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Abstract

State-of-the-art dialogue models still often
stumble with regards to factual accuracy and
self-contradiction. Anecdotally, they have been
observed to fail to maintain character identity
throughout discourse; and more specifically,
may take on the role of their interlocutor. In
this work we formalize and quantify this defi-
ciency, and show experimentally through hu-
man evaluations that this is indeed a problem.
In contrast, we show that discriminative models
trained specifically to recognize who is speak-
ing can perform well; and further, these can be
used as automated metrics. Finally, we evaluate
a wide variety of mitigation methods, including
changes to model architecture, training proto-
col, and decoding strategy. Our best models
reduce mistaken identity issues by nearly 65%
according to human annotators, while simul-
taneously improving engagingness. Despite
these results, we find that maintaining charac-
ter identity still remains a challenging problem.

1 Introduction

The exchange of stories from one’s past, or de-
scriptions of activities in one’s present, are a fun-
damental part of human discourse. Trustworthy
human conversationalists keep their stories roughly
straight within a conversation. An interlocutor tak-
ing on your own stories and persona as theirs is
especially jarring and unnatural. However, despite
the improvements in state-of-the-art open-domain
dialogue modeling, both in terms of distributional
accuracy metrics like perplexity, and subjectively
in terms of human judgements (Adiwardana et al.,
2020; Roller et al., 2021), interactions with those
agents reveal that they cannot keep their stories
straight. In particular, they are likely to take on the
role of their interlocutor; for example, if an agent’s
partner says they are a software engineer, the agent
is likely to say it is a software engineer too (Roller
et al., 2021), or worse, appropriate their partners
just told tale of a trip to NAACL as their own. Some

Setting: Barn, Farm
Partner: Thief Self: Guest

Guest: Hail who goes there?!
Thief: Hello friend I mean you no harm
Model Response
Guest: I am not your friend, I am your thief! I am here
to steal from you!
Character Token Probabilities
Thief: 0.39 Guest: 0.23

Setting: Castle Kitchens, Inside Palace
Partner: Hunter Self: Helper

Hunter: Hi
Helper: Hello. What brings you to the kitchen?
Hunter: I am chopping some meat that is to be sold.
Helper: Could you spare me a piece? I’m starving.
Hunter: It’s 3 cents a pound, if you have 3 cents then yeah
Model Response
Helper: I don’t have any money. I’m just a poor hunter
trying to make a living.
Character Token Probabilities
Hunter: 0.39 Helper: 0.12

Table 1: Failures of a 2.7B parameter transformer pre-
trained on 1.5B examples from a large dialogue corpus
(Roller et al., 2021) and fine-tuned on LIGHT (Urbanek
et al., 2019). The bold words in red highlight the model
mistaking its identity for its partner’s. (Top) The model
believes it is a thief, rather than a guest. (Bottom) The
model believes it is a hunter rather than a helper. Token
probabilities are given at the position of the mistake for
the two names.

example failure cases are given in Table 1, where
models incorrectly take on the name, role or activi-
ties of their partner instead of their assigned role.
These failures are related to the general problems
of repetition in language models (Holtzman et al.,
2020), the weak influence of word order (Sinha
et al., 2021) and inability to avoid contradictions
(Nie et al., 2021).

In this work we formalize and quantify this be-
havior, show that to some extent it can be detected
automatically with a specifically trained classi-
fier, and then study a wide variety of mitigations.
These include multi-objective training, unlikeli-
hood training (Li et al., 2020; Welleck et al., 2020),
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classifier-assisted re-ranking based generation, and
several forms modifying the attention mechanisms
of the decoder in a sequence to sequence model.
Our best methods can reduce mistaken identity is-
sues by 65%, while simultaneously improving in-
conversation engagingness; indeed, our models that
can stick to their role in conversation are judged
by humans to be significantly more engaging than
their baseline counterparts. Despite these advances,
we find that there is still considerable space to im-
prove these results further in future work.

We make publicly available both our trained
models and code to reproduce results1.

2 Related Work

Role-Playing in Open-Domain Dialogue Much
recent work has explored training open-domain di-
alogue models on large and small dialogue corpora,
with the former imbuing raw conversational ability
and the latter providing necessary conversational
skills. Most crowd-sourced datasets require acting
out a role to some capacity in conversation (though
indeed Mazaré et al. (2018) study extraction of
roles from raw data). Some involve providing per-
sona lines that a model must assume throughout the
conversation (Zhang et al., 2018; Dinan et al., 2020;
Xu et al., 2021); others require more subtle "roles",
such as a listener (Rashkin et al., 2019), or a teacher
and student (Dinan et al., 2019b; Gopalakrishnan
et al., 2019; Zhou et al., 2018; Komeili et al., 2021).
Zheng et al. (2020) explore using a discriminative
model to predict whether model responses contain
similarity with their persona, similar to methods
we employ in our work.

Consistency in Open-Domain Dialogue A com-
mon paradigm in the state of the art of open-domain
dialogue involves concatenating all relevant contex-
tual information as input to a sequence to sequence
neural model (e.g., transformers (Vaswani et al.,
2017)) to obtain a conditioned response. Such mod-
els can yield human-like and engaging responses
(Adiwardana et al., 2020; Roller et al., 2021). Nev-
ertheless, various consistency issues still plague
such models. Recent studies have indicated that hal-
lucination of incorrect knowledge is still far from a
solved issue (Shuster et al., 2021; Santhanam et al.,
2021), with some proposing specific datasets and
tools for measuring precisely the levels of this un-
desired attribute (Liu et al., 2021). Another clear

1URL will appear here.

example of failure is the short-term memory of
state-of-the-art models (Xu et al., 2021), some-
times due to the lack of long-form training data
or long-context models but often due to simply the
modeling itself.

To address consistency issues, a variety of
methods have been explored. In the context of
knowledge-grounded dialogue, different ways to
attend most effectively over provided contextual
information have been explored (Zheng and Zhou,
2019; Ye et al., 2020; Prabhumoye et al., 2021;
Wang et al., 2019). These works find that consider-
ing factual documents separately (in some capacity)
improves model grounding. We explore such meth-
ods, but in the context of character identity.

Another general problem is that of contradic-
tions. Nie et al. (2021) collect a dataset of con-
tradictions in dialogue, and train classifiers that
help re-rank model outputs at inference time; Li
et al. (2020) explore unlikelihood training (Welleck
et al., 2020) to reduce repetition and contradiction,
among other undesired traits, in model generations.
The character identity issue we study in this work
can be seen as an important class of contradictions,
but to the best of our knowledge, has not been ex-
plicitly focused on.

3 Methods

3.1 Problem Setting

We consider a two-party chat setting. The context
provided to a model includes: (i) the name of its
character and the partner’s character; (ii) an ex-
tended description of its own character; (iii) and,
information about the area in which the conversa-
tion takes place. The responsibility of the model is
to engage its conversational partner, with no other
goal prescribed; however, it should stay within char-
acter and within the bounds of the defined setting.

We operate in the context of LIGHT (Urbanek
et al., 2019), consisting of grounded fantasy role-
playing game conversations. The LIGHT environ-
ment involves humans and models interacting with
thousands of objects in hundreds of locations, all
while assuming the roles of one of hundreds of
characters. The dataset consists of roughly 8.5k
dialogues spanning 111k utterances. It is an ideal
setting for this study because of the rich and varied
personas with explicit backstories.

To quantify the character identity problem, we
take a state-of-the-art dialogue agent (specifically,
BlenderBot (Roller et al., 2021)) fine-tuned on the
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LIGHT dialogue dataset and ask human annota-
tors if the agent mistakes its identity based on its
utterances in context. The agent conditions its re-
sponse on the LIGHT context and prior utterances
in the dialogue history. We see in Table 4 that in
roughly 6.5 percent of utterances the model mis-
takes its identity; this corresponds to a mistake in
approximately 35 percent of conversations.

BlenderBot uses a Byte-Level BPE tokenizer
(Radford et al., 2019); an artifact from the Blender-
Bot pre-training is that it only considers 128 such
tokens in the past, and thus has no mechanism for
recovering truncated information about the LIGHT
context in later conversational turns. Our second
baseline lengthens the input context to 1024 BPE
tokens, which allows the entire context for every ex-
ample to fit into the truncation length of the model;
we follow methods employed in Xu et al. (2021)
to extend the positional embeddings of the model.
We see in Table 4 that this actually makes the prob-
lem worse, resulting in 7.4 percent of utterances
with mistaken identity (corresponding to a failure
in approximately 38 percent of conversations).

3.2 Measuring Role-Playing Accuracy: RPA

We first define a metric, role-playing accuracy
(RPA), to denote how often a model’s responses
are “in-character”; by this, we mean how often the
model’s response could feasibly be said by their
character, given their assigned character identity.
Measuring RPA is a non-trivial task for a variety
of reasons. First, some conversations involve pairs
that can reasonably say similar things (priest vs.
priestess, man vs. woman, wizard vs. witch). Sec-
ond, opening lines are often more generic (“hello”,
“how fare your travels today”), so either character
can say it in conversation. The third reason stems
from the data that we study; we are relying on
crowdsourced data in which humans are required
to portray their characters. Some crowdworkers
may be better than others, and there may be some
noise in the dataset in which, e.g., a horse may pro-
claim its love for a queen, or a knight may discuss
at length the kingdom’s tax collecting.

Given the difficulties above, our primary mea-
sure of RPA involves human annotation of model
responses, specifically evaluating whether a candi-
date response fits a given model’s character. We
thus have human crowdworkers chat with each
model in a LIGHT setting; each is given a char-
acter and asked to role-play, while the human an-

notates each model response, determining whether
the model is in character: we denote this metric as
“Mistaken Identity” in our experiments, and other
utterance-level annotations are collected. Further
details regarding human evaluation are outlined in
Section 4.7.

Despite the efficacy of human evaluation, it is
both costly and slow; as a proxy, we thus train
models specifically designed to identify whether a
candidate response from a model fits the model’s
role, and denote these as “RPA Classifiers”. We
employ poly-encoder transformers (Humeau et al.,
2020) to learn this metric, and structure the task
as a ranking one; the model receives the LIGHT
setting and prior utterances of dialogue as input, as
well as the response currently under consideration,
and the model must choose the correct character
from a fixed set of candidates. We also explore
RPA classifiers trained on all partially complete
sequences of labels, such that the classifiers can
determine the character speaking without requiring
the full utterance; we call these left-to-right (LTR)
RPA classifiers. Further details about how our RPA
classifiers are built are given in Appendix B.

3.3 Mitigations
In this section we describe several strategies for
improving the role-playing accuracy of dialogue
agents, specifically ways to improve our trans-
former baselines.

3.3.1 Re-ranking Model Outputs via RPA
We can employ an RPA classifier in response gen-
eration by using it to rank candidate model outputs.

Utterance Re-ranking: Given a set of candidate
responses, the RPA classifier can re-score the set
and return the response yielding the highest prob-
ability of staying in character (according to the
RPA score on the complete candidate generations).
The dialogue models employ beam-search to gen-
erate responses, and the candidates for re-ranking
are the beams within beam-search. We also try
nucleus sampling (Holtzman et al., 2020) and de-
layed beam-search (Massarelli et al., 2020) to see
whether more diverse candidates have any effect.

Partial And Complete Efficient Re-ranking
(PACER): Re-ranking only the final beam candi-
dates may be suboptimal because it is well known
that those candidates are not very diverse (Kulikov
et al., 2019), meaning there may not be any good
candidates to choose from in this final set. In order
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to generate utterances that agree with our classi-
fiers, a possible improvement is to generate the ut-
terance such that partial generations also agree with
the classifier when generating left-to-right, ensur-
ing that good candidates are surfaced. With access
to LTR RPA classifiers, we can apply re-ranking to
partial sequences.

Unfortunately, re-ranking at every step of beam
search, for every token, requires significant compu-
tation, such as in the recent FUDGE method (Yang
and Klein, 2021). FUDGE re-scores tokens at each
decoding step by multiplying the classifier probabil-
ity with each token probability, and renormalizing,
which is used for control tasks with lightweight
classifiers in order to be tractable.

In our proposed approach, called PACER, we
re-score candidate tokens, for each beam, accord-
ing to the probability that their inclusion yields
the appropriate character classification, and then
finally re-rank the complete candidate beams. To
make this efficient, we crucially score only a small
proportion of decoding steps (e.g., 5% of token
positions) as well as for only a few candidate re-
scored tokens (e.g., top 10 only). We can control
these hyperparameters to explore the speed vs. ac-
curacy trade-off.

3.3.2 Unlikelihood
We explore utilizing an unlikelihood (UL) loss (Li
et al., 2020; Welleck et al., 2020) to force the model
to stay in character during training. Unlikelihood
training works as a counter to the standard maxi-
mum likelihood (MLE) training of language mod-
els; while MLE training pushes the model to gen-
erate the correct tokens, UL training pushes the
model to not generate incorrect tokens.

While training on the LIGHT dataset with stan-
dard NLL loss, with some fixed probability we
consider a candidate model generation for UL loss.
The full generation is sent to the RPA classifier;
if the generation is classified as coming from the
incorrect character, we examine each partial gen-
erated sequence of the output, and send these se-
quences to the LTR RPA classifier to determine
whether the candidate partial sequences match the
model’s character. We apply UL loss to tokens that
yield the wrong character classification.

3.3.3 Multi-objective Training
The RPA classifiers utilize the LIGHT setting and
prior utterances of dialogue history to determine
which character generates a candidate response.

We hypothesize that the generation models them-
selves should be able to pick out and utilize these
components as well. However, the RPA classifier
models are trained explicitly for this task, whereas
the seq2seq models are trained only to generate a
plausible continuation of a dialogue history.

We thus explore a setup in which the generation
models are trained to identify the speaker of an
utterance as well. To do this, we use the output rep-
resentations from the model (either encoder + de-
coder, or decoder only) as inputs to nMO additional
transformer layers, where we vary nMO ∈ {0, 2}.
The final outputs are used to compute a character
score, similarly to the RPA classifier.

The model can then be trained piece-wise. After
initializing the model weights with those trained
on the LIGHT response generation task, we then
train only the extra layers with only the character
classification objective; once the classifier achieves
suitable performance on the task, we can begin to
back-propagate the character classification objec-
tive multi-tasking with the dialogue task itself to
the generation model directly, in the hope that the
model learns to update its internal representations
of the context and/or the decoded response.

3.3.4 Expanded Decoder Attention
Maintaining identity relies on the model’s capacity
to understand which inputs from the conversational
history are pertinent when generating a continua-
tion of the preceding dialogue. In a standard, open-
domain chit-chat scenario, the model has free reign
to decide which elements of the context it would
like to condition on when generating a response, as
we are dealing with a nearly unconstrained output
space (so long as the output follows plausibly from
the input). In LIGHT, however, we want to empha-
size certain components of the context more so than
others; specifically, when role-playing as a char-
acter, we want the model to always be reminded
of its role, so that it can conditionally generate an
optimal response while staying in character. In
this lens, one can view the task as “grounding" on
one’s character information when conversing.

Profile Grounding Inspired by models demon-
strating good performance in knowledge-grounded
dialogue (Zheng and Zhou, 2019; Ye et al., 2020;
Prabhumoye et al., 2021; Wang et al., 2019), we
propose a simple extension to the transformer
seq2seq architecture, specifically the decoder, to
ensure the model knows to condition on the pro-
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file. The standard transformer decoder first uses
self-attention over the decoded response, and then
cross-attention over the encoder outputs. We add
a third attention step, expanded attention, that at-
tends again over an extracted subset of the input
context (encoded separately from the normal con-
text). We explore various subsets of the context to
determine which are most important for both RPA
and other automated metrics, and call this method
“Profile” grounding as the subsets generally include
the character and role description. We utilize the
exact same (shared) parameters for both the normal
cross-attention and the expanded attention; thus,
model size is not affected.

Automated Grounding Instead of directly
telling the model what to re-attend to, we also
explore whether the model can learn to do this
automatically, based on its own (or other) repre-
sentations of the context. The first method we con-
sider is examining the decoder attention weights.
Specifically, we use the attention weights from the
decoder over the full context to choose k tokens to
re-attend to. This operation is done on a per-layer
basis, and thus allows different decoder layers to
re-attend to (potentially different) components of
the input.

The second method we consider is a trainable
mask; this involves feeding the encoded context
through a “mask” layer to select various tokens
to re-attend to. Specifically, we feed the context
through a linear projection layer followed by a soft-
max to select the top-k tokens. This set of tokens
is then re-encoded by the encoder and fed to the
decoder as the expanded attention context.

Finally, we explore using the classifier attention
weights over the context from the RPA classifier
itself. Intuitively, the RPA classifier has learned
what components of the input are necessary for
determining which character is speaking; if we
look at these attention weights when considering
the model’s character, we know what the classifier
thinks is important to use.

Combined Methods We also consider combin-
ing expanded attention with re-ranking methods, or
with multi-objective training, to see if the combina-
tion can improve results. For the latter we use the
automated grounding trainable mask method.

Train Ranking Accuracy (Hits@1/427)
split # Eval Contextual Utterances

Full Datasplit LTR Datasplit
0 4 All 0 4 All

LTR 64.8 84.3 83.9 61.7 80.5 80.5
Full 31.0 86.5 84.9 27.8 75.3 74.9

Table 2: RPA classifier performance on the valida-
tion set, comparing a partial-sequence trained model
(“LTR”) to one trained only on full sequences (“Full”).
Models were trained with 4 prior utterances of context.

Re-ranker Params F1 RPA Cost
# Toks Freq.

None 0 0 15.8 88.4 1x
Complete-only 0 0 16.0 93.0 1.1x
Partial-only 10 5% 15.9 88.6 1.3x
Partial-only 10 33% 158 91.1 4.2x
Partial-only 10 100% 15.6 93.6 11.2x
Partial-only 50 5% 15.9 88.9 3.0x
PACER 10 5% 16.1 93.3 1.2x
PACER 10 33% 15.9 94.6 3.8x
PACER 10 100% 15.8 96.3 11.5x

Table 3: Models (128-truncated) evaluated with vari-
ous re-ranking schemes on the validation set. Cost is
relative speed compared to no re-ranking at all.

4 Experimental Results

4.1 RPA Classifiers

We first assess the quality of our RPA classifiers.
We measure hits@1/427, where the model must
correctly identify the character speaking out of 427
characters from the validation set, comparing the
standard and left-to-right (LTR) models in Table 2.
We experiment with either 0, 4, or All prior context
utterances. The LTR classifiers perform nearly as
well as the full classifiers on the full datasplit, and
outperform them on the LTR split. Given the robust-
ness of the LTR RPA classifiers, we use this model
for computing RPA throughout the remaining re-
sults, unless otherwise specified. Further results
are given in Appendix Table 10.

4.2 Baseline Generation Performance

We next train baseline models for the dialogue gen-
eration task itself. Performance on the LIGHT
dataset test split for our baseline models can be
found in Table 4, with results on the validation set
in Table 17 in the Appendix. While lengthening
the context from 128 to 1024 tokens yields better
perplexity, the model obtains worse F1 scores and
does not improve much if at all on role playing abil-
ity, both when measured by the RPA classifiers and
in human evaluations (see also Table 19). Further
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Automatic Metrics Human Evaluations
Model PPL↓ F1↑ RPA↑ Mistaken All-Good↑ Mis. Id. Engaging↑

Identity↓ in Conv.↓
Human - - 92.68 1.34% - 5.0% -
Baselines
128-Truncate Vanilla Baseline 12.64 15.69 87.61 6.45% 76.0% 35.1% 4.04
1024-Truncate Vanilla Baseline 12.43 15.68 87.71 7.35% 75.0% 38.4% 4.16
Re-rankers
128-Truncate Baseline + RPA Re-ranker - 15.87 92.09 5.56% 80.3% 34.7% 4.14
128-Truncate Baseline + PACER - 15.85 92.78 4.27% 73.9% 33.7% 3.96
Modified Training Objectives
RPA Unlikelihood (Top-1 Token) 13.10 15.18 87.48 7.13% 72.8% 39.4% 3.87
RPA Unlikelihood (All Tokens) 13.31 14.77 88.07 10.51% 67.7% 43.0% 3.87
Multi-Objective (Vanilla, Dec. Only) 12.86 15.67 87.67 10.00% 74.8% 49.0% 4.21
Expanded Attention Methods
Profile (128, 2 rounds over ABC) 12.37 15.74 91.70 4.82% 81.6% 28.4% 4.18
Profile (1024, 2 rounds over ABCD) 12.23 15.66 92.18 4.00% 83.8% 23.8% 4.34
Automated (1024, Classifier Attn) 12.27 15.75 90.93 5.51% 76.0% 29.1% 4.04
Automated + MO (1024, Dec. Only) 13.01 15.52 88.95 4.43% 78.6% 23.0% 4.12
Expanded Attention + Re-ranker Methods
Profile (128) + RPA Re-ranker - 15.88 95.16 2.23% 84.4% 14.7% 4.24
Profile (128) + PACER - 15.79 95.31 4.07% 85.7% 24.5% 4.32

Table 4: Automated metrics and human evaluations for various models considered throughout the paper on the
LIGHT test set. RPA (Role-Playing Accuracy) is measured by the 4-utterance LTR classifier, see Sec. 3.2. The
human evaluations are per utterance, except for Engaging and Mistaken Identity in Conversation (with the latter
indicating % of conversations with mistaken identity).

detailed training and optimization specifications
are given in Appendix A.

4.3 RPA Re-ranker Performance

Table 4 gives results for RPA-based re-ranking
of generation models. Automated results show a
slight bump in F1 on the LIGHT valid set, and in-
deed a bump in RPA. Including the intra-generation
re-ranking with PACER yields an even higher RPA
score. Table 3 contains the results of varying the
candidate tokens re-ranked per intra-generation
step (#Toks) and number of partial re-ranking steps
(Freq), both in terms of generation metrics/RPA
and relative computational cost compared to re-
ranking. Increasing # of toks or increasing the
frequency can lead to improved F1 and RPA, but
with significant latency increase for too high values
(e.g. over 11x when applying re-ranking for ev-
ery partial step using the top 10 tokens each time).
Applying both partial and final complete ranking
helps performance. Note that re-ranker models use
the same model to re-rank that is being used to
measure RPA afterwards, making that metric bi-
ased. Hence, human evaluations are required for
this model, which will be detailed in Section 4.7,
and which will indicate that re-ranking does in fact
help.

4.4 Unlikelihood

Results of unlikelihood (UL) training are also given
in Table 4. We apply UL loss to the 128-truncation
model in two different ways: (1) Top-1: apply the
loss on the token that yields the most incorrect par-
tial sequence RPA classification; (2) All: apply
the loss to all tokens that yield an incorrect RPA
classification on partial sequences. The RPA UL
methods suffer compared to the baselines in terms
of PPL and F1, yet they retain similar RPA met-
rics. We hypothesize that while the UL loss can
adjust the model to refrain from generating out-
of-character responses, there are still far too many
other tokens that may yield similar outcomes that
are not penalized. Table 12 in Appendix D includes
similar results with the 1024-truncation model.

4.5 Multi-Objective Training

Multi-objective training results are in Table 5,
where the base model is a 1024-truncation model.
We measure generation metrics in terms of RPA
(with PPL and F1 in Table 13 in Appendix E), and
classification metrics in terms of Hits@1/427 as
before. The model is able to predict the appropriate
character using either the decoder outputs or the en-
coder+decoder outputs. For each case, nMO = 2
yielded better results than nMO = 0. Interest-
ingly, despite the relatively strong performance of
the model in classifying the right character (87.42
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Input nMO Stage RPA Hits@1
Human N/A - 92.8 -
None 0 0 88.4 -
Multi-Objective
Dec. only 2 1 88.4 39.3
Dec. only 2 2 87.7 87.4
Enc+Dec 2 1 88.4 70.9
Enc+Dec 2 2 88.8 71.6
Multi-Objective + Automated Expanded Attention
Dec. Only 0 1 89.1 86.4
Dec. Only 0 2 89.1 89.1
Enc+Dec 2 1 88.4 83.3
Enc+Dec 2 2 89.1 88.5

Table 5: Models trained with varying multi-objective
setups, evaluated on the valid set. Models are initialized
from a (1024-truncation) model fine-tuned on LIGHT.

hits@1 for the best model), this does not translate
to substantial RPA improvements over the baseline.

4.6 Expanded Attention
Profile Grounding Expanding the decoder atten-
tion yields significant gains across all automated
metrics, as seen in Table 6 for a 1024-truncate
model (and in Table 15 in Appendix F for a 128-
truncate model). As a baseline we explore simply
re-attending to the full context again; this indeed
improves metrics across the board for the short-
context model, but the long-context model actu-
ally suffers. However, both models improve sub-
stantially over the baseline when including the full
LIGHT context without the dialogue history, and at-
tention over sub-components of the LIGHT context
still yields strong improvements.

To see how much this expanded attention mat-
ters, we explored varying the number of rounds
r ∈ {1, 2, 3} of expanded attention, i.e., how many
times the model attends to this additional context.
In Table 6, we also see that a second expanded
attention round yields even better results, but per-
formance drops off after applying a third round.

Automated Grounding We show results for the
automated grounding of expanded attention in Ta-
ble 7. Attempting to use the decoder attention
weights to select expanded attention context yields
no additional benefits, which is not surprising: if
the model could identify the pertinent components
of the input beforehand, it would not require a re-
attention. The trainable mask does not yield any
benefits either. However, using the RPA classifier
attention weights to inform the model which tokens
to re-attend to yields improved performance across
all three metrics compared to the baseline, and PPL

Expanded Attention r 1024-Truncate Model
PPL F1 RPA

Human 0 - - 92.80
None 0 12.35 15.85 88.42
ABCD + Dialogue Hist. 1 12.47 15.82 88.34
ABCD 1 12.18 16.01 91.82
ABCD 2 12.17 15.95 92.60
ABCD 3 12.19 15.99 91.73
ABC 1 12.22 15.94 91.83
ABC 2 12.24 15.99 92.24
ABC 3 12.25 15.93 92.25
AB 1 12.27 15.87 90.97
A 1 12.30 15.80 89.13
B 1 12.34 15.76 89.46

Table 6: Models trained with expanded attention (pro-
file grounding), evaluated on the valid set. Expanded
attention input: A = Self Persona, B = Self Name, C =
Partner Name, D = Setting Description. We also vary
the number of rounds r of expanded attention.

Exp. Attn. Grounding PPL F1 RPA
Human - - 92.80
None 12.35 15.85 88.42
Profile Ground Best (2 rounds) 12.17 15.95 92.60
Profile Ground Best (1 round) 12.18 16.08 91.79
Profile Ground Random 12.43 15.74 87.62
Decoder Attn. 12.39 15.40 87.59
Trainable Mask 12.40 15.75 88.43
Classifier Attn. (top-k) 12.19 15.90 91.11
Classifier Attn. (bottom-k) 12.31 15.89 88.71

Table 7: Models trained with expanded attention (auto-
mated grounding), evaluated on the valid set. We vary
the method for selecting the extra context to re-attend
to. All models are long-truncation (1024).

is nearly the same as profile grounding (12.19 vs.
12.18), while RPA trails slightly behind (91.11 vs.
91.79). We also include the usage of the bottom-k
tokens from the classifier weights to emphasize that
there is indeed signal from the top-k, as using the
bottom tokens does not help.

Automated Grounding + Multi-Objective Ta-
ble 5 shows that combining automated grounding
with the multi-objective task yields higher hits@1
compared to not using the trainable mask, espe-
cially in the first stage of multi-objective training.
However, RPA scores are only fractionally better
than the baseline. Appendix E includes results
across more settings (see Table 13 and Table 14).

Expanded Attention + RPA Re-ranking The
expanded attention and RPA re-ranker methods can
also both be applied to obtain effective models.
Results are in Table 4; indeed, the combination
yields the highest F1 and RPA scores.
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4.7 Human Evaluations
We performed human evaluation on our models.
For each model we collected 100 human-model
conversations, set up similarly to the original
LIGHT dataset conversations. During the conver-
sation, crowdworkers were asked to annotate the
model’s response for the following attributes: 1)
Mistaken Identity: your partner says something that
would imply they believe they’re someone other
than who they’re noted to be; 2) Contradiction:
your partner says something that contradicts some-
thing they’ve said before; 3) Wrong Location: your
partner says something that would imply they be-
lieve they are in a different location than the pro-
vided one; 4) Unrelated: your partner says some-
thing that doesn’t follow the previous turns; and 5)
Repetitive: your partner says something they’ve al-
ready said, or are driving the conversation in circles.
Utterances that do not contain any of the negative
attributes are denoted “all good”. Finally, we col-
lect an engagingness score on a scale of 1-5 at the
end of the conversation. More details in Appendix
I. Results are given in Table 4, with more details
results (and comparison with a retrieval baseline)
in Table 19 in the Appendix. The baseline model
displays mistaken identity 6.45% of the time, and
has an average engagingness score of 4.04. Longer
context increases engagingness to 4.16 but also in-
creases mistaken identity. Unlikelihood and multi-
objective training similarly increase mistaken iden-
tity. The successful methods, then, are the beam re-
ranking methods and the expanded attention mod-
els. The long-context beam re-ranker decreases
mistaken identity to 4.81%, while the profile ex-
panded attention model improves to 4%, and has
the best engagingness of 4.34. Combining RPA Re-
ranking with expanded attention yields the lowest
mistaken identity (2.38%), while adding PACER
leads to the highest all-good percentage (85.7%).
Correlations between automatic metrics and human
evaluations are measured in Appendix K, where
we find that RPA and mistaken identity are indeed
strongly correlated.

5 Qualitative Analysis

5.1 Re-rankers & Generation Settings
We further explored three decoding settings: stan-
dard beam-search, delayed beam search (Massarelli
et al., 2020) and nucleus sampling (Holtzman et al.,
2020), both in a re-ranking setting and not. When
considering performance on automated metrics

(provided in Table 20 in the Appendix), we see
that generation settings other than beam search,
when using a re-ranker, yield lower F1 scores but
higher RPA scores, as the RPA re-ranker has more
diversity of candidate responses from which to
choose; however, these methods perform worse
in human evaluations, with nucleus sampling re-
ranking yielding far more problems and far lower
engagingness ratings. Qualitative analysis of out-
puts on the test set are in Appendix J.1.

5.2 Classifier Failure Modes
We note that the human dialogue data is classified
as being “in character” only 92.8% of the time on
the validation set by the LTR RPA classifier. We
examine the scenarios in which the classifier is
incorrect, with example input/output pairs in Table
21 in the Appendix. First, there are instances where
either character could have said the output response
(row 1). Second, there are instances where there
are not enough clues in the context to provide an
estimation of who said the response, for example
at the beginning of the conversation (row 2). And,
there are still some small amount of instances that
the classifier simply fails (row 3).

5.3 Model Failure Modes
We analyze the results of turn annotation to un-
derstand what failure modes contribute to mistaken
identity. A full list of such modes is in Table 16; the
baseline model most often mistakes its partner for
itself (i.e., the model thinks it is talking to itself).
Other common failures include the model think-
ing that it is its partner’s character, or emulating
irrelevant characteristics.

5.4 Per-Turn Character Accuracy Analysis
We consider the RPA of various models when eval-
uated across the turns of conversation. Intuitively,
baseline models would suffer as the conversation
goes on for a variety of reasons (character roles are
truncated out of context, more input yields noisier
outputs, etc.). Appendix Figure 1 shows the per-
turn results for a set of representative models. The
human outputs are most often correct on the first
turn, with gradual RPA decay throughout the con-
versation. The 128-truncate baseline, as expected,
suffers a dramatic performance drop after the first
couple of turns. Meanwhile, with the profile ex-
panded attention, we see near-human performance,
with better RPA in later turns. Including RPA re-
ranking improves dramatically over all turns.
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5.5 Expanded Attention Visualization

To gain some insight into what is happening with
the expanded attention, we mapped out the atten-
tion between context and response tokens for both
a baseline model with no expanded attention, and a
model with profile expanded attention. Figures 4
and 5 in the Appendix display the heat maps for an
example context and response, with details on heat
map construction given in Appendix M.

We find that the baseline model spreads its at-
tention out across both the LIGHT context and the
dialogue history, with the majority of the attention
looking at overlapping words in the context and the
response and almost no attention on the character
names. The expanded attention model concentrates
on the recent dialogue history heavily in the first
level of attention, and then concentrates on perti-
nent words in the context related to the character
information (i.e., the character names) in the sec-
ond round of attention.

6 Conclusion

In this work we explored the problem of maintain-
ing one’s character in open dialogue, and showed
that state-art-of-the-art models have a fundamen-
tal weakness in this regard. We provided a clear
framing of the problem and showed one can build
automatic metrics (RPA) that evaluate models using
a classifier. We then explored a variety of meth-
ods throughout this paper. While a wide variety
of well-known techniques, such as multi-objective
or unlikelihood training, have little impact, we
found that expanded attention and re-ranking are
two approaches that can help to a degree, and their
combination also improves results. Our introduced
method PACER performs well and may be suitable
for other tasks beyond the focus of this paper. Nev-
ertheless, our best methods still lag behind human
(crowdworker) performance in several regards, e.g.
1.34% vs. 2.23% in terms of mistaken identity per
turn, or 5% vs. 14.7% per conversation. Therefore
considerable progress still has to be made on this
challenging problem.

7 Ethical Considerations

Limitations We note in the conclusion that the
problem is not solved; our best models still lag
behind human performance in maintaining charac-
ter identity. All results are tested in the LIGHT
environment, comprising open-domain dialogue

within constrained settings with assigned charac-
ters. The application of these methods to other
role-playing (or otherwise) settings is left for fu-
ture work, though we believe that such methods
could be beneficial outside of LIGHT.

Potential Risks We provide methods for mitigat-
ing mistaken identity in dialogue models. It follows
that such methods yield models that are more con-
vincingly role-playing as a given character. With
more convincingly in-character models, someone
with bad intentions could have a model imitate real-
world people without consent, or worse, can say
negative/harmful things while impersonating some-
one else. We note that our methods are orthogonal
to improvements in dialogue safety (Xu et al., 2020;
Dinan et al., 2019a), and so can be used in tandem
to mitigate these potential risks.

Scientific Artifacts We make use of LIGHT in
this work (Urbanek et al., 2019) (released un-
der CC-BY license), an English-language crowd-
sourced dataset. We also plan to release the code
and models (will be released under MIT license),
with the intended use being for others (and our-
selves) to reproduce and build upon the research
discussed in this paper.
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A Training Details

All models are trained with the ParlAI2 framework
(Miller et al., 2017). Due to the large number of
experimental setups and computational cost, we do
not consider multiple training runs.

Base Models RPA classifier Poly-encoders are
initialized with the 622M parameter models from
Roller et al. (2021); we also use this architecture
for dialogue response (retrieval) models which we
also evaluate (see Table 19). All generative models
are initialized with BlenderBot, also from Roller
et al. (2021), a 2.7B parameter transformer en-
coder/decoder model. Each model was pre-trained
on 1.5B training examples from pushshift.io Reddit
(Baumgartner et al., 2020), with BlenderBot addi-
tionally fine-tuned on the BST tasks (see Roller
et al. (2021) for more details), before training on
LIGHT.

RPA Classifiers The RPA classifier models are
trained with a cross-entropy loss over the correct la-
bel, with 99 random negatives chosen from the
training set; we ensured that each character in
conversation showed up in the set of candidate la-
bels. The models were trained with a batch size
of 16 on 4 32GB GPUs, with early stopping on
the validation set according to valid accuracy. We
used the Adam optimizer (Kingma and Ba, 2015)
with weight decay (Loshchilov and Hutter, 2019),
sweeping over learning rates {1e− 5, 5e− 6}.

Generative Models All variants of generative
models were trained using 8 32GB GPUs, with
early stopping on perplexity on the validation set.
We used the Adam optimizer, sweeping over learn-
ing rates {1e − 5, 7e − 6}, training with a batch
size of 128 for the short-truncation models, and
32 for the long-truncation models. For the multi-
objective models, we used the same loss (and
negative-sampling) setup as the RPA classifiers
for the character accuracy objective. During in-
ference, unless otherwise specified, we generated
using beam-search with beam size of 10, enforcing
a minimum length of 20, and with tri-gram block-
ing with respect to both the context and the current
generation.

B RPA Classifier Training

We build the training data for the RPA classifiers
from the LIGHT dataset. The input is a concate-

2https://parl.ai

Dataset Train Valid Test
LIGHT (Urbanek et al., 2019) 111k 6k 13k
RPA, 0-Utterance 212k 12k 26k
RPA, 4-Utterance 748k 45k 90k
RPA, All-Utterance 34k 2k 4k
RPA LTR, 0-Utterance 3.3M 205k 414k
RPA LTR, 4-Utterance 12M 747k 1.5M
RPA LTR, All-Utterance 516k 31k 64k

Table 8: Number of training, valid, and test examples
for the LIGHT dataset, as well as the RPA training splits
(both normal and LTR).

nation of (1) the LIGHT context (set of characters,
setting, etc.); (2) a fixed number of previous ut-
terances in the conversation; and (3) a candidate
utterance from any point later in the conversation
(a special token separates the candidate utterance
from the prior context). We experiment with ei-
ther 0, 4, or N − 2 prior utterances (dubbed “All”
in relevant tables), where N is the total number
of utterances (N − 2 allows the last turn for each
speaker to be a candidate utterance). The left-to-
right (LTR) data split is built similarly, except each
example i becomes wi examples, where wi is the
number of tokens in the candidate utterance for ex-
ample i. Statistics of the training dataset are given
in Table 8.

Suppose we choose n as the number of prior
utterances to include in the input, and let us denote
D = 8538 to represent all the dialogues in the
LIGHT train split, and U = 110877 to represent
all the utterances in those dialogues. For the RPA
classification dataset, each dialogue is presented
twice, once from each character’s POV. When n =
N − 1, where N is the length of a conversation,
then we have roughly 2D training examples. When
n = 0, we have roughly 2U training examples.

For any value 0 < n < N − 1, we build out
several examples from several slices of each con-
versation. Suppose we have dialogue di with N
utterances {u0, u1, ..., uN}. To build the training
data from dialogue di, we select all continuous
subsets of n utterances within di, forming contexts

ci = {ui, ..., ui+n} ∀ 0 ≤ i ≤ N − i

Then, we look at all N − i utterances following
utterance ui+n, and use these as target utterances in
the task. The goal of this is to build the model to be
robust to dataset artifacts; without this modification,
the model could trivially pick out the character just
by looking at the number of alternating utterances.
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# Prior No LIGHT Context LIGHT Context
Utterances H@1/427 H@1/2 H@1/427 H@1/2
0 10.4 60.3 77.6 77.7
4 87.3 87.4 86.5 86.5
All 85.7 86.7 89.3 89.8

Table 9: RPA classifier performance on the valida-
tion set, as measured by Hits@1/427 and Hits@1/2 (all
characters and participant characters as candidates, re-
spectively). Each model is trained and evaluated with
that # of prior utterances.

# Train-time Hits@1/427
Prior Utterances # Eval Prior Utterances

0 4 All
Without LIGHT Context

0 10.35 18.58 17.71
4 2.10 87.31 84.35
All 7.02 81.26 85.70

With LIGHT Context
0 77.64 66.20 58.61
4 31.04 86.48 84.90
All 32.54 82.73 89.26

Table 10: RPA classifier performance on the validation
set, as measured by hits@1/427. Highlighted numbers
indicate models evaluated on the split on which they
were trained.

These measures force the model to fully understand
the task and react accordingly.

C RPA Classifier Performance:
Additional Results

In Table 10, we see how each RPA classifier per-
forms on the various datasplits, varying the number
of prior utterances used during training and eval-
uation. Each model performs best on the split on
which it was trained (the highlighted numbers).

C.1 Left-to-Right Dynamic Classification
We find that the left-to-right RPA classifiers are
correctly sensitive to per-token perturbations in the
input, and can accurately predict the speaker at
the token level. In Table 11, we give an example
where the classifier changes its character prediction,
depending on the candidate utterance.

D Unlikelihood: Additional Results

In Table 12, we compare UL models across differ-
ent truncation lengths; the same story applies to the
1024-truncation models. We additionally include
a third method, Random-3, where we apply the
loss randomly to 3 tokens that yield incorrect RPA
classifications. This method performs about the

same as the Top-1 method, but the RPA is lower, in-
dicating that the Top-1 method at least is providing
some signal.

E Multi-Objective: Additional Results

E.1 Perplexity & F1
Table 13 displays full PPL and F1 scores corre-
sponding to the models in Table 5.

E.2 Multi-Objective + Automated Grounding
In Table 14, we see how, when using either the
encoder+decoder or just the decoder outputs, we
do not require additional multi-objective layers (as
we did in the non-automated-grounding case).

F Expanded Attention: Additional
Results

We provide results for both the 128-truncate and
1024-truncate models with profile grounding in Ta-
ble 15. Trends remain the same for both models.

G Full Valid Results

Table 17 includes results on the LIGHT validation
set for models in Table 4.

H Retrieval Re-rankers

We evaluated a Poly-encoder baseline model with
an RPA re-ranker as well. The Poly-encoder scores
utterances from the full training set as candidates,
and the candidates for re-ranking are the top-k
ranked utterances; results are in Table 18. Retrieval
models benefit dramatically from the re-ranking,
improving to almost 99% RPA as measured by the
LTR classifier. As the candidate responses for re-
trieval models come from the set of all training
utterances, and due to overlap between the set of
characters appearing in the train and valid sets, we
can examine how often the model output was origi-
nally spoken by its partner’s character; this can be
seen as a proxy for mistaken identity. We find that
the re-ranker reduces the amount of time that the
model returns a message its partner said, indicating
some viable and promising results.

I Full Human Evaluation Results

In Table 19, we display the full results of human
evaluations across all dimensions. We note that the
Poly-encoder model is best at not mistaking loca-
tion or being repetitive, but this is expected given
its retrieving over human-written utterances. In
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Figure 1: Per-turn RPA classifications, for a variety of models. Error bars show the difference between the model’s
RPA value and the human’s RPA value.
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Setting: Turquoise Shore, Shore
A beautiful turquoise color water by the shore. It is filled with many gems and gold.
Character 1: Sea Witch. I am a sea witch. I pray on young sailors who hope to find adventure and treasures on the open sea. I lure
them in with magic spells and promise of riches.
Character 2: Mermaid. I am one of the most beautiful mermaids to live in the sea. I like to watch the other sea creatures swim by
me, including dolphins, who are my favorite creatures because they are so friendly. I fear the people who live on land because they
hunt my kind
Classified Utterance: Hey there Mermaid! Long time, no see. Classified Utterance: Hey there Sea Witch! Long time, no see.
Correct Speaker: Sea Witch Correct Speaker: Mermaid
Word Predicted Speaker Confidence Word Predicted Speaker Confidence
Hey sea witch 0.5156 Hey sea witch 0.5156
there sea witch 0.5467 there sea witch 0.5467
Mermaid! sea witch 0.9978 sea mermaid 0.9968

witch mermaid 1.000
Long sea witch 0.9981 Long mermaid 1.000
time, sea witch 0.9979 Time mermaid 1.000
no sea witch 0.9982 no mermaid 1.000
see. sea witch 0.9985 see. mermaid 1.000

Table 11: Left-to-right dynamic classification examples. A candidate utterance is shown, along with the classifier’s
predictions at each partial decoded sequence. Left: The true next utterance in the dialogue, with the RPA classifier’s
predictions and confidence token by token. Right: A perturbed utterance. If we switch the name being addressed,
the model switches its predictions immediately.

Unlikelihood Method PPL F1 RPA
Human - - 92.80
None (128) 12.54 15.80 88.54
None (1024) 12.35 15.85 88.42
128-Truncation
RPA UL: Top-1 Token 13 15.35 88.54
RPA UL: All tokens 12.86 15.28 88.86
RPA UL: Random-3 12.99 15.37 87.85
1024-Truncation
RPA UL: Top-1 Token 12.49 15.66 88.12
RPA UL: All tokens 12.57 15.83 88.06

Table 12: Models trained with unlikelihood loss, evalu-
ated on the valid set. We vary the tokens to which we
apply UL loss.

Input nMO Stage PPL F1 RPA Hits@1
Human N/A - - 92.8
None 0 0 12.4 15.9 88.4
Multi-Objective
Dec. only 2 1 12.4 15.9 88.4 39.3
Dec. only 2 2 12.8 16.0 87.7 87.4
Enc+Dec 2 1 12.4 15.9 88.4 70.9
Enc+Dec 2 2 12.5 15.8 88.8 71.6
Multi-Objective + Automated Expanded Attention
Dec. Only 0 1 13.2 15.7 89.1 86.4
Dec. Only 0 2 12.9 15.9 89.1 89.1
Enc+Dec 2 1 12.9 15.8 88.4 83.3
Enc+Dec 2 2 12.7 15.8 89.1 88.5

Table 13: Models trained with varying multi-objective
setups, evaluated on the valid set. Models are initialized
from a (1024-truncation) model fine-tuned on LIGHT.

Input nMO Stage PPL F1 RPA Hits@1/427
Human 0 - - 92.80
None 0 0 12.35 15.85 88.42
Dec. Only 0 1 13.22 15.66 89.08 86.37
Dec. Only 0 2 12.92 15.88 89.10 89.10
Enc+Dec 0 1 13.24 15.55 88.83 85.78
Enc+Dec 0 2 13.44 15.61 89.29 89.22
Enc+Dec 2 1 12.94 15.80 88.39 83.25
Enc+Dec 2 2 12.69 15.77 89.05 88.49

Table 14: Models trained with varying multi-objective
+ automated grounding setups, evaluated on the valid
set. The base model in all cases is initialized from a
generation model fine-tuned on LIGHT.

Exp. r 128-Truncate Model 1024-Truncate Model
Attn. PPL F1 RPA PPL F1 RPA
Human 0 - - 92.80 - - 92.80
None 0 12.59 15.80 88.28 12.35 15.85 88.42
ABCD+ 1 12.23 15.87 90.59 12.47 15.82 88.34
ABCD 1 12.25 15.97 90.94 12.18 16.01 91.82
ABCD 2 12.23 15.89 90.83 12.17 15.95 92.60
ABCD 3 12.26 15.81 90.44 12.19 15.99 91.73
ABC 1 12.33 15.82 91.50 12.22 15.94 91.83
ABC 2 12.31 16.03 92.03 12.24 15.99 92.24
ABC 3 12.33 15.90 91.59 12.25 15.93 92.25
AB 1 12.42 15.92 90.31 12.27 15.87 90.97
A 1 12.46 16.05 90.22 12.30 15.80 89.13
B 1 12.53 15.85 89.85 12.34 15.76 89.46

Table 15: Models trained with expanded attention (pro-
file grounding), evaluated on the valid set. Expanded
attention input: A = Self Persona, B = Self Name, C =
Partner Name, D = Setting Description, + = dialogue
history. We also vary the number of rounds r of ex-
panded attention.
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Percentage
Model: Beam Baseline Delayed Beam Baseline Delayed Beam with Re-ranker
thinks it is someone else/partner 0% 13.04% 19.23%
Thinks partner’s character is its character (i.e., thinks it is talking to itself) 57.69% 56.52% 11.54%
emulates partner’s characteristic 0% 4.35% 0%
incorrectly identifies partner 19.23% 17.39% 30.77%
talks about its character in the 3rd person 0% 4.35% 0%
emulates irrelevant characteristic 3.85% 0% 7.69%
combines self and partner persona 7.69% 0% 9.62%
incorrectly identifies 3rd party character 0% 0% 1.92%
claims it does not know who it is 0% 0% 1.92%
noise 11.54% 4.35% 17.31%

Table 16: Turn annotation analysis of RPA Re-rankers.

Model PPL F1 RPA
Human - - 92.80
Baselines
128-Truncate Vanilla Baseline 12.54 15.80 88.54
1024-Truncate Vanilla Baseline 12.35 15.85 88.42
Re-rankers
128-Truncate Baseline + Re-ranker - 16.14 92.99
128-Truncate Baseline + PACER - 16.13 93.31
RPA UL (Top-1 Token) 13.00 15.35 88.54
RPA UL (All Tokens) 12.86 15.28 88.86
Multi-Objective (Vanilla, Dec. Only) 12.78 16.00 87.71
Expanded Attention Methods
Profile Grounding (128, 2 Rounds over ABC) 12.31 16.03 92.03
Profile Grounding (1024, 2 Rounds over ABCD) 12.17 15.95 92.60
Automated Grounding (1024, Classifier Attn.) 12.19 15.90 91.11
Automated Grounding + MO (1024 Dec. Only) 12.92 15.88 89.10
Expanded Attention + Re-ranker Methods
Profile (128) + RPA Re-ranker - 16.21 95.62
Profile (128) + PACER - 16.18 95.82

Table 17: Validation statistics for various models considered throughout the paper.

Metric Baseline Re-ranker
RPA (normal) 85.47 94.29
RPA (LTR) 86.31 99.76
% Partner Said Response 3.20 2.02

Table 18: Retrieval models with character output re-
rankers; performance on the validation set.

Figure 2, we show a screenshot of the instructions
for the evaluation task provided to crowdworkers
on Amazon Mechanical Turk.

J Generation Settings

J.1 Test Output Analysis

We provide qualitative analysis of the various gen-
eration methods below.

No Re-ranking When examining the baseline
with no re-ranking, we found that nucleus sam-
pling can help when beam search does not work;
however, both can go out of character the farther
one goes in conversation.

Beam Search Re-rankers The beam outputs in
standard beam search are at times too similar, in

which case re-ranking does next to nothing, unless
a viable response is available.

Nucleus Sampling Re-rankers Using nucleus
setting in a re-ranking setup yields more diverse
choices to choose from; however, sometimes the
model simply does not address *any* character
within the conversation.

Delayed Beam Search Re-rankers This strikes
a nice balance between sensible outputs from beam
search and diversity from nucleus sampling.

Mixed-Decoding Re-ranker Using mixed de-
coding (re-ranking several decoding schemes) can
work quite well, as it is a nice blend of different
generation methods.

J.1.1 Turn Annotation Analysis
Qualitative analysis of the turn annotation results
are in Table 16. We generally found that beam
search fails the vast majority of the time when
the model thinks that it is talking to itself ; i.e.,
it confuses its partner for its own character. The re-
rankers can help shift the hallucination away from
this regime.

2382



Figure 2: Instructions provided to annotators in human evaluations.

Model Contradiction Mistaken Mistaken Off-Topic Repetitive All-Good Clean Mistaken Avg.
Identity Location Convo Identity Engagingness

In Convo
Human - 1.34% - - - - - 5% -
Baselines
Poly-Encoder 5.50% 6.14% 0.77% 12.02% 1.92% 75.45% 16.33% 34.69% 3.42
128-Truncate Vanilla Baseline 8.26% 6.45% 2.71% 4.26% 4.00% 76.00% 26.80% 35.05% 4.04
1024-Truncate Vanilla Baseline 7.48% 7.35% 2.66% 6.21% 4.31% 75.03% 22.22% 38.38% 4.16
Re-rankers
128-Truncate Baseline + RPA Re-ranker (Beam) 4.83% 5.56% 3.62% 4.35% 3.26% 80.31% 20.19% 34.65% 4.14
128-Truncate Baseline + RPA Re-ranker (Nucleus) 9.07% 8.68% 2.33% 5.31% 3.89% 73.70% 31.96% 37.11% 3.83
1024-Truncate Baseline + RPA Re-ranker (Beam) 5.55% 4.81% 1.60% 3.45% 2.71% 82.98% 33.33% 24.45% 4.14
128-Truncate Baseline + PACER 8.28% 4.27% 4.89% 3.14% 3.14% 73.90% 21.78% 33.66% 3.96
1024-Truncate Baseline + PACER 7.63% 7.13% 2.38% 3.63% 3.75% 79.25% 28.00% 36.00% 4.18
Modified Training Objectives
RPA Unlikelihood (Top-1 Token) 8.70% 7.13% 3.38% 7.25% 3.74% 72.83% 14.42% 39.40% 3.87
RPA Unlikelihood (All Tokens) 11.64% 10.51% 3.13% 4.88% 5.38% 67.71% 19.00% 43.00% 3.87
Multi-Objective (Vanilla, Dec-Only) 8.13% 10.00% 1.88% 5.63% 2.63% 74.75% 18.00% 49.00% 4.21
Expanded Attention Methods
Profile Grounding (128, 2 Rounds over ABC) 5.32% 4.82% 3.21% 4.45% 2.84% 81.58% 27.45% 28.43% 4.18
Profile Grounding (1024, 2 Rounds over ABCD) 4.13% 4.00% 3.38% 3.13% 3.25% 83.75% 36.63% 23.76% 4.34
Automated Grounding (Classifier Attn.) 10.17% 5.51% 2.57% 6.13% 2.33% 75.98% 24.27% 29.13% 4.04
Automated Grounding + MO (Dec. Only) 8.23% 4.43% 2.03% 3.80% 5.19% 78.61% 38.00% 23.00% 4.12
Expanded Attention + Re-ranker Methods
Profile Grounding (128) + RPA Re-ranker 5.33% 2.23% 1.61% 4.22% 2.98% 84.37% 36.27% 14.71% 4.25
Profile Grounding (1024) + RPA Re-ranker 6.00% 3.60% 1.20% 0.42% 0.30% 85.25% 40.00% 21.90% 4.35
Profile Grounding (128) + PACER 5.43% 4.07% 2.84% 2.47% 1.23% 85.70% 41.18% 24.51% 4.32
Profile Grounding (1024) + PACER 6.21% 4.38% 1.10% 3.65% 2.56% 83.56% 40.78% 22.33% 4.13

Table 19: Human evaluations. Annotators chatting with models were asked to annotate whether model utterances
contained any of the problem attributes listed, with “All-Good” indicating that there were no issues. “Clean Convo”
is the percentage of conversations without any issues.

J.2 Automated Metrics

We experiment with various generation settings,
with or without re-rankers; results are in Table 20.
For the baseline and re-ranker models, beam search
yields the highest F1 scores; RPA can be improved
with the other inference methods when combined
with a re-ranker. We believe this may be due to the
higher diversity of candidate responses generated
from those methods.

K Human + Automatic Eval Correlation

We analyze the correlation between human anno-
tations and the automatic metrics collected on the
LIGHT validation set, as shown in Figure 3; we
note some interesting trends:

Perplexity perplexity appears to be positively
correlated with mistaken identity, and negatively
correlated with engagingness. So, perplexity is
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Normal Re-ranking
Generation Setting F1 RPA F1 RPA
Human - 92.80 - -
128-Truncation Model
Beam Search 15.80 88.54 16.14 92.99
Delayed Beam Search 15.46 88.74 15.48 93.18
Nucleus Sampling 15.70 89.25 15.44 97.12
Top-K Sampling 14.47 88.16 14.14 97.01
1024-Truncation Model
Beam Search 15.85 88.42 16.08 92.92
Delayed Beam Search 15.03 88.00 15.39 92.89
Nucleus Sampling 15.42 88.22 15.25 97.24
Top-K Sampling 14.45 86.91 14.06 97.15

Table 20: Performance on the LIGHT valid set for the baseline models with different generation settings, with
or without re-rankers. All settings use tri-gram blocking with respect to the context and current generation, and
have a minimum length of 20. We set topp = 0.3 for Nucleus sampling, topk = 50 for Top-K sampling, and use a
beam-delay of 10 with topk = 10 for delayed beam search.

Figure 3: Correlation between human evaluations and
automated metrics computed on the test set.

a good indicator of how fluent and engaging the
model is in conversation, and can indirectly point to
a better understanding of the role-playing task. An
important note is that we only tested this amongst
models of the same size, and only for the models
we tested, so it is not clear that larger models will
necessarily bring improvements.

F1 F1 word overlap is positively correlated with
engagingness as well, so F1 may be a good proxy
of model performance. Correlation with mistaken
identity is negative here, implying that better F1
corresponds with better role-playing ability. How-
ever, we note that F1 is not a catch-all metric (Liu
et al., 2016).

RPA RPA appears to be strongly negatively cor-
related with mistaken identity, indicating that it is
indeed a good measure of the model’s ability to
stay in character. It is weakly negatively correlated
with the other issues, and is somewhat positively
correlated with engagingness as well. These cor-
relations give us confidence that our RPA classi-
fiers are adequately measuring role-playing ability
within models.

L Per-Turn Analysis, Expanded

In Figure 1, we see RPA results across turns of
conversation for a wider variety of models.

Human The human outputs are most often cor-
rect on the first turn, with gradual decay of accuracy
throughout the conversation (according to RPA).

Vanilla & Long Context The vanilla baseline
suffers a pretty dramatic drop off after the first
couple of turns; the long-context model achieves
slightly higher character accuracy overall but we
see similar drop offs farther down the conversation.

RPA UL The unlikelihood models seem to re-
cover somewhat in the initial turns of conversation,
however later turns still yield sharp drop offs in
RPA.

Multi-objective Similarly to the UL case, we see
the most gains in initial turns compare to the vanilla
baselines; however, we see even more dramatic
drop offs towards the end of the conversation.

Expanded Attention With profile grounding, we
see near-human performance, with even better per-
formance towards the end of the conversation. The
automatic grounding improves over the baseline
but is slightly worse than profile grounding. Com-
bining automated grounding with multi-objective
training leads to some benefits in earlier turns, but
later turns still suffer.

Re-ranking Although we’re using the same RPA
classifier to both re-ranker and score the model
outputs, it is still interesting to examine on which
turns the re-ranker benefits the model the most. We
see in the last set of graphs that beam re-ranking
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Context: _setting_name Turquoise Shore, Shore
_setting_desc A beautiful turquoise color water by the shore. It is filled with many gems and gold.
_partner_name sea witch
_self_name mermaid
_self_persona I am one of the most beautiful mermaids to live in the sea. I like to watch the other sea creatures swim by me, including dolphins, who
are my favorite creatures because they are so friendly. I fear the people who live on land because they hunt my kind.
Dialogue History:
Hey there Mermaid! Long time, no see.
Long time indeed! How have you been keeping?
Pretty good, You know how it goes. Just trying to find some unwitting victims. What are you doing in the Turquoise Shore?
I’ve been catching waves with the dolphins all morning. I thought I would come and get some sunshine. What kind of victims do you expect to find
in a tranquil place like this?
What do you know about that knight standing over there?
His armor is particularly garrish. You know I don’t fraternize with land dwellers.
I don’t know, I like when they’re shiny like that. He looks like a giant fishing lure.
Classified Utterance: I suppose the only thing left to complete the illusion is for him to get wet.
Correct Label: Mermaid
Prediction: Sea Witch
Context: _setting_name Outside tower, Outside Tower
_setting_desc Moss grows from the tall stoic like structure adding to its mysterious presence. The stone walls appear insuperable like a mountain.
The top is a pointed dome.
_partner_name enemy
_self_name horse
_self_persona We have hooves. four of them. and you can ride us. Oats please!
Dialogue History:
hello
hello there
Classified Utterance: What brings you here?
Correct Label: Horse
Prediction: Enemy
Context: Context: _setting_name Royal Gardens, Outside Palace
_setting_desc Lined with rose bushes that look as if they have been watered by the God’s, the Royal Gardens is a beauty to behold. An intricate
labyrinth made of shrubs is at the center ending with a fountain. There are various benches on the sides of the rose bushes and a small lake in the
back drop.
_partner_name king
_self_name a gardener pulling weeds
_self_persona I am the gardener of the castle. I plant thickets and plants. My work is beautiful.
Dialogue History:
Hi
Classified Utterance: Why hello there, your majesty!
Correct Label: a gardner
Prediction: king

Table 21: Left-to-right dynamic classifier failure modes; see discussion in Section 5.2.

seems to be most helpful in later turns, where other
models generally drop off in efficacy.

M Expanded Attention Visualization

To build the heat maps in Figures 4 and 5, we look
at the maximum attention applied per-head, and
the maximum weight applied across the model de-
coder layers; other combinations were considered
(mean per-head, mean over layers or last layer) and
yielded similar findings.

The speaker is the mermaid, whose partner is a
sea-witch. The last utterance from the sea-witch is,
“What are you doing on the turquoise shore?”. The
mermaid responds, “I’ve been catching waves with
the dolphins all morning. What kind of victims do
you expect to find in a tranquil place like this?”
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Figure 4: Vanilla Attention. The speaker here is the mermaid, whose partner is a sea-witch. The last utterance
from the sea-witch is, “What are you doing on the turquoise shore?”. The mermaid responds, “I’ve been catching
waves with the dolphins all morning. What kind of victims do you expect to find in a tranquil place like this?”. The
vanilla model spreads its attention across the whole context; blue boxes at the top are attentions over the character
descriptions, while the bottom box is attention over the word “victims”.
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Figure 5: Profile Expanded Attention. The speaker here is the mermaid, whose partner is a sea-witch. The last
utterance from the sea-witch is, “What are you doing on the turquoise shore?”. The mermaid responds, “I’ve been
catching waves with the dolphins all morning. What kind of victims do you expect to find in a tranquil place like
this?”. Left original attention over the full context; Right expanded attention over the additional context. The top
two boxes are the partner name and self name; the bottom box on the left refers to “victims”, and on the right refers
to the “dolphins”.
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