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Abstract

Figurative language is ubiquitous in human
communication. However, current NLP mod-
els are unable to demonstrate a significant un-
derstanding of instances of this phenomena.
FigLang shared task on figurative language un-
derstanding posed the problem of predicting
and explaining the relation between a premise
and a hypothesis containing an instance of the
use of figurative language. We experiment with
different variations of using T5-large for this
task and build a model that significantly outper-
forms the task baseline. Treating it as a new
task for T5 and simply finetuning on the data
achieves the best score on the defined evalua-
tion. Furthermore, we find that hypothesis-only
models are able to achieve most of the perfor-
mance.

1 Introduction

Figurative language is an important component
of discourse, ranging from daily interactions to
books. It is used as a tool to convey complex
and deeper emotions that are often difficult to ex-
press literally (Ghosh et al., 2015). Despite the fact
that Transformer-based pretrained language models
(LMs) get even larger, they are still unable to com-
prehend the physical world, cultural knowledge, or
social context in which figurative language is em-
bedded. Large-scale crowdsourced datasets often
contain these phenomena inherently. To show true
conceptual understanding of figurative language,
the model should not only be able to correctly
differentiate a figurative instance from its literal
counterpart, but also explain its decision. These
natural language explanations should be readily
comprehensible by an end-user who needs to as-
sert a model’s reliability (Camburu et al., 2018;
Wiegreffe and Marasovic, 2021).

This paper describes the experiments and sub-
mission of the LUNR lab at Stony Brook Univer-

∗First two authors have equal contribution

sity, USA to the shared task on Figurative Lan-
guage Understanding (Chakrabarty et al., 2022b)
organized at EMNLP 2022. Given a premise and
a hypothesis, the shared task required predicting
the relation between them as well as an explanation
for the same. We use variations in input format,
separator and sequential fine-tuning techniques to
build our final model.

Since the task involves predicting the label as
well as an explanation for it, in this paper we vary
the order of generation of each target in our mod-
els. Prior work (Khashabi et al., 2020) highlighted
the importance of separator tokens. It helps the
model distinguish between different portions of the
input. Additionally, since this task is not a com-
mon one, variations in input format and keywords
dictate how well a model performs. To that end,
we experimented with different formats prescribed
for T5 models as well as a simple one for an un-
seen, new task. Finally, we also experimented with
sequential fine-tuning on several related datasets to
improve performance on the shared task.

Our final model is a simple T5-large model fine-
tuned on the task data, trained to generate the ex-
planation before the label. The input format does
not contain any task-specific keys and does not re-
semble any of the ones described in Raffel et al.
(2020). The model uses a "\n" separator, which
is a prominent part of how UnifiedQA (Khashabi
et al., 2020) was built over T5. It improves sig-
nificantly over the task baseline. We observe that
(1) treating this as a new task leads to best model
performance, (2) the dataset contains artifacts that
hypothesis-only models use to reach significant per-
formance, and (3) knowing the type of phenomena
being encapsulated does not help the model.

2 Related Work

The model’s ability to explain decisions has been
investigated in previous studies. Rajani et al. (2019)
presents a novel Common Sense Explanations
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(CoS-E) dataset to explore commonsense reasoning
and propose a novel method, CAGE for automati-
cally generating explanations that achieve state-of-
the-art performance. Camburu et al. (2018) intro-
duces a large corpus of human-annotated explana-
tions for the Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015a) dataset which is col-
lected to enable research in generation of free-form
textual reasoning. Bastan et al. (2022) introduces
SuMe dataset which generates relation between en-
tities and an explanation for why this relation exists
or how this relation comes about.

None of the previous work explored the possi-
bility of different data formats. In this work we
evaluate different combinations of the explanation
and label generations. We also study the effect of
the pretrained model on similar tasks as a sequen-
tial pretraining.

3 Data

The shared task data (Chakrabarty et al., 2022a)
contains 9,000 high-quality literal, figurative sen-
tence pairs with entail/contradict labels and the
associated explanations. The benchmark spans five
types of figurative language: Paraphrase, Sarcasm,
Simile, Metaphor, and Idiom. The definition of
each type is explained as follows:

Paraphrase is a rephrasing of something that is
written. All sentences in this category belongs to
the entailment category.

Sarcasm is using phrases which have the oppo-
site meaning from what they are intended to convey.
It can be used for creating contradiction labels.

Simile is using a figure of speech to compare
something with something else. It can be used for
both entailment and contradiction labels.

Metaphor is when a word or phrase used to de-
scribe something that it cannot literally describe.
It can be used for both entailment and contradic-
tion labels. It can be used for both entailment and
contradiction labels.

Idiom is established by usage as having a mean-
ing not derived from their individual meanings. It
can be used for both entailment and contradiction
labels.

A noteworthy property of this data is that both
the entailment/contradiction labels and the expla-
nations are w.r.t the figurative language expression
(i.e., metaphor, simile, idiom) rather than other
parts of the sentence. The task is challenging be-
cause it inherently requires 1) relational reasoning

using background commonsense knowledge, and 2)
finegrained understanding of figurative language.

We split 7,500 examples into a 80-20 train and
dev set randomly. These sets are then used to build
models for the overall shared task.

4 Experiment Design

We use the T5 (Raffel et al., 2020) family of models
for our submission. Particularly, we build over T5-
large.

Since this is a new task for T5, we experiment
with various input and output formats. We build
models where the label is placed before and after
explanation on the target side. Large language
models have also been shown to be sensitive to the
choice of separators. To this end, we build models
that conform to different input/output formats as
well as separators.

Prior work has shown that pretraining on large
amounts of data similar to the task improves the
downstream performance of models. To this end,
we use e-SNLI (Camburu et al., 2018) to sequen-
tial fine-tuning our model before finetuning on
downstream task data to obtain a final model. e-
SNLI is an extension of the SNLI dataset (Bowman
et al., 2015b) with an additional layer of human-
annotated natural language explanations of the en-
tailment relations. Similarly, SuMe Bastan et al.
(2022) is a biomedical mechanism explanation
dataset which contains a set of supporting sentence
about two main entities, the relation between the
entities, and a sentence explaining the mechanism
behind this relation. They explored the genera-
tion of explanation and target label at the same
time given the supporting sentences, using different
transformer based models. They use [explanation.
label] as the output format while we explore all
possible orders and separator tokens. We used the
model pretrained on SuMe dataset and finetuned
on this task.

Poliak et al. (2018) used hypothesis-only models
showed that statistical irregularities may allow a
model to perform natural language inference in
some datasets beyond what should be achievable
without access to the context. Motivated by that,
we also build hypothesis-only models to analyze
whether models require contexts to perform this
NLI + explanation task.
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5 Results

5.1 Evaluation

To evaluate the performance of each model, we
use two generations and three classifications met-
rics. For generations, we use BLEURT (Sellam
et al., 2020) and BERTScore (Zhang et al., 2019)
which have been proven to be more effective than
tradition ROUGE scores. In order to evaluate the
quality of explanations, we compute the average be-
tween these two scores. NLI label accuracy is then
reported based on three explanation average score
thresholds. We compute the accuracy@0 meaning
accuracy on all generated data, accuracy@50 mean-
ing accuracy of the generated label for all texts with
average explanation score higher than 50, and ac-
curacy@60 which is the accuracy of the generated
label for all texts with average explanation score
higher than 60. This evaluation scheme has been
defined by the task organizers themselves.

5.2 Task Results

The baseline model released for the task is T5-
3B finetuned on this dataset (Chakrabarty et al.,
2022b). Our best model is a T5-large finetuned on
task data in using RTE keywords with the "[SEP]"
separator, and predicting the label before the expla-
nation. It significantly improves upon the baseline
set for the shared task despite being much smaller
in terms of number of parameters. Particularly, we
observe that Acc@60 is much lower than Acc@50,
which means that the average accuracy of the gen-
erated label drops as the average explanation score
threshold goes up from 50 to 60 (becomes stricter).

Acc@0 Acc@50 Acc@60

Our Model 0.889 0.824 0.517
Baseline 0.767 0.691 0.443

Table 1: Results on shared task test set

6 Analysis

We analyse the performance of the numerous mod-
els that we have built to understand the impact of
various design decisions that we took — input for-
mat, sequential fine-tuning, and order of required
predictions. Further, we also want to understand
the impact of artifacts present in the dataset itself
on model performance. We use the evaluation de-
scribed in subsection 5.1 on the dev set for analysis.

6.1 How does input format affect
performance?

The data input formats vary in two aspects — task-
specific keywords and the separator. Specifically,
the task-specific keywords can correspond to a new
task for T5 (no keywords), RTE and MNLI (Ap-
pendix D.2 and D.3 of Raffel et al. (2020) respec-
tively). We experiment with three possible separa-
tors between pieces of input text - ‘ ’ (whitespace),
[SEP] (the sep token), and "\n" (the newline char-
acter). Both \n and [SEP] are predefined to the
tokenizer as one unique token before training.

The effects of these design choices can be seen in
Table 2. We find that treating this as a new task (and
not using any predefined task-specific keywords)
yields the best model performance. Furthermore,
predicting the label before predicting its explana-
tion is better than the opposite. This is in line with
the expected order of performing both tasks — one
would predict the relation between the pair before
explaining it. We also see that using the [SEP] to-
ken is better for the label before explanation setting
except when using the MNLI task format.

6.2 Does sequential fine-tuning help?

Prior work has shown that sequential fine-tuning
on similar tasks often helps models. Both e-SNLI
(Camburu et al., 2018) and SuMe (Bastan et al.,
2022) are tasks where models have to predict labels
as well as explain it. We built models that were first
psequential fine-tuning on one of these datasets and
then finetuned on the task data. The results of these
two experiments are shown in Table 3.

We found that the sequential fine-tuning
paradigm actually hurts model performance sig-
nificantly, no matter which task is used with the
model first. We hypothesize that while these se-
lected tasks are similar in terms of what the model
has to predict, they do not capture any aspects of the
figurative language phenomena. So, introducing a
model to these tasks does not necessarily nudge it
towards the right domain.

6.3 Label before explanation vs explanation
before label

We explored different order of generation for the
label and the explanation. First, for each data, we
set the label to be generated before the explanation
(lbe) then we changed the order and first generated
the explanation before the label (ebl).

The results are shown in Table 2. We find that
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Keyword Label Position Seperator Model Name Acc@0 Acc@50 Acc@60

- after - ebl-no 0.830 0.778 0.557
- after [SEP] ebl-sep 0.789 0.737 0.513
- after \n ebl-slashn 0.822 0.766 0.557
- before - lbe-no 0.838 0.773 0.531
- before [SEP] lbe-sep 0.899 0.830 0.584
- before \n be-slashn 0.844 0.789 0.539

mnli after - mnli-ebl-no 0.790 0.737 0.514
mnli after [SEP] mnli-ebl-sep 0.779 0.721 0.512
mnli after \n mnli-ebl-slashn 0.814 0.747 0.540
mnli before - mnli-lbe-no 0.799 0.754 0.537
mnli before [SEP] mnli-lbe-sep 0.711 0.672 0.451
mnli before \n mnli-lbe-slashn 0.788 0.738 0.529

rte after - rte-ebl-no 0.737 0.690 0.486
rte after [SEP] rte-ebl-sep 0.797 0.748 0.537
rte after \n rte-ebl-slashn 0.833 0.767 0.531
rte before - rte-lbe-no 0.797 0.745 0.510
rte before [SEP] rte-lbe-sep 0.891 0.827 0.590
rte before \n rte-lbe-slashn 0.741 0.698 0.476

Table 2: Model performance with different input formats on the dev set. The first column shows the task specific
keyword we used in finetuning. It’s either nothing, the same as ‘mnli’ task, or ‘rte’ task. The second column
indicates whether the label is generated before or after the explanation. lbe means that the model was trained
to generate the label before the explanation while ebl indicates the opposite. The third column indicates which
separator was used between the label and the explanation. We either used no token, [SEP] token, or \n token. Model
name comes from the combination of the previous three columns. This notation is used in all other tables as well.
Treating the shared task as a new T5 task, using the [SEP] token as separator, and predicting the label before the
explanation helps us build the best model.

Model Name Acc@0 Acc@50 Acc@60

lbe-sep 0.899 0.830 0.584
esnli-mnli-ebl-sep 0.73 0.666 0.413

sume-mnli-ebl-slashn 0.696 0.672 0.502
sume-mnli-lbe-sep 0.729 0.669 0.410

Table 3: Effect of sequential fine-tuning on model per-
formance on shared task data. We only include the best
possible model scores obtained in the no-, esnli- and
sume- sequential fine-tuning regime. Clearly, sequential
fine-tuning only has a negative impact on model perfor-
mance.

predicting the label before moving on to the expla-
nation is better for the model in both a new task and
the RTE task setup. However, the opposite is true
for MNLI. Why the pattern does not hold remains
an open research issue.

6.4 Presence of artifacts in the dataset

Poliak et al. (2018) showed the presence of artifacts
in several popular NLI datasets. We use a similar

Model Name Acc@0 Acc@50 Acc@60

lbe-sep 0.672 0.627 0.423
mnli-lbe-no 0.696 0.634 0.418
rte-lbe-no 0.680 0.622 0.416

Table 4: Performance of hypothesis-only models on the
task. The table only includes the best performing model
from each input format task type (new, mnli and rte).

approach and build hypothesis-only models to test
the presence of artifacts in this dataset and task.
Ideally, these models should perform very poorly
on this data since they do not have access to the
premise and have to judge incomplete inputs.

Table 4 shows that models are able to achieve
high enough Acc@0 scores, showing that the over-
all dataset contains some artifacts. Technically, if a
significant portion of the dataset can be correctly
classified without looking at the premise (well be-
yond the most-frequent-class baseline), it shows
that it is possible to perform well on the datasets
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Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.854 0.803 0.542
mnli-ebl-no 0.847 0.786 0.567
rte-ebl-no 0.862 0.804 0.584

Table 5: Performance of models when they are also
provided the type of phenomena captured in the premise-
hypothesis. We only include the best performing model
from each input format task type (new, mnli and rte).

without modeling natural language inference hence
the data relies on annotation artifacts (Gururangan
et al., 2018). However, it is also clear that using
Acc@60 shows the weakness of the explanations
generated by these models. Overall, we posit that
using hypothesis-only models alone are also effec-
tive in performing this task.

6.5 Does knowing the type of figurative
language phenomena help?

Wang et al. (2019) showed that additional knowl-
edge is useful in improving NLI models. The
dataset is annotated with the type of figurative phe-
nomena encapsulated in the premise-hypothesis
pair. Using this additional information can help a
model predict the relation between the pair better,
and nudge it towards the correct explanation.

Performance for such models is listed in Table 5.
We find that knowing the type of phenomena hurts
the model as compared to just simply finetuning
with vanilla task inputs and outputs. It is unclear
why this additional knowledge has a negative im-
pact. One assumption can be because this addi-
tional information is not available at the test data,
we can only use this information during training.
This study is done on the development set. We
trained a model with this additional information,
but at the time of evaluation we didn’t use this as
this is not available in the test set.

7 Conclusion

Figurative language is an important component of
discourse, often used as a tool to convey complex
emotions usually difficult to express literally. The
shared task is designed to test whether models can
predict the relation between a pair of sentences that
contains figurative language as well as explain that
phenomena. We experiment with building several
models based on T5-large varying the input format,
order of prediction and sequential fine-tuning.

Our final model is a simple T5-large model fine-
tuned on the task data, trained to generate the ex-
planation before the label. The input format does
not contain any task-specific keys and does not re-
semble any of the ones described in Raffel et al.
(2020) but uses a "\n" separator. It improves sig-
nificantly over the task baseline. We observe that
(1) treating this as a new task leads to best model
performance, (2) the dataset contains artifacts that
hypothesis-only models use to reach significant per-
formance, and (3) knowing the type of phenomena
being encapsulated does not help the model.

8 Limitations

Our approach is fundamentally limited by the limits
of the fine-tuned transformer based models since
we only used one specific t5-large model. Fur-
ther, it might be computationally prohibitive to try
larger models since in requires more resources and
computational machines. We focus on exploring
different preprocessing steps, whereas a significant
amount of errors stem from the capacity of the
model in generating good explanations.
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A Sequential Fine-tuning

The extended results of the model pretrained on
SuMe (Bastan et al., 2022) is shown in Table 6 and
the results of the model pretrained on e-snli (Cam-
buru et al., 2018) and fine-tuned on this task is
shown in Table 7. Since the sequential fine-tuning
on esnli is time and resource consuming, we only
explored a few set of preprocessing on this task.

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.606 0.541 0.324
ebl-sep 0.653 0.593 0.379
ebl-slashn 0.648 0.624 0.455
lbe-no 0.674 0.615 0.375
lbe-sep 0.696 0.637 0.388
lbe-slashn 0.687 0.655 0.460
mnli-ebl-no 0.684 0.628 0.408
mnli-ebl-sep 0.701 0.641 0.410
mnli-ebl-slashn 0.696 0.672 0.502
mnli-lbe-no 0.714 0.643 0.394
mnli-lbe-sep 0.729 0.669 0.410
mnli-lbe-slashn 0.689 0.661 0.488
rte-ebl-no 0.676 0.625 0.402
rte-ebl-sep 0.691 0.604 0.347
rte-ebl-slashn 0.680 0.662 0.488
rte-lbe-no 0.713 0.652 0.402
rte-lbe-sep 0.701 0.643 0.397
rte-lbe-slashn 0.682 0.657 0.472

Table 6: SuMe Pretrained Models Performance

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.727 0.655 0.375
mnli-ebl-sep 0.73 0.666 0.413

Table 7: ESNLI Pretrained Models Performance

B Hypothesis-only Models

The hypothesis-only experiments show the pres-
ence of artifacts in this dataset. The full perfor-
mance of these models are shown in Table 4.

C Effect of Knowing the Phenomena

The extended results of the model with the type
information is shown in Table 5.

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.638 0.578 0.363
ebl-sep 0.637 0.576 0.381
ebl-slashn 0.676 0.612 0.404
lbe-no 0.684 0.604 0.410
lbe-sep 0.672 0.627 0.423
lbe-slashn 0.672 0.611 0.398
mnli-ebl-no 0.639 0.563 0.362
mnli-ebl-sep 0.670 0.596 0.378
mnli-ebl-slashn 0.661 0.593 0.390
mnli-lbe-no 0.696 0.634 0.418
mnli-lbe-sep 0.676 0.618 0.411
mnli-lbe-slashn 0.674 0.603 0.402
rte-ebl-no 0.632 0.569 0.366
rte-ebl-sep 0.637 0.574 0.363
rte-ebl-slashn 0.634 0.561 0.351
rte-lbe-no 0.680 0.622 0.416
rte-lbe-sep 0.678 0.628 0.398
rte-lbe-slashn 0.679 0.607 0.409

Table 8: Hypothesis Only Performance

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.854 0.803 0.542
ebl-sep 0.826 0.766 0.520
ebl-slashn 0.839 0.780 0.543
lbe-no 0.754 0.712 0.490
lbe-sep 0.742 0.690 0.488
lbe-slashn 0.740 0.694 0.496
mnli-ebl-no 0.847 0.786 0.567
mnli-ebl-sep 0.834 0.776 0.560
mnli-ebl-slashn 0.819 0.771 0.528
mnli-lbe-no 0.741 0.694 0.503
mnli-lbe-sep 0.756 0.709 0.487
mnli-lbe-slashn 0.755 0.713 0.509
rte-ebl-no 0.862 0.804 0.584
rte-ebl-sep 0.816 0.786 0.536
rte-ebl-slashn 0.821 0.775 0.533
rte-lbe-no 0.738 0.705 0.485
rte-lbe-sep 0.762 0.713 0.525
rte-lbe-slashn 0.758 0.719 0.509

Table 9: Type Added Performance
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