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Abstract

Active learning (AL) is a prominent technique
for reducing the annotation effort required for
training machine learning models. Deep learn-
ing offers a solution for several essential obsta-
cles to deploying AL in practice but introduces
many others. One of such problems is the
excessive computational resources required to
train an acquisition model and estimate its un-
certainty on instances in the unlabeled pool.
We propose two techniques that tackle this is-
sue for text classification and tagging tasks, of-
fering a substantial reduction of AL iteration
duration and the computational overhead in-
troduced by deep acquisition models in AL.
We also demonstrate that our algorithm that
leverages pseudo-labeling and distilled mod-
els overcomes one of the essential obstacles
revealed previously in the literature. Namely,
it was shown that due to differences between
an acquisition model used to select instances
during AL and a successor model trained on
the labeled data, the benefits of AL can dimin-
ish. We show that our algorithm, despite using
a smaller and faster acquisition model, is ca-
pable of training a more expressive successor
model with higher performance.1

1 Introduction

Active learning (AL) (Cohn et al., 1996) is an ap-
proach for reducing the amount of dataset anno-
tation required for achieving the desired level of
machine learning model performance. This is es-
pecially important in domains where obtaining la-
beled instances is expensive or wide crowdsourcing
is unavailable. For example, annotation of clinical
and biomedical texts usually requires the help of
physicians or biomedical researchers. The time of
such highly qualified experts is extremely valuable

1The code for reproducing the experiments is avail-
able at https://github.com/AIRI-Institute/
al_nlp_feasible
♦ Equal contribution, corresponding authors

and should be spent wisely. Straightforward annota-
tion of datasets can be very redundant, wasting the
time of annotators on unimportant instances. AL
alleviates this problem by asking human experts to
label only the most informative instances selected
according to the information acquired from a ma-
chine learning model. The algorithm for selection
of such instances is called a query strategy, and a
model used to estimate the informativeness of yet
unlabeled instances is called an acquisition model.

AL starts from a small seeding set of labeled
instances, which are used to train an initial acqui-
sition model. A query strategy ranks unlabeled
instances in a large pool according to a criterion
that measures their informativeness based on the
acquisition model output. One of the most widely
adopted criteria is the uncertainty of the acquisi-
tion model on instances in question (Lewis and
Gale, 1994). Eventually, top selected instances are
presented to annotators, and this active annotation
process iteratively continues.

After labels are collected, we would like to train
a model for a final application. In the same vein as
(Lowell et al., 2019), we call it a successor model.
AL can help reduce the amount of annotation re-
quired to achieve a reasonable quality of the succes-
sor text processing model by multiple times (Settles
and Craven, 2008; Settles, 2009).

Recently, deep learning has given us a tool for
solving one of the essential problems of AL. When
we start annotating, we have to build an acquisition
model almost without insights from the data that
could help us to do feature engineering or to intro-
duce inductive bias. Deep learning does not require
feature engineering and transfer learning with deep
pre-trained models like ELMo (Peters et al., 2018),
BERT (Devlin et al., 2019), and followers such as
ELECTRA (Clark et al., 2020) provide near state-
of-the-art performance on a variety of tasks without
any modifications to their architectures. However,
deep learning introduces another problem related
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to computational performance. Since AL annota-
tion typically is an interactive process, we have to
train acquisition models and perform inference on
a huge unlabeled pool of instances very quickly.
This imposes constraints on the acquisition model
size and entails another issue.

Ideally, the architectures of acquisition and
successor models should be the same. Lowell
et al. (2019) demonstrate that when the acquisition
model is different from the successor model, the
performance of the latter one can degrade com-
pared to the performance of the model trained
on the same amount of annotation obtained with-
out AL. The performance drop in the case of
acquisition-successor mismatch (ASM) raises the
question of whether AL is a practical technique
at all since the usage of different models on the
annotated dataset is a common practice. The prob-
lem is complicated by a contradiction between the
fact that the acquisition model is required to be as
lightweight as possible to mitigate computational
overhead and the successor model should be as
expressive as possible because we apparently care
about the quality of our final application.

In this work, we propose a simple algorithm
based on pseudo-labeling and demonstrate that it
is able to alleviate the ASM problem. Moreover,
we show that it is possible to substitute a resource-
intensive acquisition model with a smaller one (e.g.,
take DistilBERT instead of BERT) but train a more
powerful successor model of an arbitrary type (e.g.,
ELECTRA) without loss of quality. This helps
to accelerate the execution of AL iterations and
reduce computational overhead.

We also find that the most time-consuming part
of an AL iteration with uncertainty-based query
strategies can be the inference on the unlabeled
pool of instances, while a set of the most certain in-
stances usually does not change substantially from
iteration to iteration. Therefore, the straightforward
approach to instance acquisition wastes much time
on instances shown to be unimportant in previous
iterations. We leverage this finding and propose
an algorithm that subsamples instances in the un-
labeled pool depending on their uncertainty scores
obtained on previous AL iterations. This helps
to speed up the AL iterations further, especially
when the unlabeled pool is large. A series of ex-
periments on text classification and tagging bench-
marks widely used in recent works on AL demon-
strate the efficiency of the proposed algorithms.

The contributions of the paper are the following:

• We propose a novel algorithm denoted as
Pseudo-Labeling for Acquisition Successor
Mismatch (PLASM) that allows the use of
computationally cheap models during the ac-
quisition of instances in AL, while it does not
introduce constraints on the type of the succes-
sor model and effectively alleviates the ASM
problem. It helps to reduce the hardware re-
quirements and the duration of AL iterations.

• We propose a novel algorithm denoted as
Unlabeled Pool Subsampling (UPS) that helps
to reduce the time required for calculating in-
formativeness of instances in AL based on the
fact that the set of instances that model is cer-
tain about does not change substantially. This
helps to further speed up the AL iteration.

2 Related Work

Deep learning, to a large extent, has freed data
scientists from doing feature engineering, which
has been one of the essential obstacles to annotation
with AL. This advantage has sparked a series of
works on deep active learning (DAL) in natural
language processing (NLP).

Shen et al. (2017) conduct one of the first inves-
tigations on DAL in sequence tagging tasks. They
propose an efficient way of quantifying the uncer-
tainty of sentences, namely maximal normalized
log probability (MNLP), by averaging log probabil-
ities of their tokens. They also address the problem
of excessive duration of a neural network training
step during an AL iteration by interleaving online
learning with training from scratch. In our work,
we take MNLP as a query strategy for experiments
on sequence tagging tasks since it has demonstrated
a good trade-off between quality and computational
performance. We consider that online learning can
potentially be used as a complement to our algo-
rithms. Since the most time-consuming part of
an AL iteration can be model inference instead of
training, in this work, we also pay attention to the
acceleration of the inference step.

Several recent publications investigate deep pre-
trained models based on the Transformer architec-
ture (Vaswani et al., 2017), ELMo (Peters et al.,
2018), and ULMFiT (Howard and Ruder, 2018)
in AL on NLP tasks (Prabhu et al., 2019; Ein-Dor
et al., 2020; Yuan et al., 2020; Shelmanov et al.,
2021). We continue this line of works by relying
on pre-trained Transformers since this architecture
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has been shown promising for AL in NLP due to its
good qualitative and computational performance.

A few works have experimented with Bayesian
query strategies for AL. Shen et al. (2017), Sid-
dhant and Lipton (2018), Ein-Dor et al. (2020),
and Shelmanov et al. (2021) leverage Monte Carlo
dropout (Gal and Ghahramani, 2016) for quanti-
fying uncertainty of models. Siddhant and Lipton
(2018) also apply the Bayes by backprop algorithm
(Blundell et al., 2015) for performing variational
inference of a Bayesian neural network. This ap-
proach demonstrates the best improvements upon
the baseline but introduces large computational
overhead both for training and uncertainty estima-
tion of a model, as well as the memory overhead
for storing parameters of a Bayesian neural net-
work. The query strategies based on Monte Carlo
dropout do not affect the model training procedure
and do not change the memory footprint. However,
they also suffer from slow uncertainty estimation
due to the necessity of making multiple stochastic
predictions, while their empirical evaluations with
Transformers in recent works (Ein-Dor et al., 2020;
Shelmanov et al., 2021) do not demonstrate big
advantages. Therefore, we do not use Bayesian
query strategies in our experiments and adhere to
the classical uncertainty-based query strategies.

Recently proposed alternatives to uncertainty-
based query strategies leverage reinforcement learn-
ing and imitation learning (Fang et al., 2017; Liu
et al., 2018; Vu et al., 2019; Brantley et al., 2020).
This series of works aims at constructing trainable
policy-based query strategies. However, this re-
quires an excessive amount of computation while
the transferability of learned policies across do-
mains and tasks is underresearched.

Finally, Lowell et al. (2019) question the use-
fulness of AL techniques in general. They demon-
strate that due to the ASM problem, AL can be even
detrimental to the performance of the successor.
This finding is also revealed for classical machine
learning models by Baldridge and Osborne (2004),
Tomanek and Morik (2011), Hu et al. (2016) and
supported by experiments with Transformers in
(Shelmanov et al., 2021). Our work directly ad-
dresses the question raised by Lowell et al. (2019)
and suggests a simple solution to the ASM prob-
lem. Moreover, we combine it with the method
proposed by Shelmanov et al. (2021), who suggest
using distilled models for instance acquisition and
their teacher models as successors.

3 Background

This section describes models and AL query strate-
gies used in this work.

3.1 Query Strategies

We conduct experiments with four basic AL query
strategies. We note that despite their simplicity,
these strategies are usually on par with more elabo-
rated counterparts (Ein-Dor et al., 2020; Shelmanov
et al., 2021; Margatina et al., 2021).

Random sampling is used for both text classi-
fication and sequence tagging experiments. Ap-
plying this strategy means that we do not use AL
at all and just emulate that an annotator labels a
randomly sampled piece of a dataset.

Least Confident (LC) is used for text classifica-
tion experiments. This strategy sorts texts in the
ascending order of their maximum class probabili-
ties given by a machine learning model. Let y be a
predicted class of an instance x, then LCcls is:

LCcls = 1−max
y

P (y|x) .

Maximum Normalized Log-Probability (MNLP)
is proposed by Shen et al. (2017) to mitigate the
drawback of the standard LC when it is applied to
sequence tagging tasks. Let yi be a tag of a token i,
let xj be a token j in an input sequence of length
n. The MNLP score can be formulated as follows:

MNLPner =−max
y1,...,yn

1

n

n∑

i=1

logP [yi|{yj}\yi,{xj}] .

This modified version of LC works slightly better
for sequence tagging tasks (Shen et al., 2017), and
is adopted in many other works on DAL (Siddhant
and Lipton, 2018; Erdmann et al., 2019; Shelmanov
et al., 2021).

Mahalanobis Distance (MD) between a test in-
stance and the closest class-conditional Gaussian
distribution is suggested by Lee et al. (2018) for
detection of out-of-distribution instances and ad-
versarial attacks. MD is a strong baseline for uncer-
tainty estimation of NLP model predictions (Podol-
skiy et al., 2021) and is also a backbone for other
subsequent techniques (Zhou et al., 2021). We use
it as an informativeness score in AL since previous
work shows that MD captures epistemic uncertainty
well (Podolskiy et al., 2021).

MDcls = min
c∈C

(hi − µc)TΣ−1(hi − µc), (1)
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where hi is a hidden representation of a i-th in-
stance, µc is a centroid of class c, and Σ is a covari-
ance matrix for hidden representations of training
instances.

3.2 Models

We use the standard models based on the Trans-
former architecture (Vaswani et al., 2017): BERT,
RoBERTa (Liu et al., 2019), ELECTRA, and XL-
Net (Yang et al., 2019). For supplementary ex-
periments, we also employ two classical neural
models: a CNN-BiLSTM-CRF sequence tagging
model (Ma and Hovy, 2016) and a CNN-based text
classification model (Le et al., 2018).

Besides full-fledged Transformers, we leverage
their three smaller distilled versions: DistilBERT
(Sanh et al., 2019), DistilRoBERTa, and a custom
DistilELECTRA trained by ourselves. The distil-
lation procedure aims at creating a smaller-size
model (student) while keeping the behavior of the
original model (teacher) by minimizing the distilla-
tion loss over the student predictions and soft target
probabilities of the teacher (Hinton et al., 2015):
Ldistil = −∑i,c tic ·log (sic), where tic and sic are
probabilities estimated by the teacher and the stu-
dent correspondingly for each instance i and class
c. Typically, distillation loss is supplemented with
additional techniques that help to align a student
with a teacher (Sanh et al., 2019).

Distilled models are usually much more com-
pact than their teachers. For example, DistilBERT
reduces the memory footprint by 40% compared
to the original BERT-base. It achieves the 60%
speedup, sacrificing only 3% of its qualitative per-
formance (Sanh et al., 2019). Since the qualitative
performance during acquisition is not essential, we
would like to use such lightweight models for in-
stance acquisition to reduce AL iteration duration
and the requirements for the computational power
of the hardware.

4 Proposed Methods

This section outlines two proposed algorithms that
help to reduce the computational cost of AL.

4.1 Pseudo-labeling for
Acquisition-Successor Mismatch

We propose a simple algorithm for constructing
a successor model of an arbitrary type using AL:
Pseudo-Labeling for Acquisition-Successor Mis-
match (PLASM). The algorithm is designed for

reducing the amount of computation required for
instance acquisition during AL with uncertainty-
based query strategies.

PLASM leverages the finding of Shelmanov et al.
(2021) that the successor model can be trained on
instances labeled during AL without a penalty to
the quality if its distilled version was used for in-
stance acquisition. However, this idea alone does
not resolve the question, how we can train new
models of arbitrary type on datasets collected via
AL (Lowell et al., 2019).

The algorithm consists of the following steps:
1. Consider we have a resource-intensive pre-

trained teacher model (e.g. BERT). We con-
struct a lightweight distilled version of this
model (e.g. DistilBERT) using unlabeled data.

2. We apply a distilled model to perform acquisi-
tion during AL for collecting the gold labels.

3. The collected labels are used for fine-tuning a
resource-intensive teacher model of a higher
quality than the distilled acquisition model.

4. The teacher model is used for pseudo-labeling
of the whole unlabeled pool of instances.

5. The automatically acquired annotations are fil-
tered to reduce noise introduced by mistakes
of the pseudo-labeling model. In the main ex-
periments, we use TracIn – a strong and practi-
cal method for mislabelled data identification
(Pruthi et al., 2020). In the ablation study, we
also test a simpler solution: filtering instances
with high uncertainty of the pseudo-labeling
model predictions. The fraction of the filtered
out instances in both cases is determined from
the evaluation score of the pseudo-labeling
model on a held-out subset of the training cor-
pus (100%-score).

6. Finally, we train a successor model of an ar-
bitrary type on the dataset that contains auto-
matically labeled instances and instances with
gold labels obtained from human experts.

If the teacher model is expressive enough, it will
generate reasonable pseudo labels, which can be
filtered and reused by another model of a different
type and architecture. This additional annotation
helps to mitigate the performance drop due to ASM
and to keep the benefits of AL even when the suc-
cessor model is more expressive than the model
used for pseudo-labeling. Meanwhile, PLASM
helps to reduce the duration of AL iterations sim-
ilarly to the approach of Shelmanov et al. (2021),
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and it does not introduce any additional computa-
tional overhead during the annotation process since
training the teacher model and pseudo-labeling are
performed after the AL annotation is completed.

4.2 Unlabeled Pool Subsampling

If the unlabeled pool of instances is large, which
is a common situation, and a deep neural network
is used as an acquisition model, the most time-
consuming step of the AL cycle is the generation
of predictions for unlabeled instances, which is nec-
essary for uncertainty-based query strategies (refer
to Table 2). We note that uncertainty estimates of
the most certain instances in the unlabeled pool
do not alter substantially across multiple AL itera-
tions (Table 1). This means that AL wastes much
time and resources on these unimportant instances.
We claim that it is possible to recalculate uncer-
tainty scores on the current iteration only for the
top instances of the unlabeled pool, which were
the most uncertain on previous iterations, while not
sacrificing the benefits of AL.

We propose an unlabeled pool subsampling
(UPS) algorithm, in which uncertainty estimates
only for a fraction of instances are updated. On
the current iteration, we suggest always selecting
a fraction of the most uncertain instances on pre-
vious iterations equal to γ ∈ [0, 1] and sample a
small portion of instances with a probability that
depends on their rank in a list sorted by their un-
certainty. Formally, this can be written as follows.
Let u be the last recalculated uncertainty score
of an instance on one of the previous iterations.
We order the instances according to this value:
u0 ≤ u1 ≤ · · · ≤ ui ≤ · · · ≤ uM and denote
a normalized rank of an instance as ri = i

M . Let
T > 0 be a “temperature” hyperparameter. Then
the probability of keeping an instance i for recalcu-
lation of uncertainty on the current iteration is:

P(i) ∝ exp

(
−max(0, ri − γ)

T

)
.

Sampling certain instances with a non-negative
probability instead of just ignoring them gives a
chance of overcoming a situation when an infor-
mative instance is occasionally assigned a high
certainty score and is never selected ever since.
This method is inspired by subsampling techniques
used in gradient boosting algorithms for selecting
a training subset for decision trees (Ke et al., 2017;
Ibragimov and Gusev, 2019).

On initial AL iterations, an acquisition model
is trained on an extremely small amount of data,
which leads to unreliable uncertainty estimates. To
mitigate this problem, we suggest keeping the stan-
dard approach to performing instance acquisition
on several first iterations and switching to the opti-
mized process later during AL. We also note that
interleaving the optimized selection with the stan-
dard approach, in which we recalculate the uncer-
tainty for the whole unlabeled pool of instances,
can help to keep the high performance of AL.

5 Experiments

5.1 Experimental Setup

We follow the common schema of AL experi-
ments adopted in many previous works (Settles
and Craven, 2008; Shen et al., 2017; Siddhant and
Lipton, 2018; Shelmanov et al., 2021). We emu-
late the AL annotation cycle starting with a small
random sample of the dataset used as a seed for the
construction of the initial acquisition model. On
each iteration, we pick a fraction of top instances
from the unlabeled pool sorted using the query
strategy and, instead of demonstrating them to an-
notators, automatically label them according to the
gold standard. These instances are removed from
the unlabeled pool and added to the training dataset
for the next iterations. On each iteration, we train
the successor model on the data acquired so far and
evaluate it on the whole available test set. Acquisi-
tion and successor models are always trained from
scratch. We run several iterations of emulation to
build a chart, which demonstrates the performance
of the successor depending on the amount of “la-
bor” invested into the annotation process. To report
standard deviations of scores, we repeat the whole
experiment five times with different random seeds.
In most experiments, we use LC or MNLP query
strategies for classification and sequence tagging
correspondingly. Results with MD are presented
only in Figure 11 in Appendix B.

For classification, accuracy is used as the evalua-
tion metric. For sequence tagging, we use the strict
span-based F1-score (Sang and Meulder, 2003).

5.1.1 Datasets
We experiment with widely-used datasets for the
evaluation of AL methods on text classification and
sequence tagging tasks.

For text classification, we use the English AG
News topic classification dataset (Zhang et al.,
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b) BERT is a successor model.

Figure 1: AL experiments on CoNLL-2003, in which a successor model does not match an acquisition model
(DistilBERT).

2015) and the binary sentiment classification IMDb
dataset (Maas et al., 2011). We randomly select 1%
of instances of the training set as a seed to train the
initial acquisition model and select 1% of instances
for “annotation” on each AL iteration.

For sequence tagging, we use English CoNLL-
2003 (Sang and Meulder, 2003) and English
OntoNotes 5.0 (Pradhan et al., 2013). We randomly
sample instances with a total number of tokens
equal to 2% of all tokens from the training set as
a seed. On each AL iteration, we select instances
from the unlabeled pool until a total number of
tokens equals 2% of all training tokens.

The corpora statistics are presented in Table 3 in
Appendix A.

5.1.2 Model Choice, Training Details, and
Hyperparameter Selection

We conduct experiments with pre-trained Trans-
formers used in several previous works on AL. The
exact checkpoints and parameter numbers are pre-
sented in Table 5 in Appendix A. Section A.1 con-
tains the distillation details of the custom Distil-
ELECTRA model.

We keep a single pre-selected set of hyperparam-
eters for all AL iterations. Tables 4, 6, 7 in Ap-
pendix A describe the hyperparameter setup. Hy-
perparameter tuning on each AL iteration is very
time-consuming. This is an important research
problem but out of the scope of the current work.

5.2 Results and Discussion
5.2.1 Acquisition-Successor Mismatch
First of all, we illustrate the ASM problem on the
selected datasets with various acquisition-successor
pairs (Figure 1a and Figures 5a, 6a, 7a, 8a, 9a in
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Figure 2: The performance of PLASM (BERT is
a pseudo-labeling model) on CoNLL-2003 compared
with the standard approach to AL.

Appendix B). The presented results correspond to
the findings of Lowell et al. (2019) and Shelmanov
et al. (2021). In each experiment, we see a sig-
nificant reduction in the performance of succes-
sor models when for acquisition, a distilled model
from a different family is used. The performance
drop is especially notable when we compare re-
sults of ELECTRA(acq.)-ELECTRA(succ.) to re-
sults of DistilBERT(acq.)-ELECTRA(succ.) on the
CoNLL-2003 dataset in Figure 1a and to results
of DistilRoBERTa(acq.)-ELECTRA(succ.) on AG
News in Figure 8a in Appendix B. Moreover, Fig-
ure 10 in Appendix B shows that even if use full-
fledged BERT for acquisition and ELECTRA as a
successor (and vice versa), a similar performance
drop is also present.

The ASM problem appears to be even more se-
vere with the modern uncertainty estimation tech-
nique based on MD. Figure 11 in Appendix B
shows the results of experiments with MD and
DistilBERT(acq.)-ELECTRA(succ.) on the AG
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Figure 3: Uncertainty correlation matrix of various
Transformers on the AG News dataset. The correla-
tions were obtained by training a model on the 1% of
the training data and calculating the LC score for the
rest 99% of instances.

News dataset. On most iterations, the performance
drop for MD is even bigger than the drop for LC
shown in Figure 6a.

In the next series of experiments, we demon-
strate on both text classification and tagging tasks
that when an acquisition model is a distilled ver-
sion of the full-fledged successor model, the ASM
problem is substantially alleviated (Figure 1b, and
Figures 5b, 6b, 7b, 8b, 9b in Appendix B). Previ-
ously, this effect was also revealed by Shelmanov
et al. (2021) for tagging. As we can see in Fig-
ure 1b, when DistilBERT is used as an acquisition
model, the successor model based on BERT does
not experience a performance drop. A similar effect
with other model pairs can be noted for sequence
tagging on OntoNotes and for text classification on
AG News and IMDb.

Figure 3 shows the correlation between the
output probabilities of various Transformer-based
models fine-tuned on 1% of the AG News dataset.
As we can see, for each model, the other most
similar model is its student / teacher (except for
DistilRoBERTa, which has a slightly larger corre-
lation with DistilBERT). This explains the absence
of the ASM problem for such model pairs. Since,
after fine-tuning, the distilled version of a model
produces similar uncertainty estimates, it will strive
to query similar instances during AL.

Although we can mitigate the ASM problem for
such model pairs as DistilBERT-BERT, it is still a
serious constraint for applying AL. Obviously, such
an approach is not feasible if for the final applica-

tion, one would like to train a completely different
model (e.g. XLNet). In the next section, we show
that the proposed method based on pseudo-labeling
helps to overcome this limitation and resolve the
ASM problem in a more general case.

5.2.2 Pseudo-labeling for
Acquisition-Successor Mismatch

Figure 2, and Figures 12, 13, 14 in Appendix C
present the performance of PLASM on considered
datasets for various combinations of acquisition,
successor, and pseudo-labeling Transformer mod-
els in comparison with the case when acquisition
and successor models are the same and with the
case of ASM. On the AG News dataset (Figure 12),
we investigate the effect of PLASM for three dif-
ferent successors: ELECTRA, RoBERTa, XLNet
and for three different distilled acquisition models:
DistilBERT, DistilRoBERTa, and our custom Dis-
tilELECTRA model. In all experiments, PLASM
substantially alleviates the ASM problem yielding
higher results compared to directly fine-tuning on
data acquired with a different acquisition model.

Usually, PLASM yields a similar or slightly bet-
ter results than the case when the same model
is used both for acquisition and as a successor.
PLASM might be superior than this case when a
pseudo-labeling model is better suited to the dataset
than a successor model. For example, in Figure
12d, PLASM shows better results on early AL itera-
tions than ELECTRA(acq.)-ELECTRA(succ.) due
to the fact that RoBERTa used for pseudo-labeling
has generally higher performance on AG News than
ELECTRA when fine-tuned on the same amount
of labeled data. However, we argue that PLASM
also effectively helps to deal with the ASM prob-
lem when the successor model is more expressive
than the pseudo-labeling model. This is the case of
the experiment on CoNLL-2003 (Figure 2), where
PLASM completely mitigates the ASM problem,
while ELECTRA successor shows generally better
results than BERT used for pseudo-labeling.

Figures 15 and 16 in Appendix C show that
PLASM also mitigates the performance drop due
to ASM between a DistilBERT acquisition model
and classical CNN-BiLSTM-CRF or CNN succes-
sor models. In this case, PLASM gives a very
big boost to performance compared to the case
when the same classical model is used both for
acquisition and as a successor. This happens be-
cause the BERT-based pseudo-labeling model is
better suited for fine-tuning on small data than the
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classical models and produces good automatically
labeled instances that are reused by successors.

Figure 17a presents the results of the first abla-
tion study, in which, for pseudo-labeling, we lever-
age the same distilled model used for acquisition
instead of a more expressive teacher. In particu-
lar, DistilBERT performs acquisition and pseudo-
labeling instead of BERT, while ELECTRA is a
successor. The performance drop in this case com-
pared to PLASM demonstrates that using an expres-
sive model (e.g. BERT) for pseudo-labeling is nec-
essary for achieving high scores at the beginning of
annotation. Figure 17b presents the results of the
second ablation study, in which we use DistilBERT
for acquisition and ELECTRA for pseudo-labeling
and as a successor. This study demonstrates that
pseudo-labeling on its own cannot alleviate the
ASM completely. It is better to use an expres-
sive pseudo-labeling model that also matches the
lightweight acquisition model (e.g. distilled model
for acquisition, its teacher – for labeling), as it is
proposed in PLASM.

The ablation study of the methods for filtering
erroneous instances in the pseudo-labeling step is
conducted on the AG News dataset in Figures 18a,b
in Appendix C. Applying each of the methods gives
substantial improvements over the PLASM without
the filtering step, while TracIn is slightly better than
thresholding uncertainty of pseudo-labeling model
predictions. We note that for XLNet as a successor,
PLASM without filtering alleviates the ASM prob-
lem, but does not approach the performance of the
case when XLNet is used as an acquisition model.

Table 2 and Table 8 in Appendix D summa-
rize the time required for conducting AL itera-
tions with different acquisition functions on the
AG News and CoNLL-2003 datasets. As we can
see, since PLASM uses DistilBERT for acquisi-
tion, our method reduces the iteration time by more
than 30% compared to the standard approach, in
which ELECTRA is used for acquisition. Thereby,
empirical results show that PLASM offers two ben-
efits: (1) it helps to alleviate the ASM problem in
AL; (2) it reduces the time of an AL iteration and
required computational resources for training and
running acquisition models. These benefits sub-
stantially increase the practicality of using AL in
interactive annotation tools.

5.2.3 Unlabeled Pool Subsampling
Table 2 compares the duration of AL iterations on
the AG News dataset, including the duration of

Top-k% / Curr. AL iter. 1 2 6
10% 0.503 0.649 0.924
20% 0.789 0.883 0.992
30% 0.915 0.947 0.995
40% 0.958 0.976 1.000
50% 0.980 0.991 1.000

Table 1: A fraction of instances that would be stan-
dardly selected on the current AL iteration, contained
in top-k% uncertain instances according to the acquisi-
tion model on the previous iteration (AG News corpus).
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Figure 4: The performance of UPS with PLASM
(BERT is a pseudo-labeling model) on AG News com-
pared with baselines (γ = 0.1, T = 0.01).

the acquisition model training step and the dura-
tion of inference on instances from the unlabeled
pool. We can see that the inference step is very
time-consuming, especially on early iterations, and
takes more than half of the time required for per-
forming an AL iteration. Therefore, we claim that
in such cases, it is more important to accelerate the
inference step rather than the training step as it was
done in previous work (Shen et al., 2017).

To justify our approach to accelerating the infer-
ence step, we show that many unlabeled instances
have similar uncertainty estimates across different
AL iterations. Table 1 presents the fraction of in-
stances, which would be standardly queried on the
current iteration if we selected them from the whole
unlabeled pool that are contained in k-% of most
uncertain instances, according to the acquisition
model built on the previous AL iteration. For ex-
ample, we observe that 50% of the most uncertain
instances according to the model trained on the
first iteration contain more than 99% of instances
from the “standard query” on the second iteration,
and 30% contains almost 95% of instances from
the “standard query”. Later iterations have even a
better trade-off. Thereby, it is reasonable to avoid
spending computational resources on instances that
were most certain in previous iterations.
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ELECTRA BERT DistilBERT ELECTRA
with UPS (ours)

DistilBERT
with UPS (ours)

It
er

.2 Train 176.3± 1.4 174.8± 1.4 87.4± 0.8 178.0± 1.4 87.9± 0.5
Inference 622.2± 9.4 623.8± 7.5 481.8± 17.2 630.9± 12.3 483.2± 23.0
Overall 798.6± 9.6 798.6± 8.4 569.2± 17.5 808.8± 12.8 571.1± 22.6

It
er

.6 Train 342.8± 5.7 339.9± 4.2 174.1± 2.9 342.2± 5.3 173.0± 1.4
Inference 600.5± 10.4 596.4± 6.6 455.1± 8.9 58.9±3.3 50.0±6.4
Overall 943.4± 15.9 936.3± 8.8 629.1± 9.7 401.1±3.4 222.9±5.9

It
er

.1
0 Train 504.6± 6.3 498.8± 3.9 257.5± 3.9 502.7± 6.0 255.1± 3.4

Inference 573.0± 6.9 577.5± 7.7 434.6± 4.6 55.5±2.9 42.6±7.1
Overall 1077.6± 13.1 1076.4± 10.9 692.1± 5.5 558.2±4.4 297.7±10.3

It
er

.1
5 Train 701.9± 7.2 714.9± 20.5 358.3± 3.0 704.8± 11.7 359.3± 5.4

Inference 548.6± 9.2 541.0± 5.0 415.9± 10.2 59.4±3.1 39.3±2.6
Overall 1250.5± 16.0 1255.9± 18.4 774.2± 10.8 764.2±10.6 398.6±6.8

Overall train 6323.7± 72.1 6294.8± 73.7 3215.1± 38.5 6333.3± 92.8 3204.5± 32.5
Overall inference 8799.2± 150.7 8787.5± 102.7 6682.1± 96.2 3110.9±85.3 2332.2±86.2
Overall 15122.9± 213.4 15082.2± 141.1 9897.1± 112.8 9444.2±113.6 5536.7±100.8

Table 2: Duration of training and inference steps of AL iterations in seconds on AG News. Hardware configuration:
2 Intel Xeon Platinum 8168, 2.7 GHz, 24 cores CPU; NVIDIA Tesla v100 GPU, 32 Gb of VRAM.

If we exclude a big part of the unlabeled pool
from consideration during acquisition, the benefits
of AL can potentially deteriorate. Results of exper-
iments presented in Figure 4 and Figures 19, 20 in
Appendix D show that the proposed UPS algorithm
does not lead to the performance drop compared
to the standard approach, in which we consider the
whole unlabeled pool for instance selection. Mean-
while, the results of the ablation study in Figure
21 in Appendix D demonstrate that the baseline,
which randomly subsamples the unlabeled dataset,
has a performance drop compared to UPS. In an-
other ablation study, we set T = 0, which means
that UPS just takes a fraction of the most uncer-
tain instances (Figure 22). On some iterations, this
results in a slight reduction of performance.

From Table 2, we can see that UPS acceler-
ates the query process up to 10 times. The cor-
responding results for CoNLL-2003 are presented
in Table 8 in Appendix D. Overall, applying both
PLASM and UPS algorithms on AG News reduces
the duration of AL iterations by more than 60%
compared with the standard approach. We can also
tune the hyperparameters γ and T to reduce dura-
tion further in exchange for slightly worse scores.

6 Conclusion

We investigated several obstacles to deploying AL
in practice and proposed two algorithms that help
to overcome them. In particular, we considered the
acquisition-successor mismatch problem revealed
by Lowell et al. (2019), as well as the problem
related to the excessive duration of AL iterations
with uncertainty-based query strategies and deep
learning models. We demonstrate that the proposed

PLASM algorithm helps to deal with both of these
issues: it removes the constraint on the type of the
successor model trained on the data labeled with
AL and allows the use of lightweight acquisition
models that have good training and inference per-
formance, as well as a small memory footprint. The
unlabeled pool subsampling algorithm helps to sub-
stantially decrease the inference time during AL
without a loss in the quality of successor models.
Together the PLASM and UPS algorithms help re-
duce the duration of an AL iteration by more than
60%. We consider that the conducted empirical
investigations and the proposed methods will help
to increase the practicality of using deep AL in
interactive annotation tools.

We note that applying PLASM requires some
conditions to be met. Particularly, when a pseudo-
labeling model is of considerably lower perfor-
mance than a successor model, and filtering is not
strict enough, training a successor directly on la-
beled instances acquired during AL with a differ-
ent acquisition model may result in higher perfor-
mance. Consequently, despite the pseudo-labeling
model may be less expressive compared to the suc-
cessor model, it should not be too “weak”. In prac-
tice, we suggest comparing results obtained by the
models trained with pseudo-labeling and without
on a hold-out set and selecting the best model.

There are still many issues that hinder the ap-
plication of AL techniques. We consider that one
of the most important obstacles is the necessity of
hyperparameter optimization of deep learning mod-
els that can take a prohibitively long time to keep
the annotation process interactive. We are looking
forward to addressing this problem in future work.
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A Dataset Statistics and Model
Hyperparameters

Table 3: Dataset statistics. We provide a number of
sentences/tokens for the training and test sets. k stands
for a size of seeding datasets (% of the training dataset)
and a size of sets of instances selected for “annotation”
on each iteration. C is a number of classes/entity types.

Dataset Train Test k C
CoNLL-2003 15K/203.6K 3.7K/46.4K 2% 4(5)
OntoNotes 5.0 59.9K/1088.5K 8.3K/152.7K 2% 18
AG News 120K/4541.7K 7.6K/286.7K 1% 4
IMDb 25K/5844.7K 25K/5713.2K 1% 2

Table 4: Hyperparameter values of Transformers.
“Sequence tagging” incorporates CoNLL-2003 &
OntoNotes datasets, while “Classification” combines
AG-News & IMDB. The hyperparameters are cho-
sen according to evaluation scores on the validation
datasets when models are trained using the whole avail-
able training data on CoNLL-2003 for sequence tag-
ging & AG-News for classification.

Hparam Sequence tagging Classification
Number of epochs 15 5
Batch size 16 16
Min. number of
training steps 1000 1000

Max. sequence
length - 256

Optimizer AdamW AdamW
Learning rate 5e-5 2e-5
Weight decay 0.01 0.01
Gradient clipping 1. 1.
Scheduler STLR STLR
% warm-up steps 10 10

A.1 Distillation Details for the Custom
DistilELECTRA Model

The DistilELECTRA model is distilled from the
ELECTRA-base model. It has the same architec-
ture, but half as many layers initialized by taking
from the teacher one layer out of two. Distillation
is performed on the AG News dataset using a linear
combination L = Lce + Lmlm + Lcos + Lmse of
the following loss functions as a training objective:
Lce =

∑
i ti · log(si) is a distillation loss of the

student’s probabilities si over the soft target prob-
abilities of the teacher ti; Lmlm is the student’s
self-supervised masked language modeling loss;
Lcos is the cosine embedding loss that aligns the di-
rections of the student’s and teacher’s hidden state

https://huggingface.co/models
https://flair.informatik.hu-berlin.

de/resources/embeddings/token/glove.
gensim

https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

Table 5: Transformers model checkpoints from Hug-
gingFace repository (Wolf et al., 2019) .

Dataset Model Checkpoint # Param.

AG-News /
IMDb

BERT bert-base-uncased 110M

DistilBERT distilbert-base-
uncased 67M

ELECTRA google/electra-
base-discriminator 110M

DistilELECTRA lsanochkin/
distilelectra-base 67M

XLNet xlnet-base-cased 117M
RoBERTa roberta-base 125M

DistilRoBERTa distilroberta-base 82M

CoNLL-2003 /
OntoNotes 5.0

ELECTRA google/electra-
base-discriminator 110M

BERT bert-base-cased 110M

DistilBERT distilbert-base-
cased 67M

Table 6: Hyperparameter values of the CNN-BiLSTM-
CRF model.

Hparam CoNLL-2003
Word embeddings
pre-trained model GloVe (Pennington et al., 2014)

Word embedding dim. 100
Char embedding dim. 30
CNN dim. 30
CNN filters [2, 3]
RNN num. layers 1
RNN hidden size 200
RNN word dropout prob. 0.3
RNN locked dropout prob. 0.2
Encoder dropout prob 0.0
Feed forward num. layers 1
Feed forward hidden size 200
Feed forward activation Tanh
Feed forward dropout prob. 0.0
Batch size 32
Learning rate 0.015
Momentum 0.9
Number of epochs 50
Optimizer SGD
Gradients clipping 5

Table 7: Hyperparameter values of the CNN model for
text classification on AG News.

Hparam AG News
Word embeddings
pre-trained model Word2Vec (Mikolov et al., 2013)

Word embedding dim. 300
CNN dim. 100
CNN filters [3, 4, 5]
Dropout prob. 0.5
Batch size 128
Learning rate 0.001
Momentum 0.9
Number of epochs 20
Optimizer SGD
Gradients clipping 1

vectors; Lmse is a mean squared error between stu-
dent’s and corresponding teacher’s hidden states
vectors. DistilELECTRA is trained with the fol-
lowing hyperparameters: 50 epochs, batch size 5,
50 gradient accumulation steps, AdamW optimizer
with a learning rate 5e− 4, epsilon 1e− 6.
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B Additional Experimental Results with Acquisition-successor Mismatch
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a) ELECTRA is a successor model.
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b) BERT is a successor model.

Figure 5: AL experiments on OntoNotes, in which a successor model does not match an acquisition model (Distil-
BERT).
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a) ELECTRA is a successor model.
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b) BERT is a successor model.

Figure 6: AL experiments on AG News, in which a successor model does not match an acquisition model (Distil-
BERT).
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a) RoBERTa is a successor model.
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b) ELECTRA is a successor model.

Figure 7: AL experiments on AG News, in which a successor model does not match an acquisition model (Distil-
ELECTRA).
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a) ELECTRA is a successor model.
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b) RoBERTa is a successor model.

Figure 8: AL experiments on AG News, in which a successor model does not match an acquisition model (Distil-
RoBERTa).
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a) ELECTRA is a successor model.
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b) RoBERTa is a successor model.

Figure 9: AL experiments on IMDb, in which a successor model does not match an acquisition model (Distil-
RoBERTa).
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Figure 10: AL experiments on CoNLL-2003, in which a successor model does not match an acquisition model.
This experiment demonstrates that models with similar expressiveness and size (BERT and ELECTRA) cannot be
used interchangeably for acquisition in AL.

1212



2 4 6 8 10 12 14 16

0.9

0.91

0.92

0.93

0.94

0.95

Maximum probability (query strategy)-DistilBERT(acq.)-ELECTRA(succ.)

Mahalanobis distance (query strategy)-DistilBERT(acq.)-ELECTRA(succ.)

Maximum probability (query strategy)-ELECTRA(acq.)-ELECTRA(succ.)

Mahalanobis distance (query strategy)-ELECTRA(acq.)-ELECTRA(succ.)

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

Figure 11: AL experiments on AG News with Mahalanobis distance used as an uncertainty measure in a query
strategy. This experiment demonstrates that the acquisition-successor mismatch problem also persists for this
modern uncertainty estimation technique.
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C Additional Experimental Results with PLASM
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a) DistilBERT is an acquisition model, BERT is a
pseudo-labeling model, ELECTRA is a successor model.
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b) DistilBERT is an acquisition model, BERT is a
pseudo-labeling model, XLNet is a successor model.
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c) DistilELECTRA is an acquisition model, ELECTRA is a
pseudo-labeling model, RoBERTa is a successor model.
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d) DistilRoBERTa as an acquisition model, RoBERTa as a
pseudo-labeling model, ELECTRA is a successor model.

Figure 12: The performance of PLASM compared with the standard approach to AL on AG News with various
acquisition – pseudo-labeling model pairs and successor models.
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Figure 13: The performance of PLASM (BERT is a pseudo-labeling model) compared with the standard approach
to AL on OntoNotes.
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Figure 14: The performance of PLASM (RoBERTa is a pseudo-labeling model) compared with the standard ap-
proach to AL on IMDb.
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Figure 15: Experiments with PLASM and standard approaches on CoNLL-2003, in which CNN-BiLSTM-CRF is
used as a successor model. We can see that due to using PLASM and the expressiveness of the pseudo-labeling
model (BERT), the successor achieves substantial improvements over the baseline.
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Figure 16: Experiments with PLASM and standard approaches on AGNews, in which simple CNN is used as
a successor model. We can see that due to using PLASM and the expressiveness of the pseudo-labeling model
(BERT), the successor achieves substantial improvements over the baseline. We also note that using AL with
DistilBERT as an acquisition model results in worse performance than using the baseline random sampling; this
corresponds to findings of (Lowell et al., 2019).

1215



5 10 15 20 25 30
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

DistilBERT(acq.)-ELECTRA(succ.)
DistilBERT(acq.)-DistilBERT(lab.)-
ELECTRA(succ.)
ELECTRA(acq.)-ELECTRA(succ.)
DistilBERT(acq.)+PLASM(ours)-BERT(lab.)-
ELECTRA(succ.)

Labeled Data, %

P
er

fo
rm

an
ce

, F
1

a) DistilBERT for pseudo-labeling.
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b) ELECTRA for pseudo-labeling.

Figure 17: Ablation studies of PLASM on the CoNLL-2003 dataset, in which an inappropriate model is used for
pseudo-labeling.
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a) ELECTRA as a successor.
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b) XLNet as a successor.

Figure 18: Ablation studies of filtering methods in PLASM on the AG News dataset.

1216



D Additional Experimental Results with UPS
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a) AG News dataset.
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b) CoNLL-2003 dataset.

Figure 19: The performance of UPS compared with the standard approach to AL on AG News and CoNLL-2003
datasets with ELECTRA as a successor model (γ = 0.1, T = 0.01).
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Figure 20: The performance of UPS in conjunction with PLASM (BERT is a pseudo-labeling model) on CoNLL-
2003 compared with baselines (γ = 0.1, T = 0.01).
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Figure 21: The comparison of UPS with a random-subsampling baseline on the AG News dataset (γ = 0.1,
T = 0.01). A pseudo-labeling model in PLASM is BERT.
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Figure 22: Ablation study for the parameter T in the UPS algorithm. We see that when sampling a total of 5%
of the dataset to select for the query, using a non-zero value for the parameter T gives an increase in performance
compared to a case when only 5% most uncertain samples are considered for query (i.e. T = 0).
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Inference 18.9± 0.2 18.6± 0.1 14.0± 0.2 2.0±0.1 1.4±0.1
Overall 141.1± 1.0 151.9± 3.2 92.9± 1.2 131.9±3.1 76.0±6.5

Overall train 1266.6± 16.9 1387.1± 26.3 838.6± 19.2 1195.0± 25.0 748.3± 70.4
Overall inference 339.1± 3.5 335.5± 4.7 252.9± 3.9 128.9±5.6 97.5±5.1
Overall 1605.7± 18.8 1722.6± 24.1 1091.4± 18.4 1323.9±28.5 845.8±75.1

Table 8: Duration of training and inference steps of AL iterations in seconds on CoNLL-2003. We highlight with
the bold font the values affected by UPS. Hardware configuration: 2 Intel Xeon Platinum 8168, 2.7 GHz, 24 cores
CPU; NVIDIA Tesla v100 GPU with 32 Gb of VRAM.
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