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Abstract

Most commercial conversational AI products
in domains spanning e-commerce, health care,
finance, and education involve a hierarchy
of NLP models that perform a variety of
tasks such as classification, entity recognition,
question-answering, sentiment detection, se-
mantic text similarity, and so on. Despite our
understanding of each of the constituent mod-
els, we often do not have a clear view as to how
these models affect the overall platform metrics.
To bridge this gap, we define a metric known as
answerability, which penalizes not only irrele-
vant or incorrect chatbot responses but also un-
helpful responses that do not serve the chatbot’s
purpose despite being correct or relevant. Ad-
ditionally, we describe a formula-based mathe-
matical framework to relate individual model
metrics to the answerability metric. We also
describe a modeling approach for predicting a
chatbot’s answerability to a user question and
its corresponding chatbot response.

1 Introduction

Conversational AI has been making great strides
in the past few years. Several commercial chat-
bots powered by NLP have been deployed for di-
verse sectors, ranging from banking to health care
(Adewumi et al., 2022). While end-to-end chat-
bots based on a single neural network architecture
have been proposed (Komeili et al., 2021; Adiwar-
dana et al., 2020), most commercial organizations
still deploy a hierarchy of machine learning models
working together in unison to come up with an an-
swer to a user’s question, rather than relying on the
output of a single end-to-end neural network, for
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instance, the popular Rasa NLU framework used by
several industrial organizations (Bocklisch et al.,
2017). In such a case, it is important to have a
single unified metric that defines the effectiveness
of a conversational AI product, such as a chatbot.
Moreover, one needs to have a framework that links
individual model metrics to the overall chatbot ef-
fectiveness metric. This way, we can understand
the “weak links” in the entire chatbot workflow, i.e.,
models whose relative improvement can have the
maximum effect on the global chatbot effectiveness
metric. This is crucial for a commercial organiza-
tion, where business impact needs to be routinely
demonstrated, requiring teams to prioritize which
models they are going to focus on improving.

Moreover, by incorporating other business-
motivated factors such as helpfulness into the over-
all chatbot effectiveness metric, we are ensuring
that we are optimizing not just for peak perfor-
mance from each of the constituent machine learn-
ing models inside a chatbot, but also for the ability
of the chatbot to serve the organization’s business
goals. For example, if an e-commerce website does
not sell women’s Reebok shoes of size 10, its chat-
bot might answer “correctly” to a user who asked
if those shoes are available, by responding “No
we do not have women’s Reebok shoes of size 10."
However, this answer is not “helpful,” that is, a user
shown this answer will not be tempted to search for
other products on the website. A helpful answer
could not only acknowledge the lack of Reebok
shoes of the required size, but could also suggest
other similar shoes of size 10 from a similar brand,
say Skechers or Nike, so that an originally unhelp-
ful answer could potentially become helpful. In
this case, the answer is not only correct but also
helpful, just like how a salesperson in a brick-and-
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mortar store would be when they are asked about
the availability of a certain product. Similar exam-
ples apply to other use-cases of conversational AI
such as banking, governance, and health care. By
emphasizing such business-relevant expectations
from a task-oriented chatbot, we are encouraging it
to provide a more relatable experience to the user,
just like a human agent or salesperson.

This paper seeks to make 2 contributions: the
first is to define a stringent global effectiveness
metric for a task-oriented chatbot called “answer-
ability,” which penalizes not only incorrect or irrel-
evant responses but also unhelpful responses. Our
metric is quite general in its definition and can be
utilized in any chatbot application. Our second con-
tribution is to describe a framework to relate the
answerability metric to individual model metrics,
along with a modeling approach for predicting the
answerability for an individual user query-chatbot
response pair. We shall focus on the concrete ex-
ample of a pre-purchase e-commerce chatbot that
answers user questions about products sold on an e-
commerce marketplace to illustrate our ideas where
necessary. This example is ideal and instructive
for the concepts explained in this paper, given the
variety of NLP models it encompasses, such as
multi-class text classification, span detection-based
question answering, and semantic text similarity-
based retrieval of user-generated content such as
user-generated frequently asked questions (FAQs)
and user reviews for the product.

2 Related Work

We review the existing literature for chatbot evalu-
ation metrics below.

2.1 Metrics for evaluating chatbot
performance

While several metrics for evaluating chatbots have
been suggested, (Abd-Alrazaq et al., 2020; Shawar
and Atwell, 2007) we did not find any mathemat-
ical frameworks that relate chatbot effectiveness
metrics to individual model performances. Typi-
cally metrics have been based on response gener-
ation (Cameron et al., 2019), usability (Abdullah
et al., 2018), response understanding (Yokotani
et al., 2018), and global aesthetics (Wargnier et al.,
2018).

Other metrics proposed for chatbots such as per-
plexity, sensibleness and specificity average (SSA)
(Adiwardana et al., 2020), and percentage of per-

turn engaging responses (Xu et al., 2022) focus on
how closely the bot-user conversation resembles
a human conversation over multiple turns. While
these metrics are crucial for a general, open-domain
chatbot, most business applications measure the
success of their conversational AI products based
on not only the coherence within the chatbot re-
sponses but also the effectiveness of the chatbot
in helping the user’s specific needs. Metrics in-
tended for open-domain chatbots may not always
be appropriate for a business use case. General-
purpose NLG metrics such as ROUGE (Lin, 2004)
and BLEU (Papineni et al., 2001), despite having
the benefit of being automated, do not work for
cases where there could be multiple responses that
are equally effective.

2.2 Typical model hierarchies in a chatbot

Popular chatbot frameworks such as Daniel et al.
(2020); Bocklisch et al. (2017), and winning chat-
bots in competitions such as the Alexa Prize com-
petition (Serban et al., 2017), demonstrate that su-
perior chatbot designs comprise a collection of sev-
eral models, each geared towards a specific kind
of conversation. For instance, Serban et al. (2017)
consists of 22 response models, thus making it
crucial for a team of engineers to have clear visi-
bility into how sensitive the overall chatbot metrics
are to the metrics of each of the constituent mod-
els. As new use cases emerge and a chatbot grows
in complexity, having a quantitative view of the
contribution of each model to the overall chatbot
performance is crucial.

Most open-source chatbot designs begin with
an intent recognition layer that decides the cat-
egory of the user query before directing it to
an appropriate downstream model,(Adamopoulou
and Moussiades, 2020; Lokman and Ameedeen,
2018) whereas downstream models could include
question-answering and/or other information re-
trieval models.(Kulkarni et al., 2019)

3 Description of the chatbot architecture

As described in Fig. 1, the chatbot consists of an
intent classification model, which detects the over-
all intent of the user query. If the intent is not a
product-specific intent (e.g., stock availability, in-
troductory greeting, etc.), then we answer using
standard templates that do not involve any predic-
tive model. On the other hand, if the intent is a
product-specific intent, then we invoke a binary

317



classifier that predicts whether the query is factual
or subjective.

Factual queries, such as “what is the battery ca-
pacity of this phone?”, “does this phone support
5G?” are sent first to a question-answering model
based on unstructured data such as product descrip-
tion text or structured data such as key-value speci-
fication pairs, e.g., “battery capacity: 5000 mAh”,
and “camera resolution: 48 megapixel”.

Subjective queries, such as “is the camera good?,”
“can I play PUBG on this phone without lag?” are
sent first to a semantic text similarity model that
retrieves the most similar user FAQ or user reviews
from the product webpage that can potentially an-
swer this subjective user query.

We define the chatbot answerability metric as
follows: for a given response by the chatbot to a
user’s question, we assign it a score between -1 and
+1 based on the criteria described in Table 1.

Note that the weights assigned to each answer
category in Table 1 could be modified as per prod-
uct objectives. One example in an e-commerce
setting could be to assign a weight proportional to
the probability of conversion, i.e., the user buys the
product they are consulting the chatbot about. The
answerability of the chatbot is then defined as the
mean of answerability scores over the entire dataset
of chatbot responses.

We describe two kinds of modeling approaches
in this paper:

- Section 5 describes a mathematical model for
connecting individual model metrics to an-
swerability.

- Section 6 describes a multi-class classification
approach where we train a model to classify
a query-response pair between one of the an-
swerability classes.

4 Data

For the modeling described in this paper, we
sampled actual user-chatbot conversations from the
production logs of the pre-purchase chatbot and
asked an in-house team of labelers, based in India
and familiar with the English-Hindi code-mixed
vocabulary used by the users of the pre-purchase
chatbot, to label each chatbot response with one of
the 7 labels described in Table 1. Labelers were
provided with explicit examples of correct and
incorrect labels in a detailed labeling guideline
document, so that they label user query-bot

response pairs consistently. Chatbot responses that
did not fall into any of these 7 categories were
not considered. Every data point was labeled by
two labelers. Whenever there was a disagreement
between the labels, the tie was broken by a third
labeler. Labelers used Taskmonk, a data labeling
platform specific to e-commerce applications1.
User queries are either in English or code-mixed
English-Hindi, written using the Roman script.
Examples from labelled dataset are listed below:

1) Product: ABC mobile phone
User question: Auto call recording available
Bot response: (from FAQs) Here is what I found-
Q: All call Auto call recording hogi kya2 A: yes
Label: Excellent Relevance, Helpful Answer

2) Product: XYZ mobile phone
User question: earphone support this phone
Bot response: (from the product description)
Here’s what you’ll get in the box: 1 Handset, 1
Battery, 1 Charger.
Label: Poor Relevance, Unhelpful Answer

In the first example, the chatbot returned a
relevant user FAQ, whereas in the next example,
the chatbot responded with information that was
not relevant to the question asked by the user.

5 Modeling for predicting the
answerability from individual model
metrics

5.1 Framework to link answerability to
individual model metrics

Now that we have defined the answerability metric,
let us formulate our framework for linking indi-
vidual model metrics to the answerability metric
defined in Section 3. For the purposes of this paper,
we shall use a simplified version of the chatbot to
describe our approach and results. This chatbot is
used for answering pre-purchase customer ques-
tions related to products listed on the e-commerce
platform. The components of the chatbot cover
the major categories of models typically used in
chatbot architectures, hence it is an ideal example
for illustrating our answerability framework.

1https://taskmonk.ai/about-us.html
2This code-mixed utterance translates to: "Will all calls be

automatically recorded?"
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Figure 1: Schematic of a simplified version of the e-commerce chatbot used for the purposes of this paper.

Type of response Answerability score Symbol
• Poor Relevance -1 Sp

• No Answer
• Transfer to a Human Agent 0 Sn

• Excellent Relevance, Unhelpful Answer
• Fair Relevance, Unhelpful Answer 0.5 Sr, uh

• Excellent Relevance, Helpful Answer
• Fair Relevance, Helpful Answer 1 Sr, h

Table 1: Criteria for answerability scores based on the relevance and helpfulness of the chatbot responses

5.2 Intent classification model
Let S = {ps, non-ps1, non-ps2, . . . } denote the
list of chatbot intents, where “ps” indicates the
“product-specific” intent, and “non-ps1”, “non-ps2”,
etc. indicate the non-product specific intents for
which there is no predictive model to be run down-
stream. For a text classification model, if the pre-
dicted label is correct, then the answerability will
be the true answerability associated with that class
of intent. Otherwise, we assume that the answer-
ability will be 0.

Therefore, the contribution of intent i ∈ S to the
answerability is given as fiAiPi, where fi denotes
the fraction of queries with the predicted intent la-
bel being i, Ai denotes the answerability associated
with queries with intent label i, and Pi denotes the
probability of correctly predicting a query with a
predicted intent label i (precision).

Thus, the overall chatbot answerability A is
given as:

A =
∑

i∈S
fiAiPi

= fpsPpsAps +Anon−ps,

(1)

where

Anon−ps =
∑

i=1,2,...

fnon−ps,iPnon−ps,iAnon−ps,i.

(2)
Note that

∑
i∈S fi = 1 here. When the intent

i is ps (product-specific), we can expand the an-
swerability in terms of downstream model metrics

from the semantic text similarity, factual-subjective
classifier, and question-answering models. How-
ever, when the intent is not the product-specific
(ps) intent, there is no dependence of the answer-
ability of that specific intent on any of the model
metrics. Therefore, we can substitute the answer-
abilities of those intents, namely {Anon−ps,i}, with
a constant, average answerability value Anon−ps,
calculated from labeled data corresponding to the
appropriate non-product specific intents, such as
stock availability, offers and discounts, etc.

5.3 Factual/subjective classifier

Just like the intent classification model, the factual-
subjective binary classifier, which is invoked for
product-specific queries, contributes to the chatbot
answerability in the following way:

Aps = ffactual Pfactual Afactual

+ fsubjective Psubjective Asubjective.
(3)

, where Pfactual and Psubjective denote the preci-
sions of the factual and subjective classes of the
factual/subjective binary classifier, and ffactual and
fsubjective denote the fraction of queries recognized
as product-specific (ps) by the intent model.

5.4 Question-answering model

The question-answering models based on prod-
uct features are called when the above-mentioned
factual-subjective classifier predicts the user query
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to the chatbot as factual. Thus, Afactual men-
tioned in Eqn. 3 can be further expanded in terms
of the metrics of the question-answering model.
While answering from product specifications, the
ground truth could be either null or non-null, de-
pending on whether the answer to the question
asked is actually available in the product specifi-
cations. Furthermore, for null or non-null ground
truth, we could have either null or non-null pre-
dictions from the question-answering model. The
question-answering model metrics we use are de-
scribed in Table 2. We also assume that the 2
models for question-answering from unstructured
product description text and structured key-value
specification pairs have the same model metrics,
thus effectively reducing the 2 models into a single
question-answering model.

Combining Tables 2 and 1, we can derive the
following formula for Afactual:

Afactual = Sr, h × CQnA × ρ× fH,QnA

+ Sr, uh × CQnA × ρ× (1− fH,QnA)

+ Sp × (1− CQnA)× ρ

+ Sp × FPRnull × (1− ρ)
(4)

Here Sr, h, Sr, uh, and Sp denote the answerability
scores for relevant and helpful, relevant but unhelp-
ful, and poor relevance answers respectively, as
described in Table 1. Terms in Eqn. 4 with coeffi-
cients Sr, h, Sr, uh, and Sp denote the contributions
of relevant and helpful, relevant but unhelpful, and
poorly relevant answers respectively to Afactual.
We exclude terms with Sn (no answer/agent trans-
fer cases) from these equations for simplification
purposes, because Sn = 0 according to Table 1.

Note that in case the question-answering model
cannot answer a question, there is a fallback to
semantic search-based retrieval models. However,
in this formula, we ignore this in order to simplify
our description.

5.5 Semantic-text similarity based retrieval
models

Among the queries detected as subjective by the
factual/subjective classifier, some queries are an-
swered by a retrieval model that searches for the
most relevant user review, whereas others are an-
swered by a retrieval model that searches for the
most relevant user FAQ. While there is a fallback on
the question-answering model in case the retrieval

models are unable to answer the user question, we
chose to ignore it in order to simplify our modeling.

We now expand Asubjective as

Asubjective = fFAQ AFAQ

+ fReviews AReviews, (5)

where AFAQ and AReviews are the answerabilities
of the FAQ and Reviews models, and fFAQ and
fReviews denote the fraction of user queries that
were detected as subjective answered by FAQ and
reviews retrieval models respectively. For the case
of retrieval models, we use model metrics as de-
scribed in Table 3.

We further expand AReviews and AFAQ in terms
of the model metrics described in Table 3 as fol-
lows:

AReviews = Sr, h × PReviews × CReviews × fH,Reviews

+ Sr, uh × PReviews × CReviews × (1− fH,Reviews)

+ Sp × (1− PReviews)× CReviews

(6)

Similarly,

AFAQ = Sr, h × PFAQ × CFAQ × fH,FAQ

+ Sr, uh × PFAQ × CFAQ × (1− fH,FAQ)

+ Sp × (1− PFAQ)× CFAQ.
(7)

5.6 Overall expression for the chatbot
answerability A

By combining Eqns. 1, 3, 4, 5, 6, and 7, we get
the expression for the overall chatbot answerabil-
ity A. The approach we describe does not require
any additional model training and can act as a sim-
ple, first-principles baseline for expressing A as a
function of the individual model metrics.

For a chatbot that is different from the pre-
purchase e-commerce chatbot we describe here,
we need to modify the expressions Eqns. 1, 3, 4, 5,
6, and 7 according to its specific architecture. For
example, if a chatbot does not have access to user-
generated content such as reviews or FAQs, we
could ignore the terms AFAQ and AReviews. How-
ever, in most multi-model chatbot architectures, we
should be able to derive similar expressions for an
answerability-like metric.

By differentiating the overall expression for A
with respect to each of the model metrics, we get
the sensitivity of A to the product metric. For ex-
ample, ∂A

∂PFAQ
tells us the sensitivity of A to PFAQ.

By using our mathematical model, we could know
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Metric Symbol Description
Coverage CQnA fraction of non-null ground truth cases the model answered

correctly
Answer rate ρ fraction of queries for which answer is available in product

descriptions
Helpful fraction fH,QnA fraction of answers that were helpful to the user
Null false positive rate FPRnull fraction of false positives within null ground truth cases

Table 2: Question-answering model metrics

Metric Symbol Description
Coverage of the FAQ retrieval
model

CFAQ fraction of queries for which the FAQ retrieval model
gave a non-null answer

Coverage of the reviews retrieval
model

CReviews fraction of queries for which the reviews retrieval
model gave a non-null answer

Precision of the FAQ retrieval
model

PFAQ fraction of non-null answers from the FAQ retrieval
model which have excellent or fair relevance

Precision of the reviews retrieval
model

PReviews fraction of non-null answers from the reviews re-
trieval model which have excellent or fair relevance

Helpful fraction of the FAQ re-
trieval model

fH,FAQ fraction of helpful answers from the FAQ retrieval
model

Helpful fraction of the reviews
retrieval model

fH,Reviews fraction of helpful answers from the reviews retrieval
model

Table 3: FAQ and reviews retrieval model metrics used for the answerability calculation

which metric from Tables 2 and 3 has the highest
sensitivity of A, and based on this we could prior-
itize model improvements focused on that metric.
This can be of immense help for complicated chat-
bot architectures where it is hard to accurately pre-
dict which model metric has the potential to have
the maximum positive impact on the bottom-line
business metric, such as answerability. Moreover,
our framework could be used as a way to estimate
the expected business impact before an improved
model is launched into production.

To illustrate this, let us take the example of the
answerability calculated by combining Eqns. 1,
3, 4, 5, 6, and 7, for the mobile phone product
category. Let us hold all the other metrics to be
constant, and change only the answer rate, ρ, and
the precision of the subjective class of the fac-
tual/subjective binary classifier, Psubjective. Ac-
cording to the model, the overall answerability A
increases from 0.3256 to 0.3324 when Psubjective

goes up by 0.1, from 0.8 to 0.9, whereas A in-
creases from 0.3256 to 0.3467 when ρ goes up by
0.1, from 0.5 to 0.6. This means that ρ could be
a better metric to invest in than Psubjective, given
that it has a higher positive impact on A. How-

ever, in some cases, a normalized sensitivity, for
example, PFAQ

A
∂A

∂PFAQ
, might be a more appropri-

ate measure.

5.7 Limitations of this approach
Our approach makes the following assumptions,
which could result in an inaccurate prediction of
the chatbot answerability:

• We assume that if the intent is wrongly pre-
dicted or the factual/subjective classifier mis-
classifies the user query, the answerability is
going to be 0, which is not necessarily true.

• We assume fractions such as fps, fsubjective,
and fH,QnA to be constant and not a function
of model metrics. In reality, as model metrics
change, these fractions will change too.

• We ignore the possibility that the chatbot has
a fallback to reviews/FAQ models when the
question-answering model cannot answer, and
vice-versa.

A query-wise answerability score prediction model
that predicts an answerability score for a user query-
bot response pair can help address these limitations.
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The overall answerability A is then defined as the
average of the model predictions of answerability
scores over the test dataset. However, a query-wise
answerability prediction model relates an individ-
ual query-response pair to the answerability score,
rather than connecting the model metrics to the
overall chatbot answerability as in Section 5. Thus,
the formula-based approach described in this sec-
tion should be used in cases where we wish to get
a rough estimate of how much a particular metric
improvement is expected to increase the chatbot
answerability, or know the sensitivity of a business-
motivated metric such as A to the product metrics.
Whereas the per-query approach should be used
when the goal is to get an accurate prediction of
the overall answerability A.

6 Per-query predictive model for the
chatbot answerability A

Apart from helping us understand the relative im-
portance of each constituent model used in a chat-
bot, the answerability labels described in Table 1
can also be used for training a model to predict
the relevance and helpfulness of chatbot response,
which in turn can be used to compute the answer-
ability directly. Also, detecting whether a chatbot
response is helpful or not can be used to modify
our planned response so that an originally unhelp-
ful response could potentially become helpful. For
example, if the model predicts that an answer is
not helpful, then we could provide recommenda-
tions of similar products, or alter the conversational
design in a way that helps the user. Moreover, as
described in Section 5.7, such a per-query model-
ing approach does not suffer from the limitations of
the formula-based approach described in Section 5.

6.1 Approach

We propose to model helpful/unhelpful answer
prediction as a multi-class classification task at
the query level by using the question and its cor-
responding response from the chatbot as the in-
put. We chose an in-house Large Language Model
(LLM) based on the BERT architecture (Devlin
et al., 2019) pre-trained on an approximately 50
GB in-house training corpus consisting of prod-
uct descriptions, catalog attributes, reviews, QnA
pairs, and addresses as our pre-trained model. The
maximum sequence length while training is limited
to 192 based on the distribution of the number of
tokens. This model has 12 Encoder layers with an

embedding size of 768. This model is trained on 3
A100 GPUs for 14 days with a batch size of 420
for 1M steps. This model gains significantly lower
perplexity on in-domain test sets, especially for
code-mixed data and noisy search queries. We fine-
tune this pre-trained model on the dataset described
in Table 4.

Let ai be the response given by the chatbot for
question qi. The question qi and the response ai

are concatenated, tokenized and passed to an em-
bedding layer. The word embeddings along with
their positional signals are passed to a transformer
encoder, whose head predicts the output probabili-
ties.

wi = tokenizer([qi; ai])

ŷi = BertClassifier(wi)
(8)

”; ” denote the appropriate concatenation of input
sentences as required by the pre-trained model, i.e,
the [SEP] token. The classification task is trained
to minimize the cross entropy loss,

Lnsp = − 1

N1

N1∑

i=1

yilogŷi (9)

where yi is the ground truth label indicating the
answer class and N1 refers to the number of data
points in the dataset.

6.2 Dataset

We train the multi-class answer classification
model using our in-house dataset consisting of an-
swered queries from mobile phone and fashion
product categories on the e-commerce platform
(see Section 4). We remove queries falling under
"No Answer" groups since they are unhelpful by
default. We group the remaining responses into 3
classes based on their corresponding labels. The
statistics of the dataset are presented in Table 4.

6.3 Results

We use Term Frequency - Inverse Document Fre-
quency (TF-IDF) scores to vectorize user queries
and chatbot responses before feeding them as in-
put to one-vs-all Logistic Regression (LR). This
method was used as the baseline for this task.
We also experimented with the publicly available
BERT model (bert-base-cased) for the dataset. Ta-
ble 5 shows the comparison results. Our in-domain
BERT-based classification method outperforms the
simple baseline (TF-IDF + LR) by a significant

322



Train dataset Test dataset
Class 1 - Poor Relevance Unhelpful Poor relevance 2652 278

Class 2 - Excellent/Fair Relevance Unhelpful
Fair relevance 428 44

Excellent relevance 4661 479
Total datapoints 5089 523

Class 3 - Excellent/Fair Relevance Helpful
Fair relevance 1387 156

Excellent relevance 10197 1043
Total datapoints 11584 1199

Table 4: Helpful/Unhelpful answers dataset

Model Precision Recall F1-score
TF-IDF + LR 0.745 0.754 0.737
open-domain BERT 0.794 0.799 0.795
in-domain BERT 0.824 0.826 0.825

Table 5: Comparison of different models. Note that the
precision, recall, and F1 scores indicate the weighted
precision, recall, and F1 scores respectively.

margin. It also achieves an improvement of 3.77%
on weighted F1 score over the public BERT model.
The above result underlines the effectiveness of
in-domain pre-training of BERT. The detailed clas-
sification report of our model is presented in Figure
2.

6.4 Computing Answerability

We use the trained model to compute the product-
specific answerability Aps on the test dataset using
model predictions. We choose to focus on Aps

rather than the overall chatbot answerability A to
simplify our description, and also because Aps in-
cludes all the models present in the chatbot archi-
tecture described in Section 3 except the intent clas-
sification model. This is because the dataset consist
of queries where the intent has been identified as
product specification related. In order to compare
the approaches described in Sections 5 and 6, we
also compute an estimate of Aps using the mathe-
matical formulation in Section 5 and compare the
scores with the ground truth Aps from the human-
annotated test dataset. The results are tabulated in
Table 6. We observe that the BERT classifier is
able to match the ground truth answerability scores
closely.

For the mathematical formulation described in
Section 5, the predicted answerability underesti-
mates the ground truth answerability. This could
be due to distribution shifts between the evalua-
tion datasets used for calculating the model metrics
versus the test dataset used in Table 6, along with
the assumptions made by the mathematical model

Source Mobile Fashion
Ground Truth 0.546 0.637
BERT classifier 0.559 0.662
Mathematical formulation

0.326 0.308
(Section 5)

Table 6: Comparing the overall chatbot answerability
A for the BERT-based classifier and the mathematical
formulation from Section 5. The columns “Mobile” and
“Fashion” indicate mobile phone and fashion product
categories on the e-commerce platform respectively.

listed in Section 5.7. Given that the test dataset
used here ignores cases where the chatbot gave
a null response or transferred to a human agent,
we normalized the answerability appropriately by
a normalizing factor. Also, for all calculations
with the mathematical formulation, the fractions
in Eqns. 3, 4, 5, 6, and 7 such as fsubjective and
fH,QnA were calculated from the test dataset. To
simplify our description further through binary for-
mulation, we derived binary labels from the test
dataset where answerability score for helpful and
unhelpful is set as 1 and 0 respectively. We then
compute the answerability scores as per the mathe-
matical model described in Section 5, by choosing
Sr, uh = Sp = 0 and Sr, h = 1 in Table 1. For
this case, we get answerability scores of 0.469 and
0.442 for mobile phone and fashion product cat-
egories respectively. These scores are closer to
the respective ground truth answerability scores of
0.599 and 0.6 calculated for this binary formula-
tion of the answerability metric. This suggests that
the mathematical formulation of Section 5 shows
better agreement with the ground truth answerabil-
ity scores when we assume answerability to take a
binary value of either 0 or 1.

7 Conclusion

In this paper, we introduce answerability as a global
chatbot effectiveness metric and show how it can
be used to guide model development decisions for a
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Figure 2: Classification report of the in-domain BERT classifier

conversational AI product such as the pre-purchase
chatbot, by relating answerability to all the metrics
of all the models that are a part of the chatbot. Our
framework is general and can be easily extended
to chatbot metrics other than answerability depend-
ing on the domain of application, be it in finance,
governance, or health care, as long as there is a
concept of helpfulness associated with the chat-
bot’s responses. For example, a health care chatbot
helping patients understand their medical symp-
toms and pointing them to an appropriate health
care provider needs to not only provide accurate
information but also guide patients in the correct
direction when such information is not available.
The answerability metric will directly apply to such
a case, and help guide the development of individ-
ual models within the chatbot’s architecture in a
way that maximizes patient satisfaction.

Future work could involve the joint training of
all the models within a chatbot with a differentiable
version of the answerability objective. Further it-
erations of the formula-based modeling approach
described in Section 5 could involve the inclusion
of other upstream models such as spell checking,
automated speech recognition, and machine transla-
tion, which are used to interpret voice/multilingual
user input before the input is sent to the intent
classification model in the chatbot. We hope that
the answerability metric and the modeling meth-
ods described in this paper will help guide product
development and model prioritization in conversa-
tional AI products in the academic, government
and industrial domains.

8 Limitations and Ethical Impact

The answerability metric could inspire other
business-oriented metrics and also drive the de-
velopment of task-oriented chatbots across various
domains such as e-commerce, health care, and gov-
ernance. These use cases could have various so-

cial implications: dialog systems such as customer
support bots could bring in benefits such as cost
savings, convenience, and the availability of 24-
hour assistance, while decreasing the number of job
opportunities for human service agents and sales-
persons. Language models underlying such dialog
systems could reinforce social biases and impact
the environment negatively (Bender et al., 2021;
Schramowski et al., 2022). Moreover, any widely
used metric or benchmark carries the inherent risk
of biasing the research in a certain direction.
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