking at the example gener-
ations in Table 2, we see that beam search generates
very short sentences with fewer mentions of differ-
ent objects, which definitely has an effect on the
performance with n-gram-based metrics. Top-k
sampling generally performs worse when the sam-
pling size is increasing: CIDER score drops to
9.54 with sampling from the full distribution. Inter-
estingly, setting k to 50 improves the performance,
indicating that this value might be the optimal one
for this parameter. Nucleus sampling has a very sta-
ble performance with n50 showing the best scores.
We note that temperature scaling has a huge pos-
itive impact on the scores of sampling algorithm,
pushing it towards the performance of greedy and
diverse beam search. This might indicate that sam-
pling and its randomness can be successfully con-
trolled with the proper value for temperature.

The reason for a high performance of greedy
search could be its ability to generate the “safest”
words combined with the simplicity of the images
and the lack of surprisal in them. For example,
images in the dataset correspond to standard room
types and thus contain standard objects. This is a
blessing if we care about model’s ability to gener-
alise over the house environments, but also a curse
since occasionally a highly salient and surprising
object might appear in the images and searches will
not be able to describe it. We believe that our re-
sults show the inadequacy of automatic metrics in
measuring the sensitivity of inference algorithms
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ref there is a very large well made bed on the left. this looks like a hotel room. two lamps are on a
table on the right side. a window that you can barely see out of can be seen if you look straight
ahead. there is a picture on the wall to the left and another on the right side wall.

g this is a living room with a white couch and love seat. there is a white couch with a white and
white pillow. there is a coffee table in front of the couch. there is a glass coffee table in the
middle of the room. there is a picture hanging on the wall.

b2 this is a living room. there is a white couch. there is a white couch. there is a white coffee table.
there is a couch.

s25 this is a tv in UNK. the couches match the couches and bedspread is white. there are two green
UNK and there is a sofa table with pillows. there are two different decorative beige feet couch.

s50 a large room with a sofa for a coffee table. a four drawer rectangular coffee table sits full of glass
roses loveseat. a fireplace is on the left hand wall. a large telephone is near the couch. there are
two brown chairs sitting at the far end of the couch.

s75 its a formal living room. a glass sofa and ottoman. a glass table is behind the couch. the tv is
behind the sofa. a patterned sofa is on the right side of the one sofa.

s100 living room with a black couch with white print pillows underneath. coffee table piece of 2
candles hang on the back wall. green coffe coffee table lobby is sitting in the middle of the couch
by chair and books. decorative and an condition painted on the floor in color. light brown seat at
the back end of the room.

st50 this is a living room. the couches are white. there is a white couch. there is a coffee table. there is a white couch.

n25 this room is very neat and space. the couches have orange felt UNK around the mantel. on the right side of the picture contains red flowers.
theres a picture on the wall facing the sofa. theres a sofa on the wall.

n50 its a living room with a grey couch and upholstered sofa. theres a tv on the right side next to the couch. two dining chairs UNK facing the couch.
theres a coffee table in front of the couch and chair. theres a glass coffee table cloth and robe hanging in the middle.

n95 there is a stone seat in the photo. the sofa is white with UNK upholstery. a beige chair and orange chair chair a round coffee table but its not sailboat.
the couches fabric cover match the white accent pillows with a picture on the wall alongside them as the black chair and tan carpet.

db2 this is a living room with a white couch and love seat. there is a white couch with a white and white pillow. there is a coffee table in front of the couch.
there is a glass coffee table in the middle of the room. there is a picture hanging on the wall.

Table 2: Example of the image and paragraphs generated with different inference algorithms.

R

g b2 s50 st50 n50 db2
P S K P S K P S K P S K P S K P S K

BLEU_1 0.23 0.18 0.13 0.3 0.28 0.22 -0.01 -0.06 -0.03 -0.06 -0.03 -0.02 0.25 0.21 0.15 0.27 0.19 0.15
BLEU_2 0.21 0.17 0.12 0.34 0.28 0.2 -0.04 -0.16 -0.1 -0.13 -0.15 -0.11 0.14 0.1 0.06 0.3 0.19 0.14
BLEU_3 0.14 0.16 0.1 0.29 0.22 0.17 -0.05 -0.12 -0.07 -0.15 -0.2 -0.14 0.11 0.1 0.07 0.27 0.21 0.16
BLEU_4 0.01 0.1 0.07 0.26 0.24 0.18 0.04 -0.1 -0.04 -0.12 -0.16 -0.12 0.19 0.11 0.08 0.2 0.22 0.16
METEOR -0.21 -0.18 -0.13 0.14 0.12 0.09 -0.21 -0.22 -0.16 -0.22 -0.32 -0.22 -0.05 -0.09 -0.06 -0.26 -0.24 -0.19
ROUGE_L 0.18 0.15 0.11 0.22 0.23 0.16 0.06 0.02 0.02 -0.19 -0.22 -0.15 0.19 0.16 0.11 0.28 0.21 0.15
CIDER 0.02 0.15 0.1 0.33 0.17 0.12 -0.06 -0.17 -0.1 -0.15 -0.18 -0.11 0.23 0.23 0.17 0.16 0.19 0.14
WMD -0.0 0.0 -0.0 0.2 0.16 0.1 -0.14 -0.09 -0.06 -0.12 -0.14 -0.1 -0.09 -0.09 -0.06 -0.14 -0.12 -0.09

C

BLEU_1 0.14 0.13 0.09 0.11 0.12 0.09 0.02 0.01 0.0 0.06 0.11 0.07 0.22 0.19 0.13 0.19 0.18 0.12
BLEU_2 0.12 0.08 0.06 0.15 0.15 0.12 -0.05 -0.12 -0.09 0.09 0.13 0.09 0.13 0.1 0.06 0.21 0.18 0.12
BLEU_3 0.02 0.05 0.03 0.09 0.11 0.08 -0.09 -0.12 -0.09 0.11 0.13 0.08 0.12 0.1 0.06 0.18 0.18 0.13
BLEU_4 -0.12 -0.02 -0.03 0.02 0.09 0.06 -0.0 -0.13 -0.1 0.1 0.14 0.09 0.22 0.15 0.11 0.17 0.22 0.16
METEOR -0.15 -0.13 -0.08 0.09 0.08 0.06 -0.19 -0.17 -0.13 -0.09 -0.1 -0.07 -0.16 -0.24 -0.16 -0.27 -0.27 -0.2
ROUGE_L 0.13 0.19 0.14 0.06 0.08 0.05 -0.07 -0.09 -0.07 -0.02 0.02 0.02 0.22 0.19 0.14 0.16 0.17 0.11
CIDER 0.03 0.12 0.09 0.14 0.1 0.05 -0.0 -0.01 -0.01 -0.07 0.09 0.08 0.22 0.26 0.17 0.12 0.21 0.16
WMD -0.02 -0.03 -0.02 0.16 0.13 0.1 -0.22 -0.17 -0.12 -0.09 -0.07 -0.05 -0.22 -0.28 -0.21 -0.1 -0.09 -0.08

F

BLEU_1 0.41 0.37 0.27 0.42 0.4 0.31 -0.22 -0.24 -0.19 0.01 0.0 0.01 0.13 0.08 0.06 0.32 0.32 0.24
BLEU_2 0.39 0.36 0.28 0.38 0.29 0.23 -0.18 -0.27 -0.21 -0.01 -0.04 -0.03 0.07 0.05 0.03 0.32 0.31 0.22
BLEU_3 0.29 0.32 0.23 0.35 0.25 0.19 -0.22 -0.25 -0.18 0.01 -0.0 0.0 0.12 0.07 0.05 0.3 0.3 0.22
BLEU_4 0.15 0.24 0.18 0.23 0.2 0.14 -0.01 -0.17 -0.12 0.03 0.05 0.03 0.19 0.06 0.04 0.22 0.24 0.17
METEOR -0.07 -0.07 -0.08 0.12 0.09 0.06 -0.11 -0.14 -0.1 -0.0 -0.06 -0.03 -0.12 -0.2 -0.16 -0.01 -0.01 -0.01
ROUGE_L 0.31 0.29 0.22 0.24 0.24 0.18 -0.06 -0.1 -0.08 -0.08 -0.07 -0.05 0.16 0.12 0.09 0.28 0.29 0.19
CIDER 0.16 0.27 0.2 0.36 0.27 0.21 -0.35 -0.37 -0.28 0.01 0.02 0.02 0.02 0.1 0.07 0.13 0.29 0.23
WMD 0.04 0.03 0.02 0.19 0.22 0.14 -0.14 -0.16 -0.12 -0.03 -0.02 -0.03 -0.02 -0.03 -0.03 0.1 0.05 0.03

Table 3: Correlation scores between automatic metrics and human judgements across three criteria. R, C and F on
the left side stand for relevance, correctness and composition (flow), corresponding to the type of questions that
the crowdworkers were provided with. P, S and K stand for Pearson’s, Spearman’s and Kendall’s correlations. We
report correlation scores per search and per correlation metric. The scores coloured in red have p < 0.05.

to the type of objects and their salience.

7 Human evaluation

To support our hypothesis that automatic metrics
are not enough to measure fine-grained differences
between various decoding algorithms, we conduct
a human evaluation on Amazon Mechanical Turk.
We randomly sample 10% of images from the test
set, which equals 41 items. For each of these im-
ages, we take generated texts from the top-6 de-
codings based on the CIDER score. We get 287
different image-text pairs to evaluate. During the
evaluation, we provide workers with an image and
its description and ask them to answer 3 (three) dif-

ferent questions, aiming to evaluate (i) relevance:
does the text describe relevant and essential objects,
(ii) correctness: does the text describe objects cor-
rectly (e.g., using correct words), (iii) composition:
do object descriptions naturally follow each other.
The example item for human evaluation is shown
in Appendix A. Each judgement is a score on a
scale between 1 and 5, where 1 is the lowest rank.
We collect three different judgements per item and
average them. We pay 0.17 US dollars for a single
assignment and restrict the location of the workers
to the US, the UK, Canada, Ireland or Australia.
We also ran our experiments with Master workers
only (25 different human participants). We follow
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ref g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 2.9 0.9 0.3 1.0 1.1 1.1 1.0 0.9 1.1 1.1 1.1 0.9
s2 1.6 1.7 1.5 1.7 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8
s3 1.4 1.6 1.4 1.7 1.8 1.8 1.8 1.6 1.8 1.8 1.8 1.6
s4 1.3 1.6 1.4 1.8 1.8 1.8 1.9 1.6 1.8 1.9 1.8 1.6
s5 1.2 1.7 1.4 1.8 1.8 1.8 1.7 1.6 1.7 1.8 1.7 1.7

Table 4: Average number of noun phrases generated by
different inference algorithms. The numbers are given
per sentence.

Kilickaya et al. (2017) and compute three different
correlation scores: Pearson’s correlation, Spear-
man’s rank correlation and Kendall’s correlation.

The correlation scores are presented in Table 3.
In general, sampling-based methods do not signif-
icantly correlate with automatic metrics or corre-
late but negatively. More controlled decodings,
such as greedy or beam search, correlate with au-
tomatic metrics more, especially for the compo-
sition question (F). This indicates that automatic
metrics correlate more with decodings that intro-
duce less randomness. Future work will need
to examine whether randomness and diversity in
such searches as top-k sampling is a suitable type
of diversity since it is unclear from correlation
scores alone. In terms of the relevance of objects,
sampling with temperature generally has negative
scores (similar to other sampling-based methods).
Still, a significant negative correlation is found only
with Spearman’s rank correlation for METEOR.
Beam, however, might produce more relevant ob-
jects as demonstrated by high correlation in terms
of BLEU_2 and CIDER. We do not observe any
correlation for the correctness criterion. On the con-
trary, text composition (flow) shows that more con-
trolled decodings correlate considerably more with
human judgements, especially when looking at n-
gram metrics. This might demonstrate that more
specific automatic metrics better reflect whether
the object descriptions naturally follow each other.
Overall, we show that while most of the automatic
metrics are not sufficient in providing us with in-
formation about the salience and correctness of ob-
ject descriptions for many different decoding algo-
rithms, their scores, somewhat surprisingly, might
still tell us about the sentence-level discourse and
flow of object descriptions.

8 Non-grounded evaluation

Next, we will look at the surface level of noun
phrases and examine faithfulness of generated texts
to the reference ones. Noun phrases in image de-

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 200.0 175.0 227.9 215.0 233.3 231.0 208.0 227.9 209.2 228.2 200.0
s2 205.2 215.8 207.6 215.8 218.1 220.1 207.5 228.2 231.1 206.1 206.5
s3 210.8 205.2 213.8 215.0 233.3 203.8 210.3 202.6 219.3 207.1 207.2
s4 197.4 196.0 216.4 206.5 200.0 208.9 208.9 205.9 201.3 216.4 197.5
s5 198.0 212.5 202.6 205.1 211.3 214.4 197.3 209.6 215.8 208.7 200.0

Table 5: Average proportion of noun phrases (in percent)
when more are generated than present in the references.

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 20.3 8.5 18.8 18.9 19.6 18.6 18.9 19.6 18.8 20.7 20.3
s2 45.3 44.2 42.6 42.9 40.4 43.1 45.9 39.8 40.0 39.7 45.5
s3 45.9 45.6 42.0 45.9 44.4 44.5 45.5 42.7 41.2 44.4 47.1
s4 46.5 46.8 43.9 45.8 43.3 43.4 47.0 45.0 43.3 42.9 46.6
s5 49.3 43.7 41.4 42.5 37.6 40.7 46.2 38.3 40.0 39.9 49.0

Table 6: Average proportion of noun phrases (in percent)
when fewer are generated than present in the references.

scriptions typically depict image objects, thus we
believe that direct comparison of noun phrases in
different texts can help us to understand how much
each decoding algorithm learns on the surface of
descriptions. Table 4 shows the average number
of noun phrases in each sentence across different
searches and references. We see that there is a
gradual decrease in the number of noun phrases
in references throughout the paragraph. Such de-
crease is not observed in texts generated by all algo-
rithms. On the contrary, the first sentence typically
has the fewest number of noun phrases generated
with other sentences containing mostly the same
number. This could be a sign that on the surface
level decoding algorithms do not capture discourse
structure, reflected in gradual decrease of the num-
ber of noun phrases. Instead, search algorithms
tend to generate the same number of noun phrases
across sentences, treating each sentence equally.

We also observe that the algorithms generate
more noun phrases per sentence than required
rather then generate fewer of them. Specifically,
across all image-paragraph pairs a fewer number
of noun phrases is generated for 757 sentences,
a bigger number for 955 sentences and the exact
number as in the references was produced for 493
sentences. To closer identify the impact of over-
and under-generation of noun phrases, we compute
proportion of noun phrases for both cases. As Ta-
ble 5 demonstrates, all searches tend to generate
nearly two times more noun phrases than required
in each sentence. The picture changes when the
searches under-generate. According to Table 6,
while most of the sentences lack at least half of
the required noun phrases (in terms of quantity),
the first sentence is affected the most by under-
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g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 0.18 0.10 0.10 0.13 0.11 0.08 0.14 0.12 0.10 0.13 0.18
s2 0.17 0.17 0.13 0.13 0.13 0.14 0.17 0.12 0.15 0.13 0.17
s3 0.13 0.12 0.10 0.10 0.09 0.11 0.11 0.10 0.11 0.10 0.13
s4 0.10 0.09 0.10 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.10
s5 0.10 0.10 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.08 0.10

Table 7: Dice similarity coefficient between the set
of objects described in reference texts and texts gen-
erated by different decoding algorithms. The values are
provided per sentence and averaged across all image-
paragraph pairs.

generation. Coupled with the results in Table 4, we
conclude that decoding algorithms do not learn the
structure of discourse on the simplest surface level
of descriptions reflected in the differences in the
number of noun phrases. This result indicates that
searches might generate a discourse that is different
from the one observed in references. In the follow-
ing analysis, we will move from the surface level
to the grounding level, in which we will examine if
the noun phrases that are generated can be linked
with image objects. We will also compare whether
the objects described by different searches overlap
with the ones found in reference texts.

9 Grounded evaluation

Table 7 shows the degree of overlap between
two object sets: the first set includes objects de-
scribed in references, while the second set contains
objects mapped with noun phrases in generated
texts from different decodings algorithms. We use
Sørensen–Dice coefficient 2|A∩B|

|A|+|B| to measure the
overlap. The closer the result to 0, the less overlap
is present. The results demonstrate that searches
describe a very different set of objects rather than
the one mentioned in the references. The highest
overlap is observed with greedy search and diverse
beam. The scores indicate that either a different
and correct set of objects is described or the noun
phrases cannot be linked with objects because they
are incorrect (could also be because of high ran-
domness, leading to the lack of grammaticality).

We examine whether noun phrases in generated
texts can be linked with any of the objects in the
image. Table 8 shows the proportion of successful
linking once we link noun phrases with image ob-
jects using cosine similarity. We set the similarity
threshold to 0.5: if the similarity between the ob-
ject label and noun phrase is higher than this value,
we decide that this noun phrase is faithful to the
image and can be grounded.

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 69.5 72.7 46.5 46.3 43.2 46.1 66.5 51.1 45.2 50.5 69.5
s2 65.6 65.1 47.2 49.0 43.8 46.6 58.8 44.7 50.3 47.7 65.5
s3 61.6 59.5 43.6 46.9 40.5 45.1 53.1 40.1 40.6 44.7 60.7
s4 55.4 57.6 43.7 42.7 44.7 41.0 52.5 45.0 43.7 38.3 55.7
s5 60.5 57.4 47.6 43.2 43.4 43.7 53.3 39.2 38.9 44.4 59.3

Table 8: Average proportion of successful linking (in
percent) between noun phrases in generated texts and
image objects.

The results demonstrate that half and more of
the generated noun phrases can be linked with ob-
jects in the image. In general, sampling algorithms
generate fewer number of grounded noun phrases,
possibly due to the increased randomness. Greedy
search, beam and diverse beam generate the highest
number of noun phrases which are truthful to the
image. We believe that while reference-correctness
of generated texts can get worse, inference algo-
rithms are still able to generate alternative descrip-
tions of images which can be grounded. However,
the structure of discourse reflected on the surface
level and the level of grounding might not necessar-
ily correspond to the one observed in references. In
the next experiment, we look at the problem under
the angle of attentional structure and examine spa-
tial arrangement of linked objects and how these
arrangements differ between decoding algorithms.

10 Attentional structure of discourse

Figure 1 demonstrates a number of the attention
heatmaps across areas in the image for different
sentences. At first glance, different inference algo-
rithms look at similar locations in the image and
also focus on parts which are attended by humans.
However, there are relatively more areas described
in the first sentence of the references, while a much
smaller and fewer areas are described in gener-
ated texts. This could be directly related to the
fewer number of objects and under-generation dis-
cussed previously. The second and third sentences
describe specific areas of the image in all cases,
mostly central ones. Interestingly, greedy and di-
verse beam have highly similar attention across the
image. In sentence 4, human attention disperses
over the full scene, while it is unclear whether the
same pattern happens in generated texts. This could
signal a possible topic shift, happening in later parts
of the paragraph and inability of searches to cap-
ture that. To understand the differences on the
level of sentences better, we measure the corre-
lation between flattened heatmaps pixel by pixel.
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Figure 1: Attention heatmaps over objects, described in texts according to the results of linking. Results are shown
per sentence and per search. The first row denotes attention in reference texts. We aggregate heatmaps across all
images into the single image, therefore, darker colour denotes higher focus on the specific area in the image.
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Figure 2: Correlation between heatmaps for different
searches and reference paragraphs. X-axis is sentence in
the paragraph (1-5), Y-axis is the correlation coefficient,
pixel-by-pixel correlation between attention heatmaps.

We use Pearson product-moment correlation coef-
ficient which can be applied to images across the
channels. The results are shown in Figure 2. As
we can see, in sentence 4 attentional structure on
the image differs between searches and references,
supporting the idea of topic shift. Sampling meth-
ods have the lowest correlation with the references,
while nucleus with p = 25 is affected the least in
sentence 4. Note that the correlation in the first
sentence is lower than in the second and the third
one for most of the searches. This could be related
to the importance of the first sentence and a big-

ger number of noun phrases in it, which are not
generated during the decoding stage.

11 Conclusion

In this paper we described our analysis of how
decoding strategies structure discourse in multi-
modal longer image descriptions. We performed
evaluation using intuitions from different evalua-
tion perspectives: automatic, surface-based (non-
grounded), image-based (grounded) and attention-
based. The results suggest that for the task of image
paragraph generation decoding algorithms diverge
from humans in generating specific type of dis-
course. Although they might generate reference-
incorrect but image-correct descriptions, it is un-
clear what kind of discourse is generated in the
end. In general, algorithms which are less random
construct discourse similar to the one in human
references, while sampling-based methods gener-
ate a different type of discourse, which is hard to
control for. We plan to use the insights described
in this paper and build a metric that would evaluate
the structure of longer image paragraphs, reflected
in both object and relation descriptions as this is
currently a much needed evaluation measure.
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12 Limitations

There are several directions which can support the
analysis in this paper. First, the automatic linking
is not a perfect mechanism, prone to errors. The
method that we use works better for shorter phrases
which share the same lemmas and thus are less am-
biguous. Second, using more models (Li et al.,
2019) or more datasets (Krause et al., 2017) would
potentially give us a broader picture of the type of
discourses formed by humans and quality of rep-
resentations used during decoding phase. We also
consider our analysis preliminary with the oppor-
tunity of developing a separate metric to evaluate
discourse in longer image descriptions.
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Figure 3: The example item for the workers on AMT for human evaluation.
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