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Abstract

State-of-the-art Named Entity Recognition (NER)
models rely heavily on large amounts of fully an-
notated training data. However, accessible data are
often incompletely annotated since the annotators
usually lack comprehensive knowledge in the tar-
get domain. Normally the unannotated tokens are
regarded as non-entities by default, while we under-
line that these tokens could either be non-entities or
part of any entity. Here, we study NER modeling
with incomplete annotated data where only a frac-
tion of the named entities are labeled, and the unla-
beled tokens are equivalently multi-labeled by ev-
ery possible label. Taking multi-labeled tokens into
account, the numerous possible paths can distract
the training model from the gold path (ground truth
label sequence), and thus hinders the learning abil-
ity. In this paper, we propose AdaK-NER, named
the adaptive top-K approach, to help the model fo-
cus on a smaller feasible region where the gold path
is more likely to be located. We demonstrate the su-
periority of our approach through extensive exper-
iments on both English and Chinese datasets, av-
eragely improving 2% in F-score on the CoNLL-
2003 and over 10% on two Chinese datasets com-
pared with the prior state-of-the-art works.

1 Introduction
Named Entity Recognition (NER) [Li et al., 2020; Sang and
De Meulder, 2003; Peng et al., 2019] is a fundamental task in
Natural Language Processing (NLP). NER task aims at rec-
ognizing the meaningful entities occurring in the text, which
can benefit various downstream tasks, such as question an-
swering [Cao et al., 2019], event extraction [Wei et al., 2020],
and opinion mining [Poria et al., 2016].

Strides in statistical models, such as Conditional Random
Field (CRF) [Lafferty et al., 2001] and pre-trained language
models like BERT [Devlin et al., 2018], have equipped NER
with new learning principles [Li et al., 2020]. Pre-trained
model with rich representation ability can discover hidden
features automatically while CRF can capture the dependen-
cies between labels with the BIO or BIOES tagging scheme.

However, most existing methods rely on large amounts
of fully annotated information for training NER models [Li
et al., 2020; Jia et al., 2020]. Fulfilling such requirements
is expensive and laborious in the industry. Annotators, are
not likely to be fully equipped with comprehensive domain
knowledge, only annotate the named entities they recognize
and let the others off, resulting in incomplete annotations.
They typically do not specify the non-entity [Surdeanu et al.,
2010], so that the recognized entities are the only available
annotations. Figure 1(a) shows examples of both gold path1

and incomplete path.
For corpus with incomplete annotations, each unannotated

token can either be part of an entity or non-entity, making
the token equivalently multi-labeled by every possible label.
Since conventional CRF algorithms require fully annotated
sentences, a strand of literature suggests assigning weights to
possible labels [Shang et al., 2018; Jie et al., 2019]. Fuzzy
CRF [Shang et al., 2018] focused on filling the unannotated
tokens by assigning equal probability to every possible path.
Further, Jie [2019] introduced a weighted CRF method to
seek a more reasonable distribution q for all possible paths,
attempting to pay more attention to those paths with high po-
tential to be gold path.

Ideally, through comprehensive learning on q distribution,
the gold path can be correctly discovered. However, this per-
fect situation is difficult to achieve in practical applications.
Intuitively, taking all possible paths into consideration will
distract the model from the gold path, as the feasible region
(the set of possible paths where we search for the gold path)
grows exponentially with the length of the unannotated to-
kens increasing, which might cause failure to identify the
gold path.

To address this issue, one promising direction is to prune
the size of feasible region during training. We assume the un-
known gold path is among or very close to the top-K paths
with the highest possibilities. Specifically, we utilize a novel
adaptive K-best loss to help the training model focus on a
smaller feasible region where the gold path is likely to be lo-
cated. Furthermore, once a path is identified as a disqualified
sequence, it will be removed from the feasible region. This
operation can thus drastically eliminate redundancy without
undermining the effectiveness. For this purpose, a candidate

1A path is a label sequence for a given sentence.
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Sentence : Barbados and           Bahrain backed           Franz            Fischler
Gold Path : B-LOC O B-LOC O B-PER           I-PER

Incomplete Path : - - B-LOC - - -
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Figure 1: (a) The sentence is annotated with BIO tagging scheme. The entity types are person (PER) and location (LOC). Only the entity
‘Bahrain’ of LOC is recognized, while ‘Barbados’ of LOC and ‘Franz Fischler’ of PER are missing. (b) Weighted CRF model considers all
the 3125 possible paths with 5 unannotated tokens for q estimation. (c) In our model, we build a candidate mask to filter out the less likely
labels (labels in faded color). Therefore, the possible paths of our model is significantly less than weighted CRF.

mask is built to filter out the less likely paths, so as to restrict
the size of the feasible region.

Trained in this way, our AdaK-NER overcomes the short-
comings of Fuzzy CRF and weighted CRF, resulting in a
significant improvement on both precision and recall, and a
higher F1 score as well.

In summary, the contributions of this work are:
• We present a K-best mechanism for improving incom-

plete annotated NER, aiming to focus on the gold path
effectively from the most possible candidates.

• We demonstrate both qualitatively and quantitatively
that our approach achieves state-of-the-art performance
compared to various baselines on both English and Chi-
nese datasets.

2 Proposed Approach
Let x = (x1,x2, · · · ,xn) be a training sentence of length
n, token xi ∈ X . Correspondingly, y = (y1,y2, · · · ,yn)
denotes the complete label sequence, yi ∈ Y . The NER
problem can be defined as inferring y based on x.

Under the incomplete annotation framework, we introduce
the following terminologies. A possible path refers to a pos-
sible complete label sequence consistent with the annotated
tokens. For example, a possible incomplete annotated label
sequence for x can be yu = (−,y2,−, · · · ,−), where token
x2 is annotated as y2 and other missing labels are labeled as
−. yc = (yc1 ,y2, · · · ,ycn) with yci ∈ Y , is a possible path
for x, where all the missing labels− are replaced by some el-
ements in Y . Set C(yu) denotes all possible complete paths
for x with incomplete annotation yu. D = {(xi,yi

u)} is the
available incompletely annotated dataset.

For NER task, CRF [Lafferty et al., 2001] is a traditional
approach to capture the dependencies between the labels by

modeling the conditional probability pw(y|x) of a label se-
quence y given an input sequence x of length n as:

pw(y|x) = exp(w · Φ(x,y))∑
y∈Y n exp(w · Φ(x,y)) . (1)

Φ(x,y) denotes the map from a pair of x and y to an ar-
bitrary feature vector, w is the model parameter, pw(y|x) is
the probability of y predicted by the model. Once w has been
estimated via minimizing negative log-likelihood:

L(w,x) = − log pw(y|x), (2)

the label sequence can be inferred by:

ŷ = arg max
y∈Y n

pw(y|x). (3)

The original CRF learning algorithm requires a fully anno-
tated sequence y, thus the incompletely annotated data is not
directly applicable to it. Jie [2019] modified the loss function
as follows:

L(w,x) = − log
∑

y∈C(yu)

q(y|x)pw(y|x), (4)

where q(y|x) is an estimated distribution of all possible com-
plete paths y ∈ C(yu) for x.

We illustrate their model in (Figure 1b). Note that when
q is a uniform distribution, the above CRF model is Fuzzy
CRF [Shang et al., 2018] which puts equal probability to all
possible paths in C(yu). Jie [2019] claimed that q should
be highly skewed rather than uniformly distributed, therefore
they presented a k-fold cross-validation stacking method to
approximate distribution q.

Nonetheless, as Figure 1(b) shows, a sentence with only 6
words (1 annotated, 5 unannotated) have 3125 possible paths.
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We argued that identifying the gold path from all possible
paths is like looking for a needle in a haystack. This motivates
us to reduce redundant paths during training. We propose two
major strategies (adaptive K-best loss and candidate mask)
to induce the model to focus on the gold path (Figure 1(c)),
and two minor strategies (annealing technique and iterative
sample selection) to further improve the model effectiveness
in NER task. The workflow is summarized in Algorithm 1.

2.1 Adaptive K-best Loss

Viterbi decoding algorithm is a dynamic programming tech-
nique to find the most possible path with only linear com-
plexity, thus it could be used to predict a path for an input
based on the parameters provided by the NER model. K-
best Viterbi decoding [Huang and Chiang, 2005] extends the
original Viterbi decoding algorithm to extract the top-K paths
with the highest probabilities. In the incomplete data, the gold
path is unknown. We hypothesize it is very likely to be the
same with or close to one of the top-K paths. This inspires
us to introduce an auxiliary K-best loss component to help
the model focus on a smaller yet promising region. Weight
is added to balance the weighted CRF loss and the auxiliary
loss, and thus we modify (4) into:

Lk(w,x) =− (1− λ) log
∑

y∈C(yu)

q(y|x)pw(y|x)

− λ log
∑

y∈Kw(x)

pw(y|x),
(5)

where Kw(x) represents the top-K paths decoded by con-
strained K-best Viterbi algorithm2 with parameters w, and λ
is an adaptive weight coefficient.

2.2 Estimating q with Candidate Mask

We divide the training data into k folds and employ k-fold
cross-validation stacking to estimate q for each hold-out fold
[Jie et al., 2019]. We propose an interpolation mode to adjust
q by increasing the probabilities for paths with high confi-
dence and decreasing for the others. The probability of each
possible path is a temperature softmax of log pwi

:

qwi
(y|x) = exp (log pwi

(y|x)/T )∑
y exp (log pwi

(y|x)/T ) , (6)

where T > 0 denotes the temperature and wi is the model
trained by holding out the i-th fold. A higher temperature
produces a softer probability distribution over the paths, re-
sulting in more diversity and also more mistakes [Hinton et
al., 2015]. We iterate the cross-validation until q converges.

Jie [2019] estimated q(y|x) for each y ∈ C(yu) while the
size of C(yu) grows exponentially on the number of unanno-
tated tokens in x. To reduce the number of possible paths for
q estimation, we build candidate mask based on the K-best
candidates and the self-built candidates.

2The constrained decoding ensures the resulting complete paths
are compatible with the incomplete annotations.

Algorithm 1 AdaK-NER
Data: D = {(xi,yi

u)}
Randomly divide D into k folds: D1, D2, · · · , Dk

Entity DictionaryH ← ∅
Initialize model M with parameters ŵ
Initialize q distributions {q(·|xi)}
Sample importance score si ← 1
hyper-parameters s and c
for iteration = 1, · · · , N do

% Sample Selection
D

′ ← D
for j = 1, · · · , k do

D
′
j ← Dj

for (xi,yi
u) ∈ D

′
j do

if si < s then
remove (xi,yi

u) from D
′
j and D

′

end
end

end
% q Distribution Estimating
for j = 1, · · · , k do

Train M(wj) on D
′\D′

j : Eq.(7)
for (xi,yi

u) ∈ D
′
j do

Predict Kb(x
i) by M(ŵ)

Extract H(xi) byH
Possible paths S = S(yi

u,Kb(x
i), H(xi))

Estimate q(y|xi) for y ∈ S: Eq.(6)
si = maxy pwj (y|xi)
ei ← {entities} predicted by M(wj)

end
end
% DictionaryH Updating
H ← ∅
for entity ∈ ∪ei do

if entity /∈ H and freq(entity) >c then
H ← add entity(H, entity)

end
end
Train M(w′) on D with q: Eq.(7)
if F1 of M(w′) > F1 of M(ŵ) on Dev then

ŵ ← w′

end
end
Return the final NER model M(ŵ)

K-best Candidates. During the end of each iteration, we
train a model M(ŵ) on the whole training data D. In the next
iteration, we use the trained model M(ŵ) to identify K-best
candidates set Kb(x) for each sample x by constrained K-
best Viterbi decoding. Kb(x) = {K̂i(x)}i=1,··· ,K contains
top-K possible paths with the highest probabilities, where
K̂i(x) = [K̂i(x1), K̂i(x2), · · · , K̂i(xn)].
Self-built Candidates. In the current iteration, after train-
ing a model M(wi) on (k − 1) folds, we use M(wi) to
predict a path for each sample in the hold-out fold, and ex-
tract entities from the predicted path. Then we merge all
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Dataset Train Dev Test
#entity #sent #entity #sent #entity #sent

CoNLL-2003 23499 14041 5942 3250 5648 3453
Taobao 29397 6000 4941 998 4866 1000
Youku 12754 8001 1580 1000 1570 1001

Table 1: Data statistics for CoNLL-2003, Taobao and Youku. ‘#en-
tity’ represents the number of entities, and ‘#sent’ is the number of
sentences.

entities identified by k models {M(wi)}i=1,··· ,k, resulting
an entity dictionary H. For each sample x we conjecture
that its named entities should lie in the dictionary H. Con-
sequently, in the next iteration we form a self-built candidate
H(x) = [H(x1), H(x2), · · · , H(xn)] for each x of length
n. H(xj) is the corresponding entity label if the token xj is
part of an entity inH, otherwise H(xj) is O label.

We utilize the above candidates (i.e., the K-best candi-
dates set Kb(x) and the self-built candidate H(x)) to con-
struct a candidate mask for x. For each unannotated xj in x,
the possible label set consists of (1) O label (2) H(xj), (3)
∪Ki=1K̂i(xj).

For example, as Figure 1(c) shows, the unannotated token
‘Barbados’ is predicted as B-PER and B-LOC in the above
candidate paths, we treat B-PER, B-LOC and O label as the
possible labels of ‘Barbados’ and mask the other labels.

With this masking scheme, we can significantly narrow
down the feasible region of x (Figure 1(c)) when estimating
q(·|x). After estimating q(·|x), we can train a model through
the modified loss:

Lm(w,x) =− (1− λ) log
∑

y∈S

q(y|x)pw(y|x)

− λ log
∑

y∈Kw(x)

pw(y|x),
(7)

where S = S(yu,Kb(x), H(x)) contains the possible paths
restricted by the candidate mask.

2.3 Annealing Technique for λ

Intuitively, the top-K paths decoded by the algorithm could
be of poor quality at the beginning of training, because the
model’s parameters used in decoding haven’t been trained ad-
equately. Therefore, we employ an annealing technique to
adapt λ during training as:

λ(b) = exp

[
γ

(
b

B
− 1

)]
,

where b is the current training step, B is the total number
of training steps, and γ is the hyper-parameter used to con-
trol the accelerated speed of λ. The coefficient λ increases
rapidly at the latter half of the training, enforcing the model
to extracting more information from the top-K paths.

2.4 Iterative Sample Selection
Due to the incomplete annotation, there exist some samples
whose q distributions are poorly estimated. We use an idea
of sample selection to deal with these samples. In each itera-
tion, after training a model M(wi) on (k−1) folds, we utilize
M(wi) to decode a most possible path ŷ for x ∈ Di, and as-
sign a probability score s = pwi

(ŷ|x) to x at the meantime.

Iterative sample selection is to select the samples with prob-
ability scores beyond a threshold to construct new training
data, which are used in the training phase of k-fold cross-
validation in the next iteration (more Algorithm details can
be found in Algorithm 1). We use this strategy to help model
identify the gold path effectively with high-quality samples.

3 Experiments
3.1 Dataset
To benchmark AdaK-NER against its SOTA alternatives in
realistic settings, we consider one standard English dataset
and two Chinese datasets from Financial Technology Indus-
try: (i) CoNLL-2003 English [Sang and De Meulder, 2003]:
annotated by person (PER), location (LOC) and organization
(ORG) and miscellaneous (MISC). (ii) Taobao3: a Chinese
e-commerce site. The model type (PATTERN), product type
(PRODUCT), brand type (BRAND) and the other entities
(MISC) are recognized in the dataset. (iii) Youku4: a Chinese
video-streaming website with videos from various domains.
Figure type (FIGURE), program type (PROGRAM) and the
others (MISC) are annotated. Statistics for datasets are pre-
sented in Table 1.

We randomly remove a proportion of entities and all O la-
bels to construct the incomplete annotation, with ρ represent-
ing the ratio of entities that keep annotated. We employ two
schemes for removing entities:

• Random-based Scheme is simply removing entities by
random [Jie et al., 2019; Li et al., 2021], which simu-
lates the situation that a given entity is not recognized
by an annotator.

• Entity-based Scheme is removing all occurrences of a
randomly selected entity until the desired amount re-
mains [Mayhew et al., 2019; Effland and Collins, 2021;
Wang et al., 2019]. For example, if the entity ‘Bahrain’
is selected, then every occurrence of ‘Bahrain’ will be
removed. This slightly complicated scheme matches the
situation that some entities in a special domain could not
be recognized by non-expert annotators.

According to the low recall of entities tagged by non-speaker
annotators in Mayhew [2019], we set ρ = 0.2 and ρ = 0.4 in
our experiments. Note that a smaller ρ means a larger propor-
tion of missing annotation, ρ = 1 means complete annotation.

3.2 Experiment Setup
Evaluation Metrics. We consider the following perfor-
mance metrics: Precision (P ), Recall (R), and balanced F-
score (F1). These metrics are calculated based on the true en-
tities and the recognized entities. F1 score is the main metric
to evaluate the NER models of baselines and our approach.
Baselines. We consider several strong baselines to compare
with the proposed methods, including BERT with conven-
tional CRF (or CRF for abbreviation) [Lafferty et al., 2001],
BERT with Fuzzy CRF [Shang et al., 2018], and BERT with
weighted CRF presented by Jie [2019]. CRF regards all unan-
notated tokens as O label to form complete paths, while Fuzzy

3http://www.taobao.com
4http://www.youku.com
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Ratio Model CoNLL-2003 Taobao Youku
P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

ρ = 0.2

BERT CRF 81.42 15.05 25.40 83.11 24.06 37.32 64.85 20.45 31.09
BERT Fuzzy CRF 17.94 88.14 29.81 41.48 80.39 54.72 22.74 84.65 35.85
BERT weighted CRF 85.03 82.65 83.82 70.06 57.85 63.37 70.18 38.98 50.12
AdaK-NER 87.05 86.74 86.89 74.24 78.89 76.50 78.21 79.96 78.09

ρ = 0.4

BERT CRF 80.07 51.25 62.49 84.76 47.68 61.03 78.89 50.70 61.73
BERT Fuzzy CRF 14.89 86.61 25.41 43.51 85.02 57.56 30.88 84.01 45.16
BERT weighted CRF 85.40 88.69 87.01 73.17 81.09 76.93 74.99 82.29 78.47
AdaK-NER 87.47 88.70 88.08 74.08 80.13 76.99 78.38 81.53 79.93

ρ = 1.0 BERT CRF 91.34 92.36 91.85 86.01 88.20 87.09 83.20 84.52 83.85

Table 2: Performance comparison between different models on three datasets with Random-based Scheme.

Ratio Model CoNLL-2003 Taobao Youku
P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

ρ = 0.2

BERT CRF 86.79 18.36 30.31 39.62 10.58 16.70 69.10 15.67 25.55
BERT Fuzzy CRF 15.99 86.30 26.98 42.49 82.33 56.05 27.79 86.37 42.05
BERT weighted CRF 83.40 70.96 76.68 73.49 52.63 61.33 74.71 32.55 45.34
AdaK-NER 86.32 71.72 78.35 73.24 76.59 74.88 78.86 75.54 76.20

ρ = 0.4

BERT CRF 86.68 34.26 49.11 78.43 39.68 52.70 62.16 35.16 44.91
BERT Fuzzy CRF 13.84 84.60 23.79 42.24 81.07 55.54 32.10 82.87 46.27
BERT weighted CRF 84.68 76.91 80.61 74.65 79.57 77.03 75.67 80.64 78.08
AdaK-NER 85.48 77.85 81.49 74.58 80.54 77.44 79.01 81.02 80.00

ρ = 1.0 BERT CRF 91.34 92.36 91.85 86.01 88.20 87.09 83.20 84.52 83.85

Table 3: Performance comparison between different models on three datasets with Entity-based Scheme.

CRF treats all possible paths compatible with the incomplete
path with equal probability. Weighted CRF assigns an esti-
mated distribution to all possible paths derived from the in-
complete path to train the model.

Training details. We employ BERT model [Devlin et al.,
2018] as the neural architecture for baselines and our AdaK-
NER. Specifically, we use pretrained Chinese BERT with
whole word masking [Cui et al., 2019] for the Chinese
datasets and pretrained BERT with case-preserving Word-
Piece [Devlin et al., 2018] for CoNLL-2003 English dataset.
Unless otherwise specified, we set the hyperparameter over
[top K] as 5 by default for illustrative purposes. Based on the
fact that a larger k-fold value has a negligible effect [Jie et al.,
2019], we choose to split the training data into 2 folds (i.e.,
k = 2). We initialize q distribution by assign each unanno-
tated token as O label to form complete paths, and iteratively
updated q by k-fold cross-validation stacking. Empirically,
we set the iteration number to 10, which is enough for our
model to converge.

3.3 Experimental Results
To validate the utility of our model, we consider a wide range
of real-world tasks experimentally with entity keeping ratio
ρ = 0.2 and ρ = 0.4. We present the results with Random-
based Scheme in Table 2 and Entity-based Scheme in Table
3. We compare the performance of our method to other com-
peting solutions, with each baseline carefully tuned to ensure
fairness. In all cases, CRF has high precision and low re-
call because it labels all the unannotated tokens as O label.
In contrast, taking all possible paths into account yields the
mismatch of the gold path, hence Fuzzy CRF recalls more
entities. Weighted CRF outperforms CRF and Fuzzy CRF,

indicating that distribution q should be highly skewed rather
than uniformly distributed.

With adaptive K-best loss, candidate mask, annealing
technique and iterative sample selection approach, our ap-
proach AdaK-NER performs strongly, exhibits high precision
and high recall on all datasets and gives best results in F1

score over the other three models. The improvement is es-
pecially remarkable on Chinese Taobao and Youku datesets
for ρ = 0.2, as it delivers over 13% and 27% increase in F1

score with Random-based Scheme, while over 13% and 30%
increase with Entity-based Scheme.

Note that in CoNLL-2003 and Youku, the F1 score of
AdaK-NER with Random-based Scheme is only roughly 5%
lower than that of CRF trained on complete data (ρ = 1),
while we build AdaK-NER on the training data with only
20% entities available (ρ = 0.2). In the other Chinese dataset,
our model also achieves encouraging improvement compared
to the other methods and presents a step toward more accurate
incomplete named entity recognition.

Entity-based Scheme is more restrictive, which is likely to
happen in the industry like Financial Technology. However,
our model still achieves best F1 score compared with other
methods. The overall results show AdaK-NER achieves state-
of-the-art performance compared to various baselines on both
English and Chinese datasets with incomplete annotations.

The Effect of K. As discussed in Section 2.1 and 2.2, the
parameter K can affect the learning procedure from two as-
pects. We compare the performance of different K on Taobao
dataset with Random-based Scheme and ρ = 0.2. The hyper-
parameter over [top K] is selected from {1, 3, 5, 7, 9} on the
validation set. As illustrated in Figure 2, a relatively large K
delivers better empirical results, and the metrics (precision,
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Model CoNLL-2003 Taobao Youku
P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

w/o K-best loss 88.55 80.49 84.33 78.64 53.12 63.41 62.26 39.3 48.18
w/o weighted loss 83.79 82.84 83.32 47.85 66.15 55.53 73.46 71.59 72.52
w/o annealing 88.36 84.01 86.13 76.09 60.05 67.13 80.98 62.29 70.79
w/o K-best candidates 84.42 73.76 78.73 72.75 56.62 63.68 73.94 58.03 65.02
w/o self-built candidates 87.52 86.33 86.92 72.38 77.44 74.82 77.88 74.46 76.13
w/o candidate mask 84.97 86.51 85.73 68.29 79.16 73.32 73.40 79.81 76.47
w/o sample selection 86.64 86.03 86.33 72.88 79.59 76.09 78.48 79.43 78.95
AdaK-NER 87.05 86.74 86.89 74.24 78.89 76.50 78.21 79.96 78.09

Table 4: Ablation study for AdaK-NER on three datasets with Random-based Scheme for ρ = 0.2.
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Figure 2: (left) Sensitivity analysis of top truncation K. A smaller K
is more sensitive to the truncation. (right) F1 score comparison be-
tween Fuzzy CRF, weighted CRF and our model on Taobao dataset
across different ρ selection with Random-based Scheme

recall and F1) are pretty close when K = 5, 7, 9. Meanwhile,
a smaller K can narrow down the possible paths more effec-
tively in theory. Hence we favor K = 5 which might be a
balanced choice.

The Effect of ρ. We further examine annotation rate (ρ) in-
teracts with learning. We plot F1 score on Taobao dataset
with Random-based Scheme across varying annotation rate
in Figure 2. The annotation removed with large ρ inherits the
annotation removed with the small ρ. All the performance
deliver better results with the increase of ρ. Our model con-
sistently outperforms weighted CRF and Fuzzy CRF, and the
improvement is significant when ρ is relatively small, which
indicates our model is especially powerful when the anno-
tated tokens are fairly sparse.

3.4 Ablation Study
To investigate the effectiveness of the proposed strategies
used in AdaK-NER, we conduct the following ablation with
Random-based Scheme and ρ = 0.2. As shown in Table 4,
the adaptive K-best loss contributes most to our model on
the three datasets. It helps our model achieve higher recall
while preserving acceptable precision. Especially on Youku
dataset, removing it would cause a significant drop on recall
by 40%. The weighted CRF loss is indispensable, and anneal-
ing method could help our model achieve better results. Can-
didate mask is attributed to promote precision while keeping
high recall. Both K-best candidates and self-built candidates
facilitate the model performance. Iterative sample selection
makes a positive contribution to our model on CoNLL-2003
and Taobao, whereas it slightly hurts the performance on
Youku. In general, incorporating these techniques enhances
model performance on incomplete annotated data.

4 Related Works
Pre-trained Language Models has been an emerging di-
rection in NLP since Google launched BERT [Devlin et al.,
2018] in 2018. With the powerful Transformer architecture,
several pre-trained models, such as BERT and generative pre-
training model (GPT), and their variants have achieved state-
of-the-art performance in various NLP tasks including NER
[Devlin et al., 2018; Liu et al., 2019]. Yang [2019] proposed
a pre-trained permutation language model (XLNet) to over-
come the limitations of denoising autoencoding based pre-
training. Liu [2019] demonstrated that more data and more
parameter tuning could benefit pre-trained language models,
and released a new pre-trained model (RoBERTa). To follow
the trend, we use BERT as our neural model in this work.
Statistical Modeling has been widely employed in se-
quence labeling. Classical models learn label sequences
through graph-based representation, with prominent exam-
ples such as Hidden Markov Model (HMM), Maximum En-
tropy Markov Models (MEMM) and Conditional Random
Fields (CRF) [Lafferty et al., 2001]. Among them, CRF
is an optimal model, since it resolves the labeling bias is-
sue in MEMM and doesn’t require the unreasonable indepen-
dence assumptions in HMM. However, conventional CRF is
not directly applicable to the incomplete annotation situation.
Ni [2017] select the sentences with the highest confidence,
and regarding missing labels as O. Another line of work is to
replace CRF with Partial CRF [Nooralahzadeh et al., 2019;
Huang et al., 2019] or Fuzzy CRF [Shang et al., 2018], which
assign unlabeled words with all possible labels and maxi-
mize the total probability [Yang et al., 2018]. Although these
works have led to many promising results, they still need ex-
ternal knowledge for high-quality performance. Jie [2019]
presented a weighted CRF model which is most closely re-
lated to our work. They estimated a proper distribution for all
possible paths derived from the incomplete annotations. Our
work enhances Fuzzy CRF by reducing the possible paths by
a large margin, aiming to better focus on the gold path.

5 Conclusion
In this paper, we explore how to build an effective NER model
by only using incomplete annotations. We propose two major
strategies including introducing a novel adaptive K-best loss
and a mask based on K-best candidates and self-built candi-
dates to help our model better focus on the gold path. The
results show that our approaches can significantly improve
the performance of NER model with incomplete annotations.
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