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Abstract

Extractive text summarisation aims to select
salient sentences from a document to form
a short yet informative summary. While
learning-based methods have achieved promis-
ing results, they have several limitations, such
as dependence on expensive training and lack
of interpretability. Therefore, in this pa-
per, we propose a novel non-learning-based
method by for the first time formulating text
summarisation as an Optimal Transport (OT)
problem, namely Optimal Transport Extrac-
tive Summariser (OTExtSum). Optimal sen-
tence extraction is conceptualised as obtain-
ing an optimal summary that minimises the
transportation cost to a given document re-
garding their semantic distributions. Such a
cost is defined by the Wasserstein distance
and used to measure the summary’s semantic
coverage of the original document. Compre-
hensive experiments on four challenging and
widely used datasets - MultiNews, PubMed,
BillSum, and CNN/DM demonstrate that our
proposed method outperforms the state-of-the-
art non-learning-based methods and several re-
cent learning-based methods in terms of the
ROUGE metric. 1

1 Introduction

Text summarisation aims to condense a given doc-
ument into a short and succinct summary that best
covers the semantics of the document with the least
redundancy. It helps users quickly browse and
understand long documents by focusing on their
most important sections (Mani, 2001; Nenkova and
McKeown, 2011). A common practice for text sum-
marisation is extractive summarisation which aims
to select the salient sentences of a given document
to form its summary. Extractive summarisation en-
sures the production of grammatically and factually

1Our code is publicly available for research purpose in
https://github.com/peggypytang/OTExtSum/

Figure 1: Illustration of Optimal Transport Extractive
Summariser (OTExtSum): the formulation of extrac-
tive summarisation as an optimal transport (OT) prob-
lem. Optimal sentence extraction is conceptualised
as obtaining the optimal extraction vector m∗, which
achieves an OT plan from a document D to its optimal
summary S∗ that has the minimum transportation cost.
Such a cost is defined as the Wasserstein distance be-
tween the document’s semantic distribution TFD and
the summary’s semantic distribution TFS and is used
to measure the summary’s semantic coverage.

correct summaries, though the output summaries
could be inflexible. Since abstractive summaries
are highly prone to contain contents that are un-
faithful and nonfactual to the original document
(Maynez et al., 2020), extractive summaries are
more practical for real-world scenarios, especially
for the domains requiring formal writing such as
legal, science, and journalism documents.

Existing methods (Yao et al., 2017) often first
score the importance of individual sentences of a
given document and then combine the top-ranked
ones to form a summary. However, the sentences
with high importance scores may not well represent
the document from a global perspective, which re-
sults in a sub-optimal summary. Recently, learning-
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based methods, especially those based on super-
vised and unsupervised deep learning techniques
(Narayan et al., 2018; Zheng and Lapata, 2019;
Zhang et al., 2019; Narayan et al., 2020; Xu et al.,
2020; Zhong et al., 2020; Padmakumar and He,
2021) can significantly improve summarisation per-
formance. However, training deep learning models
is computationally expensive, and it can be difficult
to apply those models learned from a particular do-
main to other domains with different distributions.
Moreover, deep learning methods generally lack
interpretability for the summarisation process.

Motivated by these issues, we propose a
novel non-learning based extractive summarisa-
tion method, namely Optimal Transport Extractive
Summariser (OTExtSum). As illustrated in Figure
1, we formulate extractive summarisation based
on the optimal transport (OT) theory (Peyré et al.,
2019). A candidate summary can be evaluated by
an OT plan regarding the optimal cost to transport
between the semantic distributions of the summary
and its original document. Then a Wasserstein dis-
tance can be obtained with this optimal plan to
measure the discrepancy between the two distribu-
tions. To this end, it can be expected that a sum-
mary of high quality minimizes this Wasserstein
distance. Moreover, a common assumption in the
formulations of the OT problem is that the source
and target distributions are fixed. In OTExtSum
problem formulation, we relax this assumption by
adding an extraction vector m∗ to indicate which
document sentences would be extracted to form the
summary’s semantic distribution, thus making the
target distribution variable.

The semantic distributions of a given document
and its candidate summary can be formulated in
line with the frequency of their tokens. Inspired by
Word Mover’s Distance (Kusner et al., 2015), sum-
marisation can be conceptualized as moving the
"semantics" of a given document to its summary,
and the ideal summary is obtained at the minimal
transportation cost. This ensures the highest seman-
tic coverage of the given document and the least
redundancy in the summary without explicitly mod-
elling conventional criteria such as relevance and
redundancy. Thus, under the OT plan, the Wasser-
stein distance indicates the candidate summary’s
semantic coverage of the given document.

We design two optimisation strategies to approxi-
mate the extraction vector m∗, namely beam search
strategy (Tillmann and Ney, 2003), which itera-

tively evaluates the semantic coverage scores of a
set of candidate summaries to obtain the optimal ex-
traction, and binary integer programming strategy,
which approximates the optimal extraction given
the constraints of the Wasserstein distance and ex-
traction budget. As a non-learning based method,
OTExtSum does not require any training and is
applicable to different document domains. Further-
more, it provides explainable results in terms of the
semantic coverage of the summary.

There have been some studies on OT in NLP,
such as document distance (Kusner et al., 2015;
Yurochkin et al., 2019), text generation (Chen et al.,
2018), text matching (Swanson et al., 2020), and
machine translation (Xu et al., 2021). These meth-
ods generally focus on deriving similarities be-
tween words, sentences, and documents. On the
contrary, we for the first time formulate text sum-
marisation as an OT problem that optimally trans-
ports the semantic distributions between two texts
(e.g., source document and summary candidate).

Overall, the key contributions of this paper are:

• We propose a non-learning based extractive
summarisation method - OTExtSum by treat-
ing the text summarisation task as an optimal
transport problem for the first time.

• We design two optimisation strategies for
OTExtSum: beam search strategy and binary
integer programming strategy.

• We present an interpretable visualisation of
the semantic coverage of a generated summary
by visualising the transport plan between sum-
mary tokens and document tokens.

• Comprehensive experimental results on four
widely used datasets, including CNN/DM,
MultiNews, BillSum and PubMed, demon-
strate that OTExtSum outperforms the state-
of-the-art non-learning based methods.

2 Related Work

Generally, text summarisation methods can be cat-
egorized as extractive, abstractive, and hybrid ones.
While abstractive and hybrid summarisation meth-
ods (Lebanoff et al., 2019; Zhang et al., 2020) aim
to mimic human beings in summarisation by para-
phrasing a given document, extractive summarisa-
tion generally produces more factual summaries.
In this section, we review existing extractive sum-
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marisation methods in two categories: non-learning
based and learning-based methods.

2.1 Non-learning based Methods
Most of the non-learning based methods concep-
tualise text summarisation as a sentence ranking
task. Each sentence in a given document is scored
in terms of various sentence importance criteria,
which measure how well the sentence could repre-
sent the document. The top-ranked sentences are
combined to form a summary. These methods often
heavily rely on handcrafted features in regards to
linguistic knowledge by focusing on local and/or
global contexts.

Local Context based Methods. Local context-
based methods rank a sentence based on the fea-
tures obtained from the sentence itself. Sentence
features such as frequency-based and topic-based
were studied. Frequency-based features (Edmund-
son, 1969; Hovy and Lin, 1998) assume that the
occurrence of high-frequency terms in a sentence
is associated with their importance. Topic-based
features (Kupiec et al., 1995; Nobata and Sekine,
2004; Lin and Hovy, 2000) assume that the density
of a set of topic terms is highly correlated to the
topic of a document.

Global Context based Methods. As local con-
text features could overlook the correlations be-
tween sentences and lead to redundant summaries
involving similar sentences, global context-based
methods rank individual sentences from the per-
spective of the entire document. Discourse-based
methods (Marcu, 1999) construct a document’s
rhetorical structure and extract the sentences on
the longest chain of the semantic structure, i.e.
the main topic. Centroid-based methods (Radev
et al., 2000) cluster the sentences of a document
through similarity measures and rank the sentences
based on their distances to the cluster centroids.
TextRank (Mihalcea and Tarau, 2004), as a graph-
based method, is the state-of-the-art non-learning
based method. A graph among document sentences
is first formed by connecting sentences using sen-
tence similarity scores, then the sentence connec-
tivity can be used to score the importance of a
sentence. Nonetheless, the nature of these sentence
based scoring methods could miss summary-level
or document-level patterns.

2.2 Learning-based Methods
Instead of utilising handcrafted features, due to the
great success of deep learning in many natural lan-

guage processing tasks, recent studies on extractive
summarisation aim to learn sentence features from
the corpus in a data-driven manner.

Supervised Methods. Most of these methods
follow the sentence ranking conceptualisation, and
an encoder-decoder scheme is generally adopted
(Nallapati et al., 2017; Zhang et al., 2019; Narayan
et al., 2020; Xu et al., 2020). An encoder formu-
lates document or sentence representations, and
a decoder predicts a sequence of sentence impor-
tance scores with the supervision of ground-truth
sentence labels.

Reinforcement Learning based Methods. Re-
inforcement learning (RL) can be utilised for ex-
tractive summarisation by directly optimising the
ROUGE metric, which is used as the training re-
ward. The RL based summarisation task can be
treated as a sentence ranking problem similar to the
aforementioned methods (Narayan et al., 2018) or
as a contextual-bandit problem (Luo et al., 2019) .

Unsupervised Methods Various unsupervised
methods have also been proposed to leverage pre-
trained language models to compute sentence simi-
larities and select important sentences. Some meth-
ods (Zheng and Lapata, 2019) use these similarities
to construct a sentence graph and select sentences
based on their centrality. Some methods (Padmaku-
mar and He, 2021) use these to score relevance and
redundancy of sentences as selection criteria.

Although these learning-based methods have sig-
nificantly improved summarisation performance,
computationally expensive training costs are in-
evitable, and it is challenging to generalise the
trained models to documents from other domains
that have distributions different from the training
dataset. In addition, it is difficult to explain the cor-
respondence and the coverage between a summary
and a source document using these deep models.
Therefore, to address these limitations, we revisit
the non-learning based approach and propose a
novel summarisation method by exploring the opti-
mal transport theory for the first time.

3 Methodology

As shown in Figure 1, OTExtSum utilizes a text
OT approximation to obtain the optimal extraction
vector m∗ = [m1, ...,mn]

T , where mi ∈ {0, 1}
denotes whether the i-th sentence is to be extracted
(denoted by 1) or not (denoted by 0). The optimal
extraction vector m∗ achieves an OT plan from
the semantic distribution of the document to that
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of its optimal candidate summary which has the
minimum total transportation cost.

The OT approximation consists of four compo-
nents: 1) a tokeniser & embedding procedure that
formulates token level representations and a se-
mantic distribution estimation that computes the
frequency of each token within a summary or a
document ; 2) a transportation cost matrix that mea-
sures the cost using one token to represent another
based on their Euclidean distances; 3) an OT solver
that approximates Wasserstein distance and seman-
tic coverage of the candidate summaries; and 4) an
optimisation strategy that obtains the optimal ex-
traction vector by choosing the summary with the
minimum Wasserstein distance, and thus with the
highest semantic coverage of the source document.

3.1 Optimal Transport
Consider a transportation problem that transports
goods from a collection of suppliers D = {di|i =
1, ..., N} to a collection of customers S = {sj |j =
1, ..., N}, where di and sj indicate the supply
quantity of the i-th supplier and the order quan-
tity of the j-th customer, respectively. Note that,
in this study, we consider the number of suppli-
ers to be the same as the customers. By defin-
ing tij as the quantity transported from the i-th
supplier to the j-th customer, a transport plan
T = {tij} ∈ RN×N can be obtained. Given a
cost matrix C = {cij} ∈ RN×N , where cij is the
cost to deliver a unit of goods from the i-th sup-
plier to the j-th supplier, the cost of the transport
plan T can be calculated. Particularly, an OT plan
T∗ = {t∗i,j} ∈ RN×N in pursuit of minimising the
transportation cost can be obtained by solving the
following optimisation problem:

T∗ = argmin
T

N∑

i,j=1

tijcij ,

s.t.
N∑

j=1

tij = di, ∀i ∈ {1, ..., N} ,

N∑

i=1

tij = sj , ∀j ∈ {1, ..., N} ,

tij ≥ 0, ∀i, j ∈ {1, ..., N} ,

(1)

where the first two constraints indicate the quan-
tity requirements for both suppliers and customers
and the last constraint proves a non-negative order
quantity. Mathematically, this OT problem is to
find a joint distribution T with respect to a cost C,

of which the marginal distribution is D and S. In
particular, Wasserstein distance can be defined as:

dW (D,S|C) =
∑

i,j

t∗i,jci,j . (2)

It can be viewed as the distance between the two
probability distributions D and S, if they are nor-
malized, in line with the cost C.

3.2 Semantic Distribution
In the context of text summarisation, denote D =
{s1, ..., sn} to represent a document, where si
denotes the i-th sentence contained in the docu-
ment. The sentence si has a semantic distribution
TFi ∈ RN computed by the normalised bag-of-
tokens with removal of stop-words:

TFi = [TFi1, ..., TFiN ]T ,

TFij =
dj∑N
k=1 dk

,
(3)

where dj indicates the count of the j-th token in a
vocabulary of size N .

A document D has a semantic distribution TFD:

TFD =
TF1 + . . . + TFn

n
. (4)

For a summary S ⊂ D with its corresponding
extraction vector m, of which the i-th element mi

is an indicator (mi = 1 if si ∈ S, mi = 0 other-
wise), it has a semantic distribution TFS:

TFS =
m1 × TF1 + ...+mn × TFn

m1 + ...+mn
. (5)

In our proposed method, a normalization step is
introduced to approximate the semantic distribu-
tions of D and S with term frequency. Note that
after the normalization TFD and TFS have an equal
total good quantities of 1 and can be completely
transported from one to the other. In addition, TFD

and TFS satisfy the property of discrete probability
distributions, of which the sum should be 1.

3.3 Transport Cost between Tokens
We define the unit transportation cost between two
tokens by measuring their semantic similarity. In-
tuitively, the more semantically dissimilar a pair of
tokens are, the higher the “transport cost" of trans-
porting one token to another. Given a pre-trained
tokeniser and token embedding model with N to-
kens, define vi to represent the feature embedding
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of the i-th token. The transport cost from the i-th
token to the j-th token cij in C can be written as:

cij = ‖vi − vj‖2 , (6)

which is based on the Euclidean distance. 1

3.4 Semantic Coverage of Candidate
Summaries

Intuitively, a good summary S is supposed to be
close to the document D in terms of their semantic
distributions. OTExtSum utilizes the Wasserstein
distance to measure the distance between the two
associated semantic distributions TFD and TFS

with the OT cost. The computation of the Wasser-
stein distance has time complexity of O(p3log(p))
(Altschuler et al., 2017), where p denotes the num-
ber of unique words in the document.

In detail, it can be obtained with Eq. (2) as
dW (TFD,TFS|C) with a pre-defined cost matrix
C. Then a semantic coverage score of the summary
S in respect to the document D can be further de-
fined based on the Wasserstein distance:

g(D,S) = 1− dW (TFD,TFS|C). (7)

Therefore, OTExtSum aims to search for an extrac-
tion vector m, of which the corresponding sum-
mary S minimises the Wasserstein distance, i.e.
maximising the semantic coverage score for the
given document D by solving OT problems.

3.5 Optimisation Strategy
The remaining problem for OTExtSum is to
search for the optimal extraction vector m∗ which
achieves the minimum total transportation cost
from the semantic distribution of the document
TFD to that of the optimal summary TFS, given a
budget B which is the number of sentences can be
extracted to create a summary:

m∗ = argmin
m

dW (TFD,TFS|C),

s.t. m1 + ...+mn ≤ B.
(8)

In search of optimal extraction vector m∗, we
design two optimisation strategies, namely beam
search strategy to achieve better coverage approxi-
mation, and binary integer programming strategy
to achieve better computational efficiency.

1We investigated the effect of different distance measure-
ments. As discussed in Section 4.3, cost matrix based on
the Euclidean distance and the cosine distance yield similar
ROUGE scores.

Algorithm 1: Optimisation of OTExtSum
with Beam Search Strategy

Input :D the document, B the budget of
the number of extracted sentences,
K the beam width.

Output :S∗ the optimal extractive summary.

1 Compute the cost matrix C, and the
document’s semantic distribution TFD;

2 Initialise m = 0, i.e. the candidate
summary set S = ∅;

3 while # of sentences in candidate summary
≤ B ; do // Beam search

4 for k = 1, ..., |S| do
5 Generate the successor set Skb for

Sk ∈ S;
6 end
7 S← ⋃

k Skb ;
8 for k = 1, ..., |S| do
9 Compute the semantic distribution

TFSk of Sk ∈ S;
10 Compute the Wasserstein distance

dW (TFD,TFSk |C) and the
semantic coverage
g(TFD,TFSk |C));

11 end
12 Keep the top K candidate summaries

with the highest g(TFD,TFSk |C)) and
prune the rest in S;

13 end
14 S∗ = argmax

Sk∈S
g(TFD,TFSk |C));

3.5.1 Beam Search Strategy

The Beam Search (BS) strategy with the beam
width K maintains the candidate summary set S
and searches for the optimal extraction vector m∗,
thus the optimal extractive summary S∗. Algorithm
1 presents the steps to obtain the optimal summary
with OTExtSum using the BS strategy. The time
complexity is O(BKn(p3log(p))).

Initially, we have m = 0, where none of the
sentences are extracted. Then, each sentence in the
document D is selected as a candidate summary,
which derives a set of candidate extraction vec-
tors corresponding to a set of candidate summaries,
and its semantic coverage score can be evaluated.
The top K candidate summaries in terms of the
semantic coverage are kept in the set S and the
rest are pruned. During the b-th iteration of the
beam search, by appending each possible sentence
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to an existing candidate summary Sk ∈ S, where
the sentence is not in Sk, a set of new candidate
summaries Skb can be obtained. Then S is updated
by combining all these sets of new candidate sum-
maries in regards to k:

S←
⋃

k

Skb . (9)

At the end of beam search, a set of finalK summary
candidates within the budget B is obtained.

Among the K final candidates from the beam
search, OTExtSum obtains the optimal extraction
vector and thus the optimal summary by choosing
the candidate with the highest semantic coverage
of the document D.

Algorithm 2: Optimisation of OTExtSum
with Binary Integer Programming Strategy

Input :D the document, B the budget of
the number of extracted sentences,
T the number of iterations.

Output :S∗ the optimal extractive summary.

1 Compute the cost matrix C, Compute
document’s semantic distribution TFD;

2 Initialise w ∈ Rn;
3 for iteration t ∈ [1, ..., T ] do
4 Convert w to probability value pr with

Sigmoid function;
5 Convert pr to b = [bi, .., bn] by hard

sampling from the Gumbel-Softmax
distribution;

6 Construct summary’s semantic
distribution TFS;

7 Compute the Wasserstein distance
dW (TFD,TFS|C);

8 Compute the L1 regularisation of b;
9 Compute loss by weighted sum of the

Wasserstein distance and the squared
difference of B and b;

10 Compute gradients and update w;
11 end
12 Compute m∗ by soft sampling Sigmoid(w)

from the Gumbel-Softmax distribution;
13 Obtain S∗ by extracting top-B sentences

with the highest mi values for i = 1, ..., n;

3.5.2 Binary Integer Programming Strategy
Some prior works showed that integer linear pro-
gramming is an efficient solution to summarisa-
tion problem (McDonald, 2007; Gillick and Favre,

2009).The Binary Integer Programming (BIP) strat-
egy therefore is utilised to search for the optimal
extraction vector m∗ with T iterations. Based on
the extraction vector, we obtain the optimal ex-
tractive summary S∗. Algorithm 2 presents the
optimisation steps to obtain the optimal summary
with OTExtSum using the BIP strategy. The time
complexity is O(T (p3log(p))).

As m∗ is a multi-hot vector and is not differ-
entiable, to make the backpropagation work, we
optimise a proxy continuous vector w ∈ Rn,
which is differentiable. Then we hard sample from
the Gumbel-Softmax distribution (Maddison et al.,
2016) to discretise and compute a multi-hot vector
b during the iterations, and soft sample to compute
m∗ at the end.

The BIP strategy optimises the following loss
function w.r.t. w, which is a weighted sum of the
Wasserstein distance dW (TFD,TFS) and the L1

regularisation of b 2:

dW (TFD,TFS|C) + α|B −
n∑

i=1

bi|, (10)

where α denotes the weight of L1 regularisation.

4 Experimental Results and Discussions

4.1 Datasets
To validate the effectiveness of the proposed
OTExtSum on the documents with various writ-
ing styles and its ability to achieve improved sum-
marisation performance, we perform experiments
on four widely used challenging datasets collected
from different domains.

Dataset Multi-News BillSum PubMed CNN/DM

Domain News Law Science News

#Sent./Doc. 80 46 102 33

B 9 7 6 3

Test Set Size 5,622 3,269 6,658 11,490

Table 1: Overview of the datasets. #Sent./Doc. denotes
the average number of sentences in the documents, B
denotes the budget of number of extracted sentences.

CNN/DailyMail (CNN/DM) (Hermann et al.,
2015) is the standard single-document datasets with
manually-written summaries. Multi-News (Fabbri
et al., 2019) is a multi-document dataset which
summarises multiple news articles. We concate-
nate the multiple articles as a single input. BillSum

2We choose L1 regularisation for sparsity (Ng, 2004).

1133



Method Multi-News BillSum PubMed CNN/DM

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

LEAD 42.3 14.2 22.4 43.5 25.6 37.8 34.0 8.6 27.1 40.0 17.5 32.9

ORACLE 45.4 20.6 28.1 43.7 25.7 38.0 37.1 15.5 30.4 43.1 23.7 37.5

Non-learning based Methods

LSA (Gong and Liu, 2001) - - - 32.6 15.7 26.3 33.9 9.9 29.7 - - -

LexRank (Erkan and Radev, 2004) 38.3 12.7 13.2 - - - 39.2 13.9 34.6 - - -

TextRank (Mihalcea and Tarau, 2004) 38.4 13.1 13.5 34.4 17.8 27.8 - - - 34.1 12.8 22.5

OTExtSum-BIP (GPT2) 40.6 12.1 20.7 36.6 15.6 30.6 35.4 10.8 28.8 34.1 12.6 28.1

OTExtSum-BIP (BERT) 40.6 12.1 20.7 36.6 15.6 30.6 35.4 10.8 28.8 34.1 12.6 28.1

OTExtSum-BS (Word2Vec) 42.3 12.8 21.9 40.1 19.4 34.3 38.2 11.7 30.8 32.3 10.8 25.9

OTExtSum-BS (GPT2) 42.4 14.2 23.2 36.5 19.7 32.0 39.7 13.8 32.3 33.5 12.0 26.7

OTExtSum-BS (BERT) 43.1 13.9 22.5 37.5 19.7 32.6 39.8 13.6 32.3 34.5 12.8 27.8

Unsupervised Deep Learning based Methods

PacSum (Zheng and Lapata, 2019) 43.2 14.3 28.5 - - - - - - 40.3 17.6 24.9

PMI (Padmakumar and He, 2021) 40.5 13.2 19.8 - - - 37.8 13.4 29.9 36.7 14.5 23.3

Supervised Deep Learning based Method

MatchSum (Zhong et al., 2020) 46.2 16.5 41.9 - - - 41.2 14.9 36.8 44.2 20.6 40.4

PEGASUS (Zhang et al., 2020) 47.5 18.7 24.9 57.3 40.2 45.8 45.1 19.6 27.4 44.2 21.5 41.1

Table 2: Comparisons between our OTExtSum and the state-of-the-art methods across different categories. The
highest scores are bold, and the second highest ones are underlined.

(Kornilova and Eidelman, 2019) is a dataset for
law document summarization, which contains long
state bill documents. PubMed (Cohan et al., 2018)
is a scientific article dataset that uses the abstract
section as the ground-truth summary and the long
body section as the document. Table 1 shows an
overview of the four datasets. The dataset details
are in Appendix A.

While CNN/DM contains shorter documents and
summaries, the other three datasets are more chal-
lenging because they have more extended docu-
ments and summaries, thus have a higher chance to
extract sentences containing redundant contents or
having limited relevance to the document.

4.2 Implementation Details

In terms of the pre-trained token embedding model,
we compare the static embedding model Word2Vec
and the contextual embedding models BERT and
GPT2. The details of hyperparameter settings and
software used are in Appendix B and C.

Our OTExtSum is compared against LEAD (See
et al., 2017), ORACLE (Nallapati et al., 2017), the
state-of-the-art non-learning based methods and
the recent unsupervised learning-based methods.
LEAD and ORACLE are standard baselines in the
summarisation task. LEAD baseline extracts the
first several sentences of a document as a summary.
ORACLE baseline greedily extracts the sentences
that maximise the ROUGE-L score based on the
reference summary. We compare with the results of
strong non-learning-based methods, including LSA
(Gong and Liu, 2001), TextRank (Mihalcea and Ta-
rau, 2004), and LexRank (Erkan and Radev, 2004).

Their results on MultiNews, BillSum, PubMed, and
CNN/DM are from (Fabbri et al., 2019), (Kornilova
and Eidelman, 2019), (Cohan et al., 2018), and
(Padmakumar and He, 2021) respectively. For an
informative reference, we report recent unsuper-
vised learning-based methods, including PacSum
(Zheng and Lapata, 2019), which its released model
was trained on the news domain, and PMI (Pad-
makumar and He, 2021), of which the released
models were trained on the news and science do-
mains. Their results on CNN/DM are from (Pad-
makumar and He, 2021). Their results on Multi-
News, BillSum, and PubMed are evaluated on the
datasets with the corresponding released models
from the same domains. And we include the results
of the state-of-the-art supervised learning-based
methods with extractive approach MatchSum from
(Zhong et al., 2020), and those with abstractive
approach PEGASUS from (Zhang et al., 2020).

4.3 Quantitative Analysis

The commonly used ROUGE metric (Lin, 2004) is
also adopted for our quantitative analysis. It evalu-
ates the content consistency between the generated
summary and the reference summary. In detail,
ROUGE-n scores measure the number of overlap-
ping n-grams between the generated summary and
the reference summary. A ROUGE-L score consid-
ers the longest common subsequence between the
generated summary and the reference summary.

Performance Overview. The experimental re-
sults of OTExtSum on the four datasets are listed
in Table 2 in terms of ROUGE-1, ROUGE-2 and
ROUGE-L F-scores. We observed that the BS strat-
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egy could generally achieve better optimisation
results than the BIP strategy. It is in line with our
design understanding that beam search can better
reach the global optimum. Whereas, the two strate-
gies achieve similar results in CNN/DM, which
could be because CNN/DM has fewer document
sentences and lower budget, thus fewer possible
solutions and easier to find the optimum.

OTExtSum outperforms the state-of-the-art non-
learning based methods and is comparable to the
learning-based methods. Note that the state-of-the-
art methods usually optimise at the sentence level,
whilst OTExtSum is based on the summary level
OT evaluation, by which the quality of the resulting
summaries is improved.

We observed that OTExtSum obtains signifi-
cantly better ROUGE scores than the baseline
methods on Multi-News, BillSum and PubMed,
while the improvement is not that significant on
CNN/DM . When the summary is more extended,
such as these three more challenging datasets, the
summary sentences are more likely to have redun-
dant content. That is, even summary-level optimi-
sation is more difficult to achieve, our OTExtSum
demonstrates higher improvements.

OTExtSum is a non-learning based method, and
training is not required. Unlike learning-based
methods, it is not limited by the training data do-
main and can be used for different domains. Experi-
mental results demonstrate generalisation ability of
OTExtSum over news, law, and science domains.

Effects of Token Embeddings Models.
OTExtSum is dependent on a pre-trained token
embedding method. Specifically, the token
embedding model affects the cost matrix C and
the tokenisation, thus the frequency vector, of
the document. We examine how different token
embedding models would affect the performance
of OTExtSum by comparing static embedding
model Word2Vec, and contextual embedding
models BERT and GPT2.

The results on most of the datasets indicate that a
more advanced contextual embedding model such
as BERT and GPT2 is more effective than a static
embedding model Word2Vec. It is in line with the
intuitive understanding that a more representative
model with adequate training samples often approx-
imates better token embeddings and representation.
Despite that, the performance of OTExtSum with
Word2Vec is surprisingly competitive.

Effects on Stop-words. We investigate the

impact of stop-words on the performance of
OTExtSum. As shown in Table 3 in Appendix
E, the effect varies slightly across the datasets, and
may not much influence the ROUGE scores. It
could be because text summarisation does not gen-
erally depend on stop-words. A side benefit of
removing the stop-words is reducing the vocabu-
lary size and thus the computation time of OT.

Effects on Distance Measurement. We exam-
ine how the distance measurement of the cost ma-
trix would impact the performance of OTExtSum.
As shown in Table 3 in Appendix E, cost matrix
based on the cosine distance and the Euclidean
distance usually yield similar ROUGE scores.

4.4 Interpretable Visualisation
OTExtSum is able to provide an interpretable vi-
sualisation of the summarisation procedure. Fig-
ure 2 in Appendix D illustrates the transport plan
heatmap, which indicates the transportation of se-
mantic contents between tokens in the document
and its resulting summary. The higher the inten-
sity, the more the semantic content of a particular
document token is covered by a summary token.

4.5 Qualitative Analysis
Figure 3 , 4 , 5, and 6 in Appendix F compare the
summaries produced by OTExtSum and TextRank.
TextRank extracted sentences that are salient on
their own yet redundant when combined to form
a summary. In comparison, OTExtSum is able
to compose summaries that have higher semantic
coverage and less redundant content.

5 Conclusion

In this paper, we have presented OTExtSum, the
first optimal transport-based optimisation method
for extractive text summarisation. It aims to iden-
tify an optimal subset of sentences for producing
a summary that achieves high semantic coverage
of the document by minimising the Wasserstein
distance between the semantic distributions of the
document and the summary. It helps obtain a sum-
mary from a global perspective and provides an
interpretable visualisation of extraction results. In
addition, OTExtSum does not require computation-
ally expensive training. The comprehensive experi-
ments demonstrate the effectiveness of OTExtSum,
which is generalisable over various document do-
mains. In our future work, we will explore other
OT solvers for extractive summarisation.
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A Dataset Details

We followed (Zhong et al., 2020) to set B for
CNN/DM, PubMed and Multi-News, and used the
average number of sentences in the summaries to
set B for BillSum since this is a common prac-
tice in the literatures (Narayan et al., 2018). These
datasets were obtained from a source, namely Hug-
gingFace Datasets 3.

Since OTExtSum does not require training, for
a fair comparison, all experimental results are re-
ported on the test splits of the four datasets only.

B Hyperparameter Details

For the hyperparameter settings of the BIP strategy,
the number of iteration T was set to 200, α was
set to 1, and it used the SGD optimiser (Sutskever
et al., 2013) with learning rate 0.1. For the BS
strategy, the beam width K was set to 5 4.

C Software and Hardware Used

We obtained the pre-trained Word2vec (Google
News 300 dimension) from GENSIM 5, and the
contextual embedding models BERT (base version)
and GPT2 from HuggingFace 6. To compute the
Wasserstein distances, we adopted GENSIM, the
POT 7 and GeomLoss (Feydy et al., 2019) libraries.
List of stop-words was from NLTK library 8. Our
experiments were run on a GeForce GTX 1080
GPU card. We obtain our ROUGE scores by using
the pyrouge package 9.

3https://huggingface.co/docs/datasets/
4We chose the beam width in line with a common practice

in the literature (Meister et al., 2020)
5https://radimrehurek.com/gensim/index.html
6https://huggingface.co
7https://pythonot.github.io
8https://www.nltk.org
9https://pypi.org/project/pyrouge/

D Example of Interpretable Visualisation

Figure 2: Interpretable visualisation of the OT plan
from a source document to a resulting summary on the
CNN/DM dataset. The higher the intensity, the more
the semantic content of a particular document token is
covered by a summary token. Purple line highlights
the transportation from the document to the summary
of semantic content of token “month”, which appears
in both the document and the summary. Red line high-
lights how the semantic content of token “sponsor”,
which appears in the document only but not the sum-
mary, are transported to token “tour” and “extension”,
which are semantically closer and have lower transport
cost, and thus achieve a minimum transportation cost
in the OT plan.
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E Ablation Studies
Method Multi-News BillSum PubMed CNN/DM

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Euc. \wo s.w. 43.1 13.9 22.5 37.5 19.7 32.6 39.8 13.6 32.2 34.5 12.8 27.8

Cos. \wo s.w. 43.1 13.9 22.5 39.0 19.5 33.6 39.8 13.6 32.3 34.4 12.4 27.7

Euc. \w s.w. 43.4 14.4 23.4 36.9 19.6 32.2 40.6 13.8 33.0 34.1 12.1 27.1

Cos. \w s.w. 43.9 14.2 23.1 38.1 19.6 33.0 40.6 13.6 32.9 34.1 12.1 27.1

Table 3: Ablation studies of OTExtSum based on the BS optimisation strategy and pre-trained BERT tokeniser.
Euc. denotes the Euclidean distance and Cos. denotes the cosine distance. s.w. denotes stop-words.

F Generation Samples
Below are the generation samples of OTExtSum and TextRank. In general, OTExtSum based summary
contains less redundant content and provides higher semantic coverage with the same number of
extracted sentences.

Figure 3: A sample summary comparison on the Multi-News dataset. OTExtSum based summary sentences are
highlighted in yellow colour. TextRank based summary sentences are underlined in red colour. TextRank ex-
tracted redundant contents, specifically the part 1 is duplicated with the part 3 , and the part 2 is duplicated

with the part 4 . The summary generated by OTExtSum has ROUGE-1 F-Score of 65.21 and Semantic Cov-
erage Score of 0.93, while the summary generated by TextRank has ROUGE-1 F-Score of 44.87 and Semantic
Coverage Score of 0.89. Semantic Coverage Score of the ground-truth summary is 0.89.
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Figure 4: A sample summary comparison on the BillSum dataset. OTExtSum based summary sentences are
highlighted in yellow colour. TextRank based summary sentences are underlined in red colour. TextRank
extracted redundant contents, specifically the part 1 , 2 3 , 4 , and 5 are duplicated. The summary
generated by OTExtSum has ROUGE-1 F-Score of 44.2 and Semantic Coverage Score of 0.92, while the sum-
mary generated by TextRank has ROUGE-1 F-Score of 33.2 and Semantic Coverage Score of 0.77. Semantic
Coverage Score of the ground-truth summary is 0.84.

Figure 5: A sample summary comparison on the PubMed dataset. OTExtSum based summary sentences are
highlighted in yellow colour. TextRank based summary sentences are underlined in red colour. TextRank ex-
tracted redundant contents, specifically the part 1 is duplicated with the part 4 , and the part 2 is duplicated

with the part 3 . The summary generated by OTExtSum has ROUGE-1 F-Score of 73.1 and Semantic Cov-
erage Score of 0.92, while the summary generated by TextRank has ROUGE-1 F-Score of 66.0 and Semantic
Coverage Score of 0.89. Semantic Coverage Score of the ground-truth summary is 0.91.
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Figure 6: A sample summary comparison on the CNN/DM dataset. OTExtSum based summary sentences
are highlighted in yellow colour. TextRank based summary sentences are underlined in red colour. TextRank
extracted redundant contents, specifically the part 1 is duplicated with the part 2 . The summary generated by
OTExtSum has ROUGE-1 F-Score of 50.5 and Semantic Coverage Score of 0.89, while the summary generated
by TextRank has ROUGE-1 F-Score of 35.7 and Semantic Coverage Score of 0.83. Semantic Coverage Score
of the ground-truth summary is 0.80.
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