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Abstract

Distantly-supervised named entity recognition
(NER) locates and classifies entities using only
knowledge bases and unlabeled corpus to mit-
igate the reliance on human-annotated labels.
The distantly annotated data suffer from the
noise in labels, and previous works on DSNER
have proved the importance of pre-refining dis-
tant labels with hand-crafted rules and extra
existing semantic information. In this work,
we explore the way to directly learn the distant
label refinement knowledge by imitating an-
notations of different qualities and comparing
these annotations in contrastive learning frame-
works. the proposed distant label refinement
model can give modified suggestions on dis-
tant data without additional supervised labels,
and thus reduces the requirement on the quality
of the knowledge bases. We perform exten-
sive experiments and observe that recent and
state-of-the-art DSNER methods gain evident
benefits with our method.

1 Introduction

Named entity recognition (NER) refers to the se-
quence tagging task of detecting the interested enti-
ties in unstructured texts and classifying them into
predefined categories. NER serves as a foundation
part of information extraction in natural language
processing (NLP) with applications in many down-
stream tasks such as question answering (Khalid
et al., 2008; Jin et al., 2021), knowledge graph
construction (Jia et al., 2018; Zhao et al., 2018),
and dialog systems (Bowden et al., 2018). Super-
vised NER models have been developing rapidly
in recent years and have achieved enormous suc-
cess (Huang et al., 2015; Wang et al., 2020). How-
ever, acquiring abundant high-quality human anno-
tations where every word within a sentence should
be labeled can be very expensive and limits the
application of NER models in many domains.

∗ Equal contribution.

To alleviate the reliance on human annotations,
a practical approach is to introduce distant super-
vision (Mintz et al., 2009) to automatically gen-
erate labeled data by matching entities in easily-
obtained knowledge bases. Meanwhile, after years
of development, there are many open access knowl-
edge bases or dictionaries such as WikiData1 and
YAGO2 in the general domain and UMLS (Lind-
berg et al., 1993) and MeSH3 in the biomedical
domain, which makes it possible to annotate large
scale training data for NER models automatically.
However, distant annotation suffers from two is-
sues: incomplete annotation and noisy annota-
tion. The knowledge bases with limited coverage
of entities usually label only part of the entities
in text, and the remaining entities are incorrectly
labeled as background, denoted as incomplete an-
notations. The noisy annotation occurs when an
entity with more than one word and the knowledge
bases only contain a sub-sequence of the entity, re-
sulting in partial annotation and sometimes wrong
labeling of the entity type.

The neural network-based NER model has a
strong ability in fitting the noise in training data,
resulting in poor performance with distant la-
bels. Some previous works focusing on distantly-
supervised named entity recognition (DSNER) at-
tempt to mitigate the two issues by applying tech-
niques including: (1) entity selection (Yang et al.,
2018; Zhang et al., 2021) or noisy entity removal
(Onoe and Durrett, 2019); (2) label smoothing
(Yang et al., 2018; Shang et al., 2018), (3) iter-
ation and early stopping Liang et al. (2020); (4)
PU-learning (Meng et al., 2021).

In addition, many works have found that pre-

1 https://dumps.wikimedia.org/wikidata
wiki/entities/

2 https://www.mpi-inf.mpg.de/departme
nts/databases-and-information-systems/r
esearch/yago-naga/yago/

3 https://www.nlm.nih.gov/mesh/downloa
d_mesh.html
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refining the distant labels by artificial rules (Shang
et al., 2018; Zhang et al., 2021; Liang et al., 2020;
Meng et al., 2021) and extra semantic information
(Zhang et al., 2021; Liang et al., 2020) effectively
improves the performance of DSNER models. In-
spired by this, we propose a framework to train an
automatic distant label refinement model. Specif-
ically, we generate annotations of different quali-
ties by adding noises to weaken the annotations or
enhancing the annotations with semantic parsing
(Chen and Manning, 2014). Then we apply con-
trastive learning to guide a sequence scoring model
to learn which annotations are better based on the
sentence given two different annotations. Finally,
the sequence scoring model can make a refinement
suggestion on each token in arbitrary sentences
and corresponding annotations. Therefore, it is
model-agnostic, which can be stably and effectively
used in data preprocessing for all DSNER models
and consequently improves the performance of the
DSNER models.

Due to the complex nomenclature (Névéol et al.,
2018) and massive amounts of terminology in the
biomedical domain, incomplete and noisy annota-
tions are more evident in the distantly annotated
corpus. Therefore, we focus on distant data refine-
ment for DSNER in this work. Experiments show
that the framework is good at amending the noisy or
incomplete entities in distant data and significantly
increases recall and F1 scores for DSNER mod-
els. The proposed method is named CReDEL, for
Contrastive Refinement of Distant Entity Labels.
The source code of our model is publicly avail-
able at https://github.com/yinghy18/
CReDEL.

We summarize our contributions as follows:

• We propose an automatic label refinement
method to mitigate the issues in distant NER
data. The CReDEL is model-agnostic and
consequently improves the performance of all
DSNER models.

• We introduce a contrastive learning technique
combined with a novel contrastive sample
generation module. Trained on automati-
cally annotated enormous corpus with knowl-
edge bases, it empowers the proposed scoring
model to evaluate annotation qualities.

• We conducted experiments on BC5CDR and
NCBI-Disease to verify the effectiveness of

CReDEL with classical NER and state-of-the-
art DSNER methods. We show that our model
brings consistent improvement for these meth-
ods.

2 Related Work

Distantly-Supervised Named Entity
Recognition
Compared to fully supervised NER, DSNER gets
rid of human annotations and uses knowledge bases
or dictionaries to annotate the corpus automatically.
Some DSNER works adopt entity selection (Yang
et al., 2018; Zhang et al., 2021) or noisy entity re-
moval (Onoe and Durrett, 2019) strategies, while
some works design new components to handle mul-
tiple possible labels (Yang et al., 2018; Shang et al.,
2018). Besides, Liang et al. (2020) applies early
stopping to prevent fitting the noise and iteratively
self-trains the model to recognize more entities.
Peng et al. (2019) formulates DSNER as a positive-
unlabeled learning problem. Meng et al. (2021)
uses a noise-robust loss and a noisy label removal
module and uses a self-training method to improve
the generalization ability.

The works mentioned above (Shang et al., 2018;
Zhang et al., 2021; Liang et al., 2020; Meng et al.,
2021) also demonstrate that the pre-refinement of
distant labels significantly improves the perfor-
mance of DSNER methods. Before applying the
DSNER models, these works refine the distant la-
bels by tailoring corpus-aware dictionary (Shang
et al., 2018), extending entity boundary by a distant
phrase mining model (Shang et al., 2018; Zhang
et al., 2021), annotating potential entities via POS
tagging, and hand-crafted annotation rules (Liang
et al., 2020; Meng et al., 2021). In this work, we
propose a model to learn the refinement knowledge
of distant NER annotations, which consequently
has a lower requirement of the dictionary, corrects
labels automatically, and facilitates DSNER mod-
els.

Contrastive learning
Intuitively, the contrastive model is trained via com-
paring between input data (Le-Khac et al., 2020),
in which way the embeddings learn to put together
similar samples and push away different ones. The
core of contrastive learning is thus generating pos-
itive and negative sample pairs (Kalantidis et al.,
2020). Previous works in NLP fields provide var-
ious ways of designing positive-negative sample
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pairs. Yuan et al. (2020) uses CODER to learn
term representations by maximizing similarities be-
tween positive term-term pairs, where the word
"positive" indicates that the terms are synonyms
in the UMLS. Gao et al. (2021) constructs posi-
tive sentence embedding pairs using the embed-
dings of the same sentence passed through differ-
ent dropouts in BERT in their unsupervised version.
Contrastive learning has also been applied to the
NER task. Lin et al. (2020) figures out the triggers
for entity recognition by generating negative sam-
ples after randomly mixing triggers and sentences.
Das et al. (2021) also utilizes contrastive learning
to optimize distributional divergence and improve
few-shot NER performance.

The design of contrastive loss always attempts
teaching the model to minimize the distance within
clusters despite the difference in forms, such as
triplet margin loss (Balntas et al., 2016), contrastive
loss (Chopra et al., 2005) and probabilistic NCE-
based loss (Ma and Collins, 2018). We also mix
hard negative samples in this work and transform
the typical margin loss for CReDEL.

3 Methods

In this section, we detailedly describe the whole
pipeline of CReDEL (Figure 1). Firstly, a knowl-
edge base is used to obtain the distantly labeled
tagging sequence. Then we construct sample pairs
on a large corpus and train a scoring model via con-
trastive learning. We also introduce a module to
generate high-quality positive samples by modify-
ing the entity boundary. For the purpose of improv-
ing the quality of distant labeled training data, we
apply the scoring model to modify datasets used
by existing DSNER models, leading to their better
performances.

3.1 Distant Labels Generation

For a given knowledge base and corpus, the dis-
tantly labeled data always refer to the corpus tagged
by matching all entities in the knowledge base
following the previous works (Peng et al., 2019;
Zhang et al., 2021). The matching algorithm is
maximum matching which greedily searches the
longest string in the knowledge base. We adopt the
“BIO” tagging scheme in this work to represent if
a token is at the beginning (B) or inside (I) of a
matched entity or does not belong (O) to any entity.

3.2 Contrastive Model Training

Given a sentence consisting of m words X =
(x1, · · · , xm) and two “BIO” tag sequences
YP ,YN of X , the scoring model takes the triple
(X,YP ,YN ) as input and learns to assign a better
score to the tag sequence of higher quality, YP , and
a worse score for the other one YN . This naturally
comes down to contrastive learning, and the tag
pair (YP ,YN ) are sampled as follows:

Negative samples generation For one sentence
X , we imitate the distant annotations to generate
two pairs of positive-negative tag sequences: (1)
Positive sample Y1,P is the original distant tag se-
quence described in Section 3.1, while negative
sample Y1,N is obtained by randomly subtracting
one entity from Y1,P . This is the negative tags
created by imitating incomplete annotations. (2)
Positive sample Y2,P is the previous negative one,
Y1,N . The negative sample Y2,N is produced by
changing Y2,P to a different tag sequence within
“BIO” tagging scheme with probability p in each
position. This pair contains the incomplete anno-
tation and its inferior version by imitating noisy
annotations. To avoid the model from remember-
ing our dictionary tagging, the pair (Y1,P ,Y1,N )
is only used in development set.

As the scoring model trained through contrastive
learning can be insensitive to entity boundary with
the aforementioned triples, we also generate an-
other training tag pair using Parser4. In this triple,
the negative sample Y3,N is the distant tag se-
quence Y1,P and the positive sample Y3,P is the
parse-enhanced version of Y3,N , which can be
obtained from the rules in appendix A.2.

These three cases are hard negative samples and
are shown in 1. However, the model requires more
easy samples to learn some basic rules of the scor-
ing task, so three other kinds of easy samples are
mixed with existing hard samples. Specifically, a
certain percentage of existing negative samples will
be changed into (1) a random permutation of the
distant tag sequence Y1,P , (2) a sequence of the
same length containing only tag “B”, (3) a shift
of the Y1,P by two tokens, For example, the first
tag of Y1,P will be the third in the negative tag se-
quence, and the second tag will become the fourth
in the negative one.

Training Procedure For one triple (X ,YP ,YN ),

4In this paper, we use the Stanford Parser(?).
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Figure 1: The framework of CReDEL. In training, CRe-
DEL takes a sentence and a generated sample tag pair
of distant labels as input, and uses contrastive loss to
update model parameters. In inference, CReDEL masks
tokens according to the distance between the probability
score of the input sentence and distant labels. We use
the same sentence as an example in both training and
inference for brevity. The refined distant data is then
used to train the DSNER models. “CHEM” and “DISE”
refer to chemical and disease.

the architecture of the scoring model is as follows:

h = BERT (X),

a = [sO, sI , sB] = softmax(hW ).
(1)

The sentence X is passed through the BERT lan-
guage model and turned into the hidden representa-
tion h. Then a linear layer with output dimension
three acts on h to get the probability score for “B”,
“I” and “O” in each position respectively, denoted
by a, which is a matrix of m rows and 3 columns.
Bounded Cross-Entropy Distance We expect the
output score sequence a close to the one-hot en-
coded positive tag sequence p and away from
the encoded negative tag sequence n. This is
where contrastive learning applies. The "close"
and "away" are defined through a distance. We first
utilize cross-entropy (CE) loss function value to
describe this distance, but the model collapses after
enlarging the numerical gap through multiplying
this distance by a constant only. To avoid this, a pa-
rameter ε is introduced and gives an upper bound
to the distance. Finally, our loss function is the

margin loss with distance, written as:

L = max(d(a,p)− d(a,n) +margin, 0), (2)

where d is the introduced distance with upper
bound:

d(x, y) = − log
exp(−CE(x, y)) + ε

1 + ε
. ε > 0.

(3)

3.3 Distantly Label Improving

CReDEL will not directly predict a tag sequence,
as we find the scoring model cannot effectively dis-
criminate “B” from “I” and a single “I” may appear
in the tags without a leading “B”. Alternatively,
we use the output score defined below to refine
distantly labeled data.

During inference, CReDEL takes a sentence and
distant tag sequence as input and outputs the token-
level distance d(a,Y ) of classification probability
score matrix a and the one-hot encoded distant tag
sequence as in 3.2. Then, it evaluates each tag by
setting a threshold and masking all positions where
the distance is larger than this threshold. Finally
the masked sequence Ymask obtained from the
original distant tag sequence Y is fed to NER or
DSNER models. Here mask means that this tag in
this position will not contribute to the calculating
of loss in DSNER models.

Since specific NER datasets usually contain sev-
eral types of entities while the proposed model con-
siders all entities, we add an entity typing module
to classify the types of entities extracted from the
contrastive scoring model. Then we only mask the
tokens predicted to be the desired type in datasets.
The entity typing module consists of a classical
BERT-based classification model which takes an
entity and its surrounding words as input to predict
the entity type. The architecture of the entity typing
module is described in Appendix A.3.

4 Experiments

4.1 Datasets

Our knowledge base for distant annotation is se-
lected from UMLS by retaining the entities from
specific high-quality sources and applying basic
cleaning procedures (see Appendix A.1). For
simplicity, the knowledge base is still denoted as
UMLS in the follow-up sections.

We select 1 million sentences extracted from
PubMed abstracts and distantly label them with
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UMLS for the training of CReDEL. The size of this
distant data is much larger than biomedical NER
datasets and provides more semantic knowledge
for the contrastive scoring model.

The public datasets we used to test the improve-
ments are listed below:
BC5CDR (Li et al., 2015) is a biomedical Chemi-
cal Disease Relation dataset, which is also widely
used in biomedical Named Entity Recognition. It
consists of 1,500 PubMed articles with 4,409 an-
notated chemicals, 5,818 diseases entities. The
training, development, and test set has 500 arti-
cles respectively. Since the types of entities in
BC5CDR are “Disease” or “Chemical”, We only
use the terms of these two types in knowledge bases
to label the training set.
NCBI-Disease (Doğan et al., 2014) is a dataset
focusing on disease entities. The corpus texts are
made of 793 abstracts and 6,881 annotated entities.
We use the raw texts of the training set, consisting
of 593 abstracts, and test on its test set consisting
of 100 human-annotated abstracts. We only regard
the “Disease” entity type in this corpus.

For both BC5CDR and NCBI-Disease, we adopt
two sources of knowledge bases, the UMLS in
Section 3.1 and the core dictionaries containing
domain-specific terms from AutoNER (Shang et al.,
2018), to annotate the two datasets. The four dis-
tantly annotated datasets are denoted as BC5CDR-
UMLS, NCBI-UMLS, BC5CDR-AutoNER, and
NCBI-AutoNER, respectively.

4.2 Settings

The proposed method pre-refines the training data
for DSNER models. Therefore, we select three
recent DSNER models to train on the distant
data or the refined distant data and compare their
performance. Besides, we select classical fully-
supervised methods for better illustration and dic-
tionary match as a baseline:
Dictionary Match is the distant annotation method
in Section 3.1. For better adaptation to specific
datasets, we only keep the entities of correspond-
ing types. Fully-supervised Methods. We select
two fully-supervised NER models for comparison:
(1) BiLSTM-CRF (Huang et al., 2015) is the clas-
sical RNN-based NER model. It is trained with
the distant annotated data or the data refined by
CReDEL without language model pre-training. (2)
RoBERTa (Liu et al., 2019) is a pre-trained lan-
guage model, and we fine-tune the RoBERTa on the

same data as we use in BiLSTM-CRF. Distantly-
supervised Methods. Three recent or the state-
or-art DSNER methods are applied to the distant
annotated data or the data refined by CReDEL,
including: (1) AutoNER (Shang et al., 2018) is
a DSNER model with a “Tie or Break” tagging
scheme containing entity span detection module
and type classification module. (2) BOND (Liang
et al., 2020) fine-tunes a RoBERTa on distant data
with early stopping, then it iteratively expands the
dictionary and self-trains the model. (3) RoSTER
(Meng et al., 2021) uses the noise-tolerant mean ab-
solute error loss with the self-training method and
augmented sequences generated by the pre-trained
language model without fine-tuning.

4.3 Implementation Details

The contrastive scoring model uses the BERT pre-
trained model with dimension 768 followed by a
three-class classification layer. In the loss function,
The hyperparameter ε is set to 0.2 and the margin
equals 0.3. The training adopts a warming up pro-
cedure with the learning rate initialized as 8×10−6

and reaching its peak 3 × 10−5 at warming step
1000. We use a batch size of 16 sentence with a
max length of 256. The training will take about
one day on RTX 2080 Ti.

For the compared methods, we preserve their de-
fault or recommended parameters unchanged most
of the time. The ensemble model number is set to 1
in RoSTER as our computation resources are lim-
ited. And the full dictionary of AutoNER contain-
ing high-quality phrases without type information
is abandoned because our dictionary does not have
a counterpart to compare with.

5 Results

5.1 NER Performance Comparison

The datasets improved by the CReDEL with Parser
tend to produce more complete term phrases after
training, which can be seen in the case study in
Section 5.2. However, the case study also shows
that the complete term may be away from the test
annotations which are part of a long entity. The
completeness cannot be captured with traditional
exact match F1-score, where predicted entities con-
tribute to the true positive only if the left and right
boundary and the entity type all match the test
annotations. Motivated by the Boundary IoU (in-
tersection over union) metric (Cheng et al., 2021),
we promote another precision, recall, and F1 com-
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BC5CDR-UMLS BC5CDR-AutoNER NCBI-UMLS NCBI-AutoNER
Methods Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Matching 0.658 0.613 0.635 0.917 0.578 0.709 0.879 0.334 0.484 0.844 0.544 0.662
Original Distant
BiLSTM-CRF 0.638 0.480 0.547 0.918 0.506 0.652 0.811 0.401 0.537 0.88 0.276 0.420
AutoNER 0.641 0.516 0.572 0.880 0.560 0.685 0.803 0.485 0.605 0.863 0.269 0.410
RoBERTa 0.657 0.554 0.601 0.888 0.619 0.729 0.819 0.451 0.581 0.882 0.328 0.479
BOND-stage2 0.603 0.658 0.629 0.896 0.612 0.727 0.819 0.437 0.570 0.877 0.352 0.503
RoSTER 0.645 0.701 0.672 0.825 0.713 0.765 0.913 0.545 0.683 0.873 0.397 0.546
Refined w/o Parser
BiLSTM-CRF 0.672 0.492 0.568 0.846 0.550 0.667 0.847 0.553 0.669 0.827 0.439 0.574
AutoNER 0.660 0.557 0.604 0.802 0.639 0.711 0.800 0.588 0.678 0.775 0.376 0.506
RoBERTa 0.657 0.643 0.650 0.807 0.686 0.741 0.834 0.610 0.704 0.839 0.476 0.607
BOND-stage2 0.631 0.720 0.673 0.819 0.677 0.742 0.888 0.644 0.746 0.846 0.514 0.640
RoSTER 0.648 0.787 0.711 0.761 0.780 0.770 0.748 0.734 0.741 0.828 0.666 0.738
Refined
BiLSTM-CRF 0.617 0.623 0.620 0.844 0.577 0.686 0.856 0.516 0.644 0.808 0.445 0.575
AutoNER 0.634 0.608 0.621 0.793 0.697 0.742 0.814 0.584 0.680 0.739 0.394 0.514
RoBERTa 0.629 0.712 0.668 0.789 0.747 0.768 0.814 0.602 0.692 0.822 0.485 0.610
BOND-stage2 0.570 0.802 0.666 0.689 0.836 0.756 0.843 0.637 0.726 0.800 0.557 0.657
RoSTER 0.619 0.849 0.716 0.717 0.868 0.786 0.714 0.709 0.711 0.781 0.624 0.694

Table 1: The Boundary Intersection metric and correspoding precision, recall and F1 score of the distantly supervised
methods on datasets BC5CDR and NCBI-Disease annotated by our UMLS dictionary and AutoNER dictionary.
Boldface numbers indicate that this experiment with the left-side model achieves the best performance on one
specific dataset among the three data conditions.

puting method, called BI (Boundary Intersection)
score , by considering intersection as follows:

Prec. =
|Pe ∩Ge|

|Pe|
,

Rec. =
|Pe ∩Ge|

|Ge|
,

F1 =
2× Prec. × Rec.

Prec. + Rec.
.

(4)

Here Pe and Ge are the set of predicted label po-
sitions and true label positions within some entity.
Intuitively speaking, the new F1 is token-level F1
after excluding the condition that both prediction
and ground truth are ’O’. This metric can describe
the actual performance of the methods on data im-
proved by CReDEL with parser in the aspect of im-
proving term completeness. Moreover, it is suitable
for real-world settings like extracting terms. The
new F1-score, precision, and recall on all datasets
and methods are demonstrated in Table 1. The
“Original Distant”, “Refined w/o Parser” and "Re-
fined" refer to the distant data, the data refined by
CReDEL trained without parse-enhanced samples,
and the data refined by CReDEL, respectively.

We should compare the scores on the same
dataset by the same DSNER model trained with
original distant data and the refined data. Under the
BI score metric, Table 1 tells us that the data mod-
ified by the CReDEL with Parser achieves an al-
most universal improvement in F1-score compared

to original data. In BC5CDR-UMLS, BC5CDR-
AutoNER, and NCBI-AutoNER it also beats the
CReDEL without Parser. The promotion of F1 is
mainly obtained through relatively more consider-
able progress in recall score and a slight change in
precision score. This can prove the superiority of
our method.

We also produce the exact match F1-scores in
Table 2 denoted as the precision*, recall*, and
F1-score* on the same datasets. In general, both
data modified by CReDEL with and without Parser
achieve higher recall scores on all the datasets and
all the methods, and the one modified by CReDEL
with Parser further increases the recall on much
more than half the experiments. Meanwhile, the
precision scores are boosted on about half of the ex-
periments, especially on the two datasets tagged by
the UMLS subset. Consequently, over 3

4 of the data
reach a higher F1-score among the experiments in
Table 2 and not in a trade-off manner.

It is worth noticing that the gain in F1-score dif-
fers in range, and we claim that for a dictionary
not dataset-specific, such as our dictionary, which
can be generally applied, the improvement will
be rather noticeable. On the other hand, the con-
struction of AutoNER dictionaries includes more
handcrafted cleaning rules which reduce the noise
in annotations. They only consist of about 1k terms
rather different from general domain dictionaries
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BC5CDR-UMLS BC5CDR-AutoNER NCBI-UMLS NCBI-AutoNER
Methods Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Matching 0.593 0.393 0.473 0.859 0.482 0.617 0.636 0.227 0.335 0.606 0.447 0.514
Original Distant
BiLSTM-CRF 0.568 0.431 0.490 0.836 0.524 0.644 0.621 0.225 0.330 0.613 0.473 0.534
AutoNER 0.558 0.469 0.509 0.798 0.586 0.675 0.585 0.230 0.330 0.595 0.510 0.549
RoBERTa 0.597 0.545 0.570 0.793 0.665 0.723 0.617 0.309 0.412 0.600 0.509 0.551
BOND-stage2 0.565 0.603 0.583 0.788 0.666 0.721 0.623 0.293 0.398 0.596 0.505 0.546
RoSTER 0.596 0.628 0.612 0.733 0.726 0.729 0.586 0.326 0.419 0.649 0.551 0.596
Refined w/o Parser
BiLSTM-CRF 0.572 0.488 0.527 0.787 0.551 0.648 0.604 0.311 0.411 0.614 0.541 0.575
AutoNER 0.547 0.537 0.542 0.711 0.640 0.673 0.507 0.288 0.367 0.525 0.526 0.525
RoBERTa 0.568 0.662 0.612 0.738 0.696 0.716 0.637 0.502 0.561 0.567 0.623 0.594
BOND-stage2 0.585 0.644 0.613 0.743 0.692 0.717 0.639 0.470 0.542 0.614 0.620 0.617
RoSTER 0.553 0.725 0.627 0.674 0.774 0.720 0.605 0.602 0.603 0.484 0.673 0.563
Refined
BiLSTM-CRF 0.537 0.564 0.550 0.759 0.541 0.632 0.634 0.333 0.437 0.637 0.516 0.570
AutoNER 0.544 0.532 0.538 0.671 0.659 0.665 0.503 0.328 0.397 0.553 0.530 0.541
RoBERTa 0.559 0.697 0.621 0.695 0.745 0.720 0.581 0.469 0.519 0.548 0.610 0.577
BOND-stage2 0.575 0.693 0.628 0.682 0.751 0.715 0.600 0.489 0.538 0.591 0.636 0.613
RoSTER 0.569 0.749 0.647 0.652 0.806 0.721 0.582 0.570 0.576 0.455 0.699 0.542

Table 2: The exact match precision*, recall* and F1-score* of the distantly supervised methods on the same datasets
and tagging dictionaries. Boldface numbers indicate that this experiment with the left-side model achieves the best
performance on one specific dataset among the three data conditions.

BC5CDR-UMLS NCBI-UMLS
Positive 20,520 18,380
Noisy 11,719 10,199
Mask 28,305 24,652
Masked Noisy 6,290 5,345
FP 4,379 4,285
Masked FP 957 945
FN 6,627 5,264
Masked FN 4,975 4,085
All 148,721 124,250

Table 3: The statistics of tokens in test data by compar-
ing the human annotation, distant annotation, and the
refinement results of CReDEL.

and thus have a higher precision score.

5.2 Efficacy of Distant Label Refinement

This section conducts experiments to explain what
CReDEL does when noisy annotations exist in
distant labels. Specifically, we define the tokens
whose labels are different in distant data and golden
test data as noisy tokens. The tokens of “O” labels
in test data refer to the negative tokens while the
remaining tokens refer to the positive tokens. Then
we count the positive tokens, noisy tokens, masked,
and noise tokens masked by CReDEL. Besides, we
also count the false-positive (FP) tokens and false-
negative (FN) tokens as well as the masked FP and
FN tokens.

For NCBI-Disease, there are 124,250 tokens in
all sentences in the test set, while 18,380 tokens are
positive, 10,199 are noisy. CReDEL masks 24,652

tokens, and 5,345 of them are noisy. The accu-
racy of correct masks is much higher than random
masking, indicating that CReDEL is conducive to
reducing noise. The results in BC5CDR are similar.
In addition, CReDEL is better at handling the FN
tokens than FP tokens since CReDEL masks 77.6%
of FN tokens in NCBI-Disease, and only 22.1% FN
tokens are masked. The above observations also
explain the increase in recall for the DSNER model
trained with the refined data.

For better understanding, the case study is shown
in Table 4. In the first example, the phrase “ec-
topic intracranial retinoblastoma” appears in the
golden annotation as a disease entity, while the dis-
tant annotation makes an incomplete annotation.
CReDEL disagrees with the distant annotation and
suggests masking this phrase correctly and mask-
ing "child with" redundantly. Correspondingly, the
BOND trained with the refined data correctly pre-
dicts "ectopic intracranial retinoblastoma" and the
BOND trained by original data makes mistakes. In
the second example, the golden and distant annota-
tion both label "levodopa" as a chemical entity and
"dyskinesia" as a disease entity, while CReDEL
masks all tokens in "levodopa-induced dyskinesia".
The BOND trained with the refined data predicts
the disease entity "levodopa-induced dyskinesia",
which is better than the prediction of BOND trained
with distant data. This case fits our parse-enhanced
entity boundary modifying strategy, and both CRe-
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PMID:9400934 from NCBI-Disease
Golden The RB1 gene mutation in a child with [ectopic intracranial retinoblastoma]DISEASE.
Distant The RB1 gene mutation in a child with ectopic intracranial retinoblastoma.
CReDEL The RB1 gene mutation in a childMASK withMASK ectopicMASK intracranialMASK retinoblastomaMASK.
BOND (Distant) The RB1 gene mutation in a child with ectopic intracranial retinoblastoma.
BOND (CReDEL) The RB1 gene mutation in a child with [ectopic intracranial retinoblastoma]DISEASE.

PMID:23952588 from BC5CDR
Golden Risk factors and predictors of [levodopa]CHEMICAL-induced [dyskinesia]DISEASE among multiethnic

Malaysians with [Parkinson’s disease]DISEASE.
Distant Risk factors and predictors of [levodopa]CHEMICAL-induced [dyskinesia]DISEASE among multiethnic

Malaysians with [Parkinson’s disease]DISEASE.
CReDEL Risk factors and predictors of levodopaMASK-MASKinducedMASK dyskinesiaMASK among

multiethnicMASK MalaysiansMASK with [Parkinson’s disease]DISEASE.
BOND (Distant) Risk factors and predictors of levodopa-induced [dyskinesia]DISEASE among multiethnic Malaysians

with [Parkinson’s disease]DISEASE.
BOND (CReDEL) Risk factors and predictors of [levodopa-induced dyskinesia]DISEASE among multiethnic Malaysians

with [Parkinson’s disease]DISEASE.

Table 4: Case study in NCBI-Disease and BC5CDR. The dashed line splits the table into data of golden, distant,
and refined and prediction of BOND trained with distant data and data refined by CReDEL.

Methods Prec. Rec. F1
BOND (CReDEL) 0.575 0.693 0.628

w/o typing 0.549 0.635 0.589
w. (Y1,P ,Y1,N ) 0.560 0.690 0.618
w. easy only 0.561 0.597 0.578
w. hard only * * *

BOND w. parse after 0.550 0.385 0.453
RoSTER (CReDEL) 0.569 0.749 0.647

w/o typing 0.533 0.727 0.615
w. (Y1,P ,Y1,N ) 0.570 0.722 0.637
w. easy only * * *
w. hard only * * *

RoSTER w. parse after 0.403 0.379 0.391

Table 5: Here * represents model collapsing with
strange predictions or not converging after ablation. The
exact match F1-score of the CReDEL, the CReDEL w/o
the entity typing module ,the CReDEL trained using
negative sample case (Y1,P ,Y1,N ) and easy samples,
the CReDEL trained using easy samples/hard samples
only, and the DSNER method with parse improvement
after it. The results are computed on the dataset BC5-
UMLS by methods BOND and RoSTER.

DEL and the DSNER model trained with refined
data prefer to predict complete entities.

6 Ablation Study

To verify the effectiveness of each design of CRe-
DEL, we conduct the ablation studies. We mainly
discuss three parts, the first of which is the effec-
tiveness of parse and it has been fully exploited in
the results part. The second ablation is CReDEL
w/o typing, that is, without the final entity typing
module. The other part of ablation considers the
selection of training sample cases. We train CRe-
DEL (1) w. (Y1,P ,Y1,N ), using only sample pair
(Y1,P ,Y1,N ) in Section 3.2 and easy samples; (2)

w. easy only, as no hard samples are included;
and (3) w. hard only, where only easy samples
are used. The results are shown in Table 5. The
model trained without easy samples simply cannot
converge. Its predicted phrases are meaningless
and in chaos. The data modified by CReDEL with
only easy samples lead the RoSTER method to
collapse with zeros or NaN in output probabilities
and achieve low scores with BOND method. Other
ablations also result in a drop in the F1 score, re-
vealing the contributions of their corresponding
part in the model design.

Finally we discuss the condition where the parser
does not act on the training set of CReDEL but on
the output of DSNER models without CReDEL,
denoted as Method w. parse after. As an auto-
matic refinement model, we should outperform the
baseline refinement with Parser. We apply the same
parse-enhancing rule and find the F1-score is far
behind CReDEL as demonstrated in Table 5. Even
adopting the new BI metric, this model also per-
forms badly with 0.538 and 0.489 BI F1-score on
method BOND and RoSTER respectively.

These drops can be explained. Without entity
type classification, the model will mask much more
phrases that are valid but beyond the dataset anno-
tation types. The BOND or RoSTER models po-
tentially learn to pay attention to these phrases, re-
sulting in a decline in precision. The model trained
with (Y1,P ,Y1,N ), on the other hand, tends to fit
the positive samples Y1,P which are fixed by dic-
tionary annotations. The BERT model may recog-
nize these words in some batches, and the trained
CReDEL can lose generalization abilities. If using
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Parser after DSNER methods, it is only a rigid tool
rather than a model exploiting semantic informa-
tion. The CReDEL with Parser takes effect because
it is combined with our other designs.

7 Conclusion

This paper proposes a novel approach to automati-
cally learn the refinement knowledge of distantly
annotated NER labels and modify the distant la-
bels to enhance DSNER models. The proposed
method consists of a contrastive samples genera-
tion module, a contrastive training procedure, and
a distantly label improving strategy. Experiments
demonstrate that our method consistently and sig-
nificantly improves DSNER and NER models on
distantly annotated NER data, and it can be stably
applied to all the datasets and methods.
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A Appendix

A.1 Processing of UMLS

The Unified Medical Language System (UMLS)
(Lindberg et al., 1993) is a large-scale resource
containing over 4 million unique medical concepts.
The restricted set of source ontologies in UMLS
include “CPT”, “MEDLINEPLUS”, “RXNORM”,
“SNOMED-CT” and so on (Table 6). After that,
we apply necessary cleanings such as removing
ambiguous or illegal words and abbreviations that
are prone to mismatch.

Source Name or Explanation
CPT Current Procedural Terminology
HPO Human Phenotype Ontology
MEDLINEPLUS Certified patient-oriented web-

content
MSH Medical Subject Headings
MTH UMLS Metathesaurus Names
NCI National Cancer Institute Thesaurus
RXNORM NLM’s Nomenclature for Clinical

Drugs for Humans
SNOMEDCT US edn. of the Systematized Nomen-

clature of Medicine-Clinical Terms

Table 6: The restricted set of source ontologies.

A.2 Parse-based Entity Boundary Modifying

The parser will give a syntax tree of a sentence,
with the tokens in the sentence as leaves and syntax
labels as other nodes. We set four rules for the
parse modifying: (1) If one token is within an entity,
we find its parent in the syntax tree generated by
the Stanford parser and tag the whole new noun
phrase as an entity in the “BIO” tagging scheme
if the parent label is “Noun Phrase”. (2) If the
new entity in (1) starts with a comparative form
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of an adjective, cardinal number, conjunction, or
pronoun, then we repeatedly delete the first token
until it does not belong to one of those labels. (3)
If the extension of the original entity encounters
conjunction or some specific punctuation, then we
reserve the original entity. (4) If none of the tokens
in an original entity is a noun word and none of the
parent labels is “Noun Phrase”, then we delete the
entity from the original tag sequence.

A.3 Entity Typing Module
In the entity typing module, we train a BERT-base
classifier with the distant data labeled by the same
knowledge base. The classifier takes an entity and
its surrounding words as input. Then it predicts the
entity type of the input entity. In training, the entity
type is from the knowledge base, and the model
updates with cross-entropy loss.
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