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Abstract

We explore the task of automated generation
of technical interview questions from a given
textbook. Such questions are different from
those for reading comprehension studied in
question generation literature. We curate a
context-based interview questions data set for
Machine Learning and Deep Learning from two
popular textbooks. We first explore the possibil-
ity of using a large generative language model
(GPT-3) for this task in a zero shot setting. We
then evaluate the performance of smaller gen-
erative models such as BART fine-tuned on
weakly supervised data obtained using GPT-3
and hand-crafted templates. We deploy an au-
tomatic question importance assignment tech-
nique to figure out suitability of a question in a
technical interview. It improves the evaluation
results in many dimensions. We dissect the per-
formance of these models for this task and also
scrutinize the suitability of questions generated
by them for use in technical interviews.

1 Introduction

Asking good questions is crucial for assessing can-
didates in technical interviews. But this requires
human experts with technical knowledge and expe-
rience. Therefore, the capability to automatically
generate technical questions to assess knowledge
and understanding for a specific subject can signifi-
cantly reduce expert effort in conducting interviews
and in scaling up the interview process. In this pa-
per, we focus on automated generation of interview
questions from textbook contexts.

There has a been a lot of interest in recent years
on question generation (QG) (Dhole and Manning,
2020; Bang et al., 2019; Back et al., 2021), and
many benchmark data sets exist (Rajpurkar et al.,
2016). Dhole and Manning (2020); Mazidi and
Nielsen (2014); Heilman and Smith (2010) fo-
cus on rule-based question generation, wherein
Dhole and Manning (2020) transform declarative

sentences into question-answer pairs using syn-
tactic rules, universal dependencies, shallow se-
mantic parsing and lexical resources. These gen-
erate precise questions but often fail due to their
heavy reliance on manually crafted feature sets.
Recent papers (Xiao et al., 2020; Zhao et al.,
2018; Serban et al., 2016) use deep neural networks
for QG. Serban et al. (2016) focus on generating
factoid questions from knowledge bases such as
Freebase. These use answers as clues to generate
questions. Back et al. (2021); Cui et al. (2021);
Huang et al. (2021) propose answer-agnostic QG.
Back et al. (2021) predict answer-like candidates
for the given passage and then generate questions
from these. Huang et al. (2021); Tsai et al. (2021)
use transformer-based generative models such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). In summary, all existing models and bench-
mark datasets address factoid question generation
for reading comprehension (RC).

Generating technical interview questions from
a context is harder than generating RC questions.
Such questions focus on technical concepts and
their relationships and test for knowledge and un-
derstanding of these. The answers are long-form
(2-5 sentences) and must be contained in the con-
text (‘What is regularization?’ is not answerable
from the context ‘This issue can be addressed using
L2 regularization’). Questions must be semanti-
cally complete (‘What is the form of the optimal
solution?’ is an incomplete question) and of ap-
propriate specificity (’What is machine learning’ is
too generic for assessing expertise in ML). Finally,
questions should have a diverse mix of intent and
task complexity (compared to just remembering).
As a result, RC-question generation models are not
appropriate for interview question generation, and
RC-question generation data sets are not useful for
evaluating interview question generation models.

To address this gap, we first create a dataset of
textbook contexts and corresponding technical in-
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terview questions from two popular textbooks on
Machine Learning (ML) and Deep Learning (DL).
We use this for evaluation of interview question
generation algorithms. Generation of large vol-
umes of gold-standard training data for this task
is difficult and expensive. So, we first evaluate
pre-trained large language models (LLM) such as
GPT-3 for this task in a zero-shot setting. We then
explore fine-tuning a relatively smaller LM (BART)
on weakly supervised training data. Wang et al.
(2021) have recently explored GPT-3 for creating
training data for many NLP tasks including factoid
RC question generation. We explore the use of
GPT-3 and template-based algorithms for silver-
standard interview question generation from text-
book contexts. We improve the question generation
quality by developing a post-processing unit which
filter out questions automatically by checking its
suitability in a technical interview. We evaluate
the models before and after filtering and see that
it improves the performance in many evaluation
dimensions.

Using detailed analysis of interview questions
generated using these models, we highlight the
challenges of this task, and also the key aspects
that future models will need to address.

2 Technical Interview Question Dataset

There is no public dataset on technical questions
from textbook contexts for evaluating our task.
Available question datasets for reading comprehen-
sion such as SQuAD (Rajpurkar et al., 2016) are
not ideal. So we create a gold-standard dataset by
manually generating questions on Machine learn-
ing (ML) and Deep learning (DL) from two pub-
licly available books, Bishop (2006) for ML and
Goodfellow et al. (2016) for DL.

We selected 3 chapters each from the ML and
DL books. We distributed these chapters to 10 an-
notators (internal to our organisation) with subject
knowledge as well as interview experience. We
consider each section in a chapter as one context,
and the annotators generate all possible long-form
questions from each such context. The annota-
tors are reminded of interview question templates
(Sec.3.2) but are not restricted to these. However,
they are instructed to ensure answerability from
context. Each chapter was first annotated inde-
pendently by two annotators. Then, annotation
differences, i.e., questions generated by one but not
the other, are resolved via discussion. A question

is added in the dataset only if both annotators are
convinced after discussion, thus making the inter-
annotator agreement 1 for the final dataset. We
obtained 161 questions from 3 chapters of the DL
book, and 187 questions from the 3 chapters of the
ML book. We discuss quality aspects of the dataset
in Sec.4. We will make this dataset public.

3 Question Generation Approaches

Here we describe the different question generation
and post-processing technique we use in the paper.

3.1 Zero-shot Generation with GPT-3

GPT-3 (Brown et al., 2020) is a transformer-
decoder based large language model (LLM) and
has shown excellent performance on many NLP
tasks in zero-shot settings (Wang et al., 2021; Yoo
et al., 2021). We explore GPT-3 for zero-shot tech-
nical interview question generation1. We use its in-
terview question generation preset, where we give
a context as prompt to GPT-3 and it generates a
set of interview questions from the context. At a
time, we provide one context paragraph, followed
by a new line and an instruction or prompt (‘Give a
list of questions from above passage’). We experi-
ment with different variants of prompt that include
the number of questions we want GPT to gener-
ate such as ‘Generate 10 questions...’. While such
prompts work, we observe that the initial set of
questions does not differ if prompts are changed.
But the questions in the later part of the generated
set changes for different prompts. This suggests
some internal ranking of the questions generated
by GPT-3. So, we decide not to include the number
of questions in the prompt and left this for GPT-3
to optimize. We set the temperature parameter to 0
to eliminate randomness in the generated questions,
and the other parameters as default.

We ran this GPT-3 question generation process
on the same chapters that were used for human
question generation (Sec.2). We do a comparative
analysis in Sec.4.

3.2 Generation with Fine-tuned BART

While GPT-3 is very powerful, it comes with a cost
in real-world applications. As a free open-source
alternative, that can be fine-tuned for our specific
task, we explore BART (Lewis et al., 2020), an-
other pre-trained language model that has been
used for Question Generation (Huang et al., 2021;

1We use free GPT-3 APIs.
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Tsai et al., 2021). Since our task is question gen-
eration, we use the BART model post-trained on
SQuAD. Since SQuAD contains factoid RC ques-
tions, this need further fine-tuning for our task. For
this, we create a silver-standard dataset. We take
the remaining chapters of the two books (11 for ML
and 17 for DL), which were not used for creating
the gold-standard dataset. We use two approaches
for generating silver-standard questions from these
- a template-based algorithm and GPT-3.

We use an unsupervised template-based algo-
rithm for QG given the context (Fabbri et al.,
2020; Puzikov and Gurevych, 2018; Yu and Jiang,
2021). Such approaches typically have high pre-
cision while generating a smaller number of ques-
tions. We use the following templates: WHAT IS

X?, WHAT ARE ADVANTAGES / DISADVANTAGES

/ USES OF X?, WHAT ARE THE DIFFERENCES

BETWEEN X AND Y?, WHAT IS THE RELATION

BETWEEN X AND Y?. We use precise regular
expressions and dictionaries for each template to
check applicability of a template to a sentence, and
use book indices to extract concepts for X and Y.
For each context, we take the union of questions
generated using each template for each sentence
in the context. We get 626 questions in all using
this approach. More details are included in the
Appendix.

We also use GPT-3 to generate silver-standard
questions from the same contexts as described in
Sec.3 . This gives us 3,013 questions in total.

We experiment with BART fine-tuned on tem-
plate and GPT-3 questions separately, as well as to-
gether. We combine template and GPT-3 questions
generated from the same context in two different
ways. For a context C, let Qt and Qg be the sets of
questions generated by the template algorithm and
GPT-3. In the ‘Concat’ mode, we consider (C,Qt)
and (C,Qg) as two distinct training instances (rows
in the training data). In the ‘Join’ mode, we create
a single training instance (C,Qt ∪Qg).

3.3 Importance based Question Filtering

While analysing the generated questions we saw
that many of them are trivial or obsolete. For exam-
ple, ‘What is a scalar?’ is too basic of a question to
be asked in a technical interview. Similarly ‘What
are the advantages of recirculation?’ is also not a
pressing question for a technical interview because
‘recirculation’ is not a very well known or popular
concept in machine learning. So it does not reveal

much about the expertise of a candidate by asking
this question.

We assign importance scores to all the questions
generated from the book and filter out questions
with importance score below a threshold. We use
the hierarchical Index and Table of Content (TOC)
of the book for assigning the importance scores.
First, we automatically create a concept list, Lc

present in the book from the Index and TOC. Using
this concept list, we annotate the concepts present
in each question. We assign importance score for
all the concepts in the question and then assign
importance to the question.

We observed that concepts appear more upfront
in the book are more fundamental and very often
later concepts are dependent on them. So there
is a strict partial order among concepts present in
the book determined by prerequisites. All books
are written in a way that prerequisites of a concept
appear before the concept because one has to know
the prerequisites to understand the current concept.
With this observation, we make an assumption
that concepts that appear upfront in the book or
in the chapters are more fundamental, hence more
important, than the concepts which appear later
and dependent on them. With this assumption, we
calculate two scores, namely TOC_score and In-
dex_score for each concept to find its importance.
TOC_score gives the importance score for a given
concept in reference to the TOC. Each concept can
appear in multiple chapters, in multiple sections
within a chapter and in multiple subsections within
a section. For each such occurrences, we have the
associated id from the TOC. For example, ‘super-
vised learning’ can appear in multiple places in
the book and suppose one occurrence has the id
4.7.2. From this id, we can infer that the above con-
cept appears in chapter 4 (chap_id), section 7 (sec-
tion_id) and subsection 2 (subsection_id). Using
this information, we assign a score for a particular
occurrence of the concept, c as follows.

TOC_occurrence_score(c) =

(chap_cnt− chap_id) ∗ 100 +

(max_sections− section_id) ∗ 10 +

(max_subsections− subsection_id) (1)

Here chap_cnt, max_sections, max_subsections
are total number of chapters, maximum number
of sections, subsections in a chapter respectively.
As it is apparent, we give highest priority to chap-
ters, then sections in the chapter, and finally the
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subsections in the section. For each occurrence
of a concept we calculate the score and the final
TOC_score of a concept is sum of scores from all
TOC_occurrence_score and normalised by the max
score of all concepts.

Likewise Index_score gives a score to a concept
in reference to the Index of the book. The Index is
basically a forest where each concept appear once.
Here we assume that a concept is more important
if has more sub-concept related to it. More specifi-
cally, an important concept will have a bigger sub-
tree under it considering the concept as root. To cal-
culate the score, we attach a weight wi = dmax− i
to each depth i and also count the number of dif-
ferent concepts in each depth i of the sub-tree, say
con_cnti. dmax is the maximum depth of any tree
in the Index. Then the Index_score of a concept, c
is calculated as follows.

Index_score(c) =

Σi(con_cnti ∗ 10wi)/max_index_score (2)

Here max_index_score is the maximum of index
scores of all concepts. So using the above formula
we can have an index score for all the concepts
present in the index. The final importance score of
a concept is the average of the TOC score and the
Index score.

Now we calculate the question importance from
concept importance as follows: from the annotated
concepts present in a question, we get the score
for each concepts. We get the sum of concept im-
portance as question importance and normalise the
importance score by dividing each of the question
score by the maximum score of all questions. Mul-
tiplying the question score by 10 makes the range
of the question score as 0 to 10.

We analysed the data and found that the most of
the useless questions are tagged with importance 0.
Questions with importance greater than 0 is useful
to variable degrees. So we only filter out all the
questions with 0 importance.

Table 2 shows that filtering improves the scores
in all dimensions except one: recall. Filtering will
never be able to improve recall, it can at-most be
equal to the manual one. Here it is decreasing
because some of the good questions are being fil-
tered out by our filtering module. But it is tightly
bounded in our case. At the worst case, recall de-
creases by 9 points.

4 Experiments and Analysis

We present experimental evaluation and in-depth
quality analysis of questions generated for test con-
texts by zero-shot and fine-tuned models using
gold-standard technical interview questions as a
reference. Detailed hyper-parameter settings are
included in the Appendix. The results of our anal-
ysis before applying the importance-based ques-
tion filtering are summarized in Table 1. In Table
2, we include the same analysis after doing the
importance-based question filtering. We describe
our findings below based on Table 1 i.e. before
doing the question filtering.

4.1 Analysis of Precision
We consider a question to be a valid interview ques-
tion from the context if it is (a) long-form, (b) com-
plete, (c) of the right specificity, and (d) answerable
from the context. A question is incomplete if it has
unresolved co-reference or it misses some context
for the question to be meaningful. We manually an-
alyzed all the questions generated by all algorithms
for the 3 test chapters of the DL book for these cri-
teria. Performance for these individual dimensions
as well as overall precision is shown in Tab.1.

Answerability from Context: For zero-shot
GPT-3 questions, 35% do not have answer in con-
text. The following are some example questions
with relevant parts of the contexts: (Q:What is
the contrastive divergence training?, C:“an autoen-
coder gradient provides an approximation to con-
trastive divergence training of RBMs”), (Q:How
can the singular value decomposition be used to
invert a matrix?, C:“the most useful feature of the
SVD is that we can use it to partially generalize
matrix inversion to nonsquare matrices, as we will
see in the next section.”). These illustrate the dif-
ficulty of ensuring answerability. BART performs
similarly, in all modes but one. When fine-tuned in
the ‘Concat’ mode, BART scores 73% and GPT-3
scores 65% (in table 1). We conjecture that this
improvement in answerability over GPT-3 gener-
ated questions is due to two reasons. First, the
template-based question generation conditions en-
sure context relevance, but GPT-3 questions are
not. In the ‘Concat’ mode, we combine the train-
ing data from GPT-3 and template algorithms in
such a way that one context have two training in-
stances. We believe that this gives more weight to
such questions which appear in both questions set
and have answer in context. Second, Wang et al.
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Model Tr. Q. Src. #Questions % In-Context % Complete Prec. Rec. % Complex
Manual NA 161 100 100 1.00 0.61 22
GPT NA 236 65 85 0.53 0.47 23
BART T 75 56 96 0.55 0.16 0
BART GPT 129 63 80 0.55 0.27 34
BART Concat(T,GPT) 95 73 87 0.64 0.23 24
BART Join(T,GPT) 132 61 80 0.52 0.26 37

Table 1: Performance of zero-shot GPT-3 (GPT) and various fine-tuned versions of BART using manually curated
interview questions as reference before filtering. Long-formness and specificity are not shown as all models score
100%. Recall is evaluated by considering all model-generated valid questions in adddition to human questions as
reference. Tr. Q. Src.=Training questions source. T=template-based questions, GPT=GPT-3 generated questions.

Model Tr. Q. Src. #Questions % In-Context % Complete Prec. Rec. % Complex
Manual NA 161 100 100 1.00 0.61 22
GPT NA 155 66 94 0.8 0.47 31
BART T 53 51 96 0.49 0.1 0
BART GPT 83 70 60 0.64 0.2 46
BART Concat(T,GPT) 60 75 98 0.72 0.16 30
BART Join(T,GPT) 79 61 90 0.57 0.17 46

Table 2: Performance of zero-shot GPT-3 (GPT) and various fine-tuned versions of BART using manually curated
interview questions as reference after filtering.

(2021) proves that under consistency assumption, a
model trained using GPT-3 labelled data has lower
classification error rate than GPT-3 itself. Here,
GPT-3 labelled data acts as a regularizer during
training. This result shows that fine-tuning smaller
LMs such as BART can achieve better performance
in this dimension compared to GPT-3.

Question Completeness: 15% of all GPT-3 ques-
tions are incomplete. The following are some exam-
ples: Q:How can the issue of scale be prevented?,
Q:What are some of the models that this technique
can be applied to?. The percentage is slightly lower
for fine-tuned BART in Concat mode (13%), but
the nature of mistakes is similar.

Long-form, Specificity, Semantic correctness:
We define Long-formness for a question if its an-
swer has more than one sentence. For Specificity,
we assume the contribution of the question in In-
terview setting for assessing the candidate’s knowl-
edge, i.e; the question shouldn’t be too broad or
too specific for a topic. Almost all models score
∼100% for long-formness and specificity level of
questions. The following is an outlier example of
a GPT-3 question that is too specific and simple
for an ML interview: Q:What is the multiplication
of a matrix by a scalar? However, GPT-3 does
generate some questions that are semantically in-

valid: Q:What is the determinant of a matrix if the
determinant is 0?, Q:What is Shilov? (Shilov is the
name of a researcher).

Overall Precision: A question is valid if it sat-
isfies all the listed criteria. Precision is the ratio
of the number of valid questions and the number
of generated questions. The precision of GPT-3 is
53%. Fine-tuned BART in ‘Concat’ mode has 64%
precision — an 11% improvement over GPT-3.

4.2 Analysis of the Recall
Evaluating recall with respect to the human gener-
ated questions is problematic because this question
set need not be exhaustive. Instead, we manually
identify additional valid questions generated by
each model from a context beyond those in the hu-
man generated set. We take the union of these with
the human generated questions as the set of all valid
questions for a context. We identify and eliminate
equivalent questions when taking the union. We
define recall of a model as the ratio of the number
of valid generated questions and the total number
of valid questions. Recall for the different models
is shown in Tab.1.

Among the models, GPT-3 generates the most
questions and also has the highest recall (47%).
However, in general it fails to generate DEFINE,
EXAMPLES OF and WHY questions. The fine-

47



Model Tr. Q. Src. #Questions Prec. Rec. RougeL-Prec. RougeL-Rec.
Manual NA 161 – – – –
GPT NA 236 0.44 0.61 0.25 0.33
BART T 75 0.69 0.34 0.35 0.14
BART GPT 129 0.56 0.44 0.29 0.25
BART Concat(T,GPT) 95 0.62 0.39 0.34 0.21
BART Join(T,GPT) 132 0.55 0.44 0.27 0.25

Table 3: Automatic Evaluation of questions generated from DL book (before importance based filtering) using
Mapping and RougeL based precision, recall.

Model Tr. Q. Src. #Questions Prec. Rec. RougeL-Prec. RougeL-Rec.
Manual NA 187 – – – –
GPT NA 297 0.42 0.60 0.21 0.30
BART T 127 0.53 0.38 0.27 0.15
BART GPT 169 0.50 0.46 0.24 0.22
BART Concat(T,GPT) 143 0.49 0.42 0.26 0.20
BART Join(T,GPT) 181 0.52 0.50 0.26 0.27

Table 4: Automatic Evaluation of questions generated from ML book (before importance based filtering) using
Mapping and RougeL based precision, recall.

tuned BART ‘Concat’ model has much lower recall
(23%). Effectively, GPT-3 has higher F1 (48%)
compared to BART Concat (35%).

On the other hand, GPT-3 and other models gen-
erate many questions missed by humans, so that
human generated questions have a recall of only
61%. One example of GPT-3 questions missed by
humans is What is the pseudoinverse of a diagonal
matrix?. Here, the definition of pseudoinverse was
hidden inside explanation of mathematical notation
in the context. Another is What is the difference
between the singular value decomposition and the
eigendecomposition? from the context “SVD is
more generally applicable. Every real matrix has
a singular value decomposition, but the same is
not true of the eigenvalue decomposition”. The hu-
man annotator generated a What is the Advantage
of question, but missed the What is difference be-
tween question. This shows the potential of model
generated questions. However, GPT-3 or fine-tuned
BART do not generate any questions according to
a new template completely missed by humans.

4.3 Complexity and Diversity of Questions

In an interview, candidates should be asked a va-
riety of both simple and complex questions. We
define a question as complex if it contains more
than 1 concept from the topic. From Table 1, we see
that our BART model in ‘Concat’ mode, generates
similar % of complex questions as GPT-3 zero-shot

setting. Beyond validity, diversity and complexity
of questions is also important. One simple measure
of complexity is the number of concepts covered by
the question. 22% of human generated questions
have multiple concepts. Among the models, BART
Concat as well as GPT-3 have a similar percentage.
Interestingly, BART Join generates fewer questions
but a higher percentage of multi-concept questions.

The 5 levels of Bloom’s Taxonomy (Bloom
et al., 1964) provide another definition of cognitive
task complexity associated with a question (defined
in A.2). Interestingly, the human generated ques-
tions are uniformly distributed across these levels.
However, both GPT-3 (57%) and BART Concat
(58%) have a high proportion of questions from the
simplest ‘Remember’ level, corresponding mostly
to WHAT IS questions.

4.4 Automatic Evaluation

Since manual evaluation is extensive and costly, it
is not scalable for large set of data. To alleviate
such scenario we also provide some automatic mea-
sure for the evaluation of generated questions from
different approaches. For the given context we al-
ready have manually generated questions which
can serve as gold standard so our goal is to evaluate
the quality of generated questions with respect to
manual questions.

Since we have multiple manual and model gen-
erated questions for each context, our first aim is to
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have a one to one alignment for these two sets of
questions. For this, lets say there are m manual and
n model generated questions for a context, then we
create a m× n matrix where each cell represents
the similarity score simi,j between the i’th manual
and j’th generated question. Here the similarity
score represents the cosine similarity between the
embeddings of the two questions using sentence
BERT (Reimers and Gurevych, 2019). We then
pass this matrix as input to Hungarian algorithm
(Kuhn, 1955) which outputs one to one mapping
between manual and generated questions.

Once we have pairwise questions we compute
precision and recall by two different methods,
namely mapping-based and RougeL-based (Lin,
2004). In the first one, for every context we filter
out pairs of questions whose similarity scores are
less than a threshold. Then we calculate precision
per context by summing the scores of the remain-
ing pairs and dividing it by the total number of
generated questions. Likewise recall per context
is obtained by dividing it by total number of man-
ual questions. The final precision and recall is the
average of all precision and recall per context.

For the second method, we filter out pairs of
questions from the outputs of the Hungarian Al-
gorithm like above using a threshold. All the un-
mapped questions are assumed to be mapped with
an empty string. Then we calculate the RougeL
precision and recall for every pair of questions.
Precision per context is calculated by dividing the
sum of RougeL precision by number of generated
questions in the context and Recall per context is
obtained by dividing sum of the RougeL recall by
the number of manual questions. Final precision
and recall is the average of all precision and re-
call per context. Just like manual evaluation, we
apply the automatic evaluation on unfiltered ques-
tions. We include the automatic evaluation results
for questions generated from the DL book in Table
3 whose manual evaluations are included in Table
1. We can see that both the automatic evaluation
methods in Table 3 positively correlate with the
manual evaluation in Table 1. Automatic mapping
based precision and recall have correlation 0.43
and 0.99 respectively with the manual precision
and recall. Automatic RougeL based precision and
recall have correlation 0.66 and 0.94 respectively.

Seeing the above correlation, we have deployed
our automatic evaluation methods on questions gen-
erated from 3 chapters of ML book for which we

do not have any manual evaluation. We have given
the evaluation results for ML questions in Table 4.

5 Limitations

In this work, we are trying to address what is the
best way to evaluate the task of question generation
for the technical interview. First limitation of this
work is that we could not create a large annotated
dataset as reference data as we need people with
subject expertise for annotation. Due to the same
reason, we were forced to train the generative mod-
els like BART on silver-standard dataset generated
using GPT-3. As GPT-3 is not freely available, the
amount of silver-standard data is also limited in
volume. The evaluation dimensions we propose for
this task involve human effort and obviously this is
not scalable.

6 Ethical Impact Statement

Generating interview questions using LLMs may
have some ethical concern when these questions
are used in actual interviews. In this work, we
propose how to evaluate such questions in multiple
dimensions. People should be careful before using
such questions in actual interviews.

7 Conclusion

In this paper, we explore the problem of technical
question generation for interviews from textbook
contexts in an weakly supervised approach. We
curate a dataset for evaluation for two domains,
machine learning and deep learning, using two
popular books. We analyzed zero-shot question
generation using GPT-3 and fine-tuning BART on
silver-standard training data for the same. We also
suggested a post processing filtering unit which
further improves the quality of generated questions.
Our manual analysis brings out the complementary
strengths and weaknesses of these approaches for
this task. More importantly, our detailed error anal-
ysis highlights the challenges of the task and shows
a pathway to better models by identifying the ma-
jor types of errors to focus on. Finally we devised
automatic evaluation techniques which positively
correlate with our manual evaluation.
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A Appendix

A.1 Template based question generation
After going over real interview transcripts, we iden-
tify some templates for the questions and write
algorithms for each of the template. We use these
templates for this task. We include some of these
templates and their examples in Table 5.

We run these templates on the sentences of the
books to generate the context-based question. We
use different algorithms for each template. Here,
we describe the algorithm for ‘Difference’ template.
Each template algorithm uses a list of concepts and
a list of keywords. Let C_list={c1, c2, c3, ...} be
a list of concepts present in the book. We created
this list using the index and Table of content of the
books. Multiple atomic concepts can combine to
form a maximal concept. For ex: "convolution"
and "neural network" can combine to "convolution
neural network". There can be multiple maximal
concept in a sentence which we store in a list de-
noted by Mx_c_list. Other than concepts present
in the sentence we also look for template specific
keywords or phrases which either give hints for
attributes of a concept or relationship between two
concepts. we call these phrases signals. For ex,
presence of "difference between" in a sentence hints
the possibility of distinctions between two concepts
being discussed. So we can generate a ‘Difference’
question from this sentence. We define a func-
tion Is_signal_present(sentence,signal_list, X ,Y )
which will take a sentence of a book, signal lists
and concepts X , Y and returns true if signal along
with concepts X and Y are present in the sentence
to generate a question out of it. We have shown our
pseudo code in algorithm1. Here, X and Y refers to
some concepts in the topic for which questions are
generated. We include some examples of template
generated questions from context in Table 6.

A.2 Bloom’s Taxonomy
Bloom’s taxonomy defined 6 categories of knowl-
edge in terms of skills/abilities in an increasing
order of cognitive load. We loosely assign differ-
ent types/templates of questions with one of these
Bloom’s categories: (i) Remember (‘What is X?’)
(ii) Understand (’How does SUB V X?’), (iii) apply
(’What are some applications of X’), (iv) analyze

Algorithm 1 Difference template algorithm

for sentence in context do
Mx_c_list = find_maximal_concept (sen-
tence, C_list)
for X in Mx_c_list do

for Y in Mx_c_list do
flag = Is_signal_present(sentence, sig-
nal_list, X ,Y )
if flag then

Q_gen: What is the difference be-
tween X and Y ?

end if
end for

end for
end for

(’Explain X’), (v) evaluate (’What are the differ-
ences between X and Y’), (vi) Create (We do not
have any questions in this category). Here, X and
Y refer to the concepts of the topic. As an exam-
ple ‘cross-entropy loss’ is a concept in machine
learning.

A.3 Question Importance Algorithm
We have described the method to calculate the ques-
tion importance method in 3.3. Here we provide
the pseudo-code for the same in algorithm 2.

A.4 Parameter Settings
We experiment with BART-base (Lewis et al.,
2020) model post-trained on SQuAD (Rajpurkar
et al., 2016). All experiments are done on 64GB
CPU with 20 cores. We use a batch size of 16
and train the model for 10 epochs. The average
time to train for 10 epochs is around 2 hours. We
optimize the model parameters using Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0001. Some contexts in our dataset is longer
than what BART encoder can accommodate (1,024
word piece tokens). During training, we use the
first 1,024 token of the context and discard the
remaining part of the context. During inference,
we split the longer context into multiple chunks of
1,024 tokens and run inference on each one of them.
We do an union of the generated questions from all
the splits.

51



Template Example #Questions
What is X? What is EM algorithm ? 394
What are some uses of X? What are some uses of maximum likelihood? 118
What are the advantages of X? What are the advantages of the validation set? 66
What are the disadvantages of X? What are disadvantages of the metropolis algorithm? 32
What are the differences between X and Y? What are the differences between bagging and boosting? 4
What is the relation between X and Y? What is the relation between autoencoders

and latent variables? 12

Table 5: Examples of the template generated questions using some of the templates. Here, X and Y refers to some
concepts in the topic for which questions are generated.

Context Questions
An auto encoder is a neural network that is trained
to attempt to copy its input to its output.Internally,
it has a hidden layer h that describes a code used
to represent the input. ...
Recently, theoretical connections between auto encoders
and latent variable models have brought auto encoders
to the forefront of generative modeling.

What is an auto encoder?
What is the relation between auto encoders
and latent variable?

One advantage of directed graphical models is that a simple
and efficient procedure called ancestral sampling can
produce a sample from the joint distribution represented
by the model. ...
Ancestral sampling is generally very fast (assuming sampling
from each conditional is easy) and convenient.
One drawback to ancestral sampling is that it only applies
to directed graphical models. Another drawback is that
it does not support every conditional sampling operation. ...

What is ancestral sampling?
What are advantages of ancestral sampling?
What are disadvantages of ancestral sampling?

Unlike the deep belief network (DBN),
it is an entirely undirected model. Unlike the RBM,
the DBM has several layers of latent variables
(RBMs have just one). ...
A DBM is an energy-based model, meaning that the joint
probability distribution over the model variables is
parametrized by an energy function E . ...
In comparison to fully connected Boltzmann machines
(with every unit connected to every other unit),
the DBM offers some advantages that are similar
to those offered by the RBM. ...

What are some use of the dbm?
What are differences between the rbm and
the dbm?
What is a dbm?

Table 6: Examples of generated questions from the context using corresponding template matching algorithm. We
match the template algorithm at the sentence-level in the context.
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Algorithm 2 Question Importance algorithm

concept_importance = {}
for concept in L_concept do
toc_score = 0
max_score = −1
occurance_list= all_occurances(concept)
for occurrence in occurance_list do
toc_score += occurance_score(occurance) {from equation 1}

end for
toc_score = normalise(toc_score)
score = average(toc_score, index_score) {from equation 2}
concept_importance[concept]= score

end for
question_score.fromkeys(L_concept, 0)
for question in question_list do
concept_list= get_concepts(question)
for concept in concept_list do
question_score[question]+= concept_importance[concept]

end for
end for
max_score = find_max(question_score)
for question in question_score do
question_score[question]= question_score[question] ∗ 10/max_score

end for
return question_score
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