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Abstract

Conversational Question Answering (ConvQA)
is required to answer the current question, con-
ditioned on the observable paragraph-level con-
text and conversation history. Previous works
have intensively studied history-dependent rea-
soning. They perceive and absorb topic-related
information of prior utterances in the interac-
tive encoding stage. It yielded significant im-
provement compared to history-independent
reasoning. This paper further strengthens the
ConvQA encoder by establishing long-distance
dependency among global utterances in multi-
turn conversation. We use multi-layer trans-
formers to resolve long-distance relationships,
which potentially contribute to the reweighting
of attentive information in historical utterances.
Experiments on QuAC show that our method
obtains a substantial improvement (1%), yield-
ing the F1 score of 73.7%. All source codes
are available at https://github.com/
jaytsien/GHR.

1 Introduction

ConvQA is a task of answering questions condi-
tioned on the conversation history as well as refer-
ential contexts. It heavily relies on the traceback of
conversation history. For example, the pronoun “it”
in Q2 in Table 1 needs to be resolved first. It is indis-
pensable to pursue its coreference “alchemy index”
that appeared in the first-turn historical conversa-
tion (i.e., Q0 and A0). Therefore, the challenge of
ConvQA is to detect the relevant evidence hidden
in conversation history, and use it to strengthen the
current round of question answering.

Recently, utilizing global conversation history
for enhancement is increasingly gaining interest,
because it potentially contributes to capturing long-
distance relevant evidence for answering. Both
historical-answer-aware dynamic encoding of con-
text (Qu et al., 2019b) and flow-based interaction
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Section: Thrice: The Alchemy Index (2006-2008)
Context: In September 2006, the band announced plans
for a new album (later titled The Alchemy Index) on their
official website. The album was conceived as a series
of 4 EPs, (...) The band maintained a studio blog titled
"Alchemy Index" throughout the recording process. (...)
The Alchemy Index Vols. I & II was released on October
16, 2007 and sold 28,000 copies in its first week. (...)
Q0: What is the alchemy index?
A0: In September 2006, the band announced plans for
a new album (later titled The Alchemy Index) on their
official website.
Q1: What is notable about the album?
A1: The album was conceived as a series of 4 EPs (...)
Q2: Was it well received?
A2: The Alchemy Index Vols. I & II was released on
October 16, 2007 and sold 28,000 copies in its first week.

Table 1: An example from QuAC with the clues in
conversation history (in blue) and context (in red).

modeling over shifting topics (Yeh and Chen, 2019)
appear as successful solutions, where global con-
versation history is involved. However, some his-
torical information fails to be maintained due to 1)
the omission of historical questions and 2) discon-
nection from the earliest-stage conversation when
topic frequently shifts.

In this paper, we develop a Global History Rea-
soning (GHR) model. GHR is not only capable of
separately encoding different rounds of question-
answering (QA) conversations, but sequentially
fusing the encoded information of all QA pairs
in visible conversations by a multi-layer attention
network. It is designed to avoid the omission of
available historical information and disconnection.
We experiment on QuAC (Choi et al., 2018). The
test results show that GHR yields substantial im-
provements when using BERT and ELECTRA as
the baselines, and it achieves competitive perfor-
mance compared to state-of-the-art methods.

2 Approach

The input of GHR comprises the referential context
c, the current question in the t-th round, and all his-
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Figure 1: Architecture of global history reasoning (GHR) model.

torical QA pairs Ht = [(q1, a1), . . . , (qt−1, at−1)],
where qi and ai denote the question and answer in
the i-th round in conversation, respectively. GHR
models local history by learning utterance repre-
sentation for the QA pair in every single round.
Then, GHR fuses all visible local history and mod-
els their interaction with the referential context by
global history attention. Finally, a linear layer with
softmax is applied for answer prediction.

Figure 1 shows the overall architecture of GHR,
where the sequentially stacked cards (drawn with
light green rectangles) denote the encoding stages
for the questions issued at different times. For
example, the visible structure in the top card illus-
trates the encoding stage for the first question q1,
and at the time, both the local conversation history
d1 and the visible global history are NULL. The
global attention mechanism is shown at the right
side of the diagram, whose input is the represen-
tation encoded by each transformer layer (blue ar-
rows), while the output is the refined representation
by the masked global interaction (black arrows).
The masking operation is used to temporally dis-
able the subsequent QA conversations when the
current question is being dealt with (as required in
the task of ConvQA).

2.1 Local History Encoding

We follow the most commonly-used ConvQA
scheme (Zhao et al., 2021) to form the input of
our encoder. Given the current question qt, we con-
sider the historical QA pairs in the last two rounds
dt = (qt−2, at−2, qt−1, at−1) as the local history
of qt, and concatenate it with qt and the context
c as the input sequence. For the context whose

length exceeds the maximum input length (usually
512 tokens) of the encoder, we divide them into
multiple fragments and put them in a batch in order.
Then we use a pre-trained language model (PLM)
to encode the input sequence into contextualized
representations:

ht = PLM (dt, qt, c),ht ∈ RLt×dh (1)

where PLM (·) denotes a transformer-based PLM
encoder, Lt denotes the maximum length of input
sequence and dh is the hidden size.

2.2 Global History Reasoning

Most existing ConvQA studies suppose that the
latest two-round conversation history has the most
direct correlation to the current question. There-
fore, they merely encode them into the input rep-
resentation (Ohsugi et al., 2019; Ju et al., 2019) as
mentioned in Eq.(1). This results in the omission
of other essential information from the entire con-
versation, such as that signaling the long-distance
reference and topic consistency. Some previous
work extended the local encoding by absorbing at-
tentive information from a larger range of QA pairs
in history. However, the gradual attenuation for
encoding (Yeh and Chen, 2019) causes the failure
in giving more prominence to the long-distance re-
lated information. Besides, due to the limited and
fixed size of the input sequence, the complete con-
versational interaction process actually has been di-
vided into fragments. This makes it hard to ensure
the coherence during encoding a series of conver-
sation units (each unit is a QA pair occurring in the
conversation history).
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A sufficient flow of information among entire
conversation units is warranted to compensate for
these defects. Specifically, to enhance the interac-
tion of multi-turn utterances, we design a global
history attention mechanism to sequentially fuse
contextualized representations of visible historical
QA pairs DC . We denote the latent information
representation of DC as HC = [h1,h2, . . . ,hT ],
where HC ∈ RT×Lt×dh , T is the number of rounds
of the conversation. For example, hi is the repre-
sentation of the i-th round QA pair.

To obtain deep interactions between different
rounds, we transpose the dimension of the input
matrices HC as Lt × T × dh and obtain HT

C =
[hT

1 ,h
T
2 , . . . ,h

T
T ]. Then we add absolute positional

embeddings pi to hT
i to incorporate the position

information of each token. The final input embed-
dings is:

HT
C = [(hT

1 ;p1), (h
T
2 ;p2), . . . , (h

T
T ;pT )], (2)

where HT
C ∈ RLt×T×dh .

During history reasoning, we apply a Global
History Attention (GHA) layer to model the whole
history and learn the history-aware representations
for each token in the utterance:

RT
C = [rT1 , r

T
2 , . . . , r

T
T ] = GHA(HT

C), (3)

where rTi ∈ RLt×dh denotes the history-aware rep-
resentation of the i-th round, GHA(∗) is a trans-
former layer with history attention mask. In a real
dialogue scene, a speaker is able to see all hap-
pened historical utterances before the current round,
while subsequent utterances are unseen. There-
fore, to avoid leaking the unseen utterances, we
leverage the self-attention mask mechanism (Dong
et al., 2019) (as shown in the right of Figure 1)
to capture the visible historical information asso-
ciated with token embeddings of each position.
We then re-transpose RT

C ∈ RLt×T×dh to obtain
RC = [r1, r2, . . . , rT ] ∈ RT×Lt×dh for easily fus-
ing the local and global history.

To integrate the contextualized representations
HC with the history-aware representations RC , we
first adopt N GHA layers to obtain Rl

C . In partic-
ular, the l-th GHA layer (Eq.(5))1 is connected
behind the (l-1)-th Transformer layer (Eq.(4)). N
is a hyper-parameter that indicates that each of the
last N Transformer layers is followed by a GHA

1For simplicity, we use ⇐ in Eq.(5) to indicate the calcu-
lation process with the two transpose steps mentioned above.

layer. Then, we perform layer normalization (Ba
et al., 2016) to update the final HC (Eq.(6)).

Hl
C = Transformer(Hl−1

C ) (4)

Rl
C ⇐ GHA(Hl−1

C ) (5)

Hl
C = LayerNorm(Hl

C +Rl
C) (6)

Finally, we get the fusion representation OC by
concatenating HL

C and RL+1
C for the subsequent

answer prediction.

OC = [HL
C ;R

L+1
C ]. (7)

2.3 Answer Prediction
Given the representations OC = [o1,o2, . . . ,oT ]
from the global history reasoning module, an an-
swer span is predicted by two linear layers with
softmax that calculate the probability of each token
being the start and end tokens over ot:

pst , p
e
t = SoftMax(Linear(ot)), t ∈ [1, T ] (8)

where pst , p
e
t are the probabilities of the start and

end positions of the answer span in the t-th round,
respectively.

In the training step, we utilize cross entropy to
compute the loss of the start and end predictions.

Lspan = − 1

T

T∑

t=1

(yst logp
s
t + yet logp

e
t ) (9)

Besides optimizing by the position loss of the
answer span (Eq.(9)), we also apply multi-task op-
timization (Zhao et al., 2021) for training. Specif-
ically, we apply three linear layers with softmax
over the "[CLS]" vector of ot to determine the cur-
rent question’s dialog acts, including answerability,
affirmation, and continuation (Choi et al., 2018).

pnat , paft , pctt = SoftMax(Linear(oclst )) (10)

where pnat denotes the fractional vector of answer-
able probability of the question, paft is the proba-
bility of affirmation, and pctt is the probability of
continuing to ask subsequent questions. We use
cross entropy to compute losses of the acts.

Lna = − 1

T

T∑

t=1

ynat logpnat (11)

Laf = − 1

T

T∑

t=1

yaft logpaft (12)

Lct = − 1

T

T∑

t=1

yctt logp
ct
t (13)
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where ynat , yaft , and yctt are the ground-truths of an-
swerability, affirmation, continuation, respectively.
The final optimization goal is as follow.

L = αLspan + β(Lct + Laf + Lna) (14)

where α and β are coefficients for adjusting Lspan

and the combination of {Lct, Laf , Lna}.

3 Experiments

3.1 Settings

We conduct experiments on QuAC (Choi et al.,
2018) consisting of 100K questions obtained from
14K information-seeking dialogues, which pro-
poses unique challenges since these questions are
open-ended, descriptive, highly contextual, and
probably unanswerable. In particular, many ques-
tions require sufficient co-referencing and reason-
ing through interactions with conversation history.

We employ BERTlarge
2 (Devlin et al., 2019) and

ELECTRAlarge
3 (Clark et al., 2020) as local his-

tory encoders. Meanwhile, we apply the voting
strategy to implement comparable baseline mod-
els. The trade-off coefficients α and β in the loss
function are set to 0.7 and 0.1 respectively (Zhao
et al., 2021). The max query length and the stride
of sliding window of GHR is set to 128. The batch
size is set to 12. The answer length is set to 50 and
learning rate is 2e-5. We rely on Pytorch and Hug-
gingFace Transformer libraries (Wolf et al., 2020)
for our experiments.

Following Choi et al. (2018), we adopt word-
level macro-F1 and human equivalence score
(HEQ) as evaluation metrics. HEQ-Q and HEQ-D
measure the percentage of answers that the model
accurately predicts but the human does not by given
questions and dialogues.

We compare our GHR-based ConvQA model
with the state-of-the-art models that are reported for
performance on the QuAC leaderboard4, including:
BiDAF++ (Choi et al., 2018) further augments
BiDAF with self-attention and contextualized em-
beddings.
BiDAF++ w/2-ctx (Choi et al., 2018) additionally
models conversation history from the previous two
turns of QA pair by encoding their positions in
conversation within the question embeddings and

2https://github.com/google-research/BERT
3https://github.com/google-research/electra
4https://quac.ai. Note that we only compare the proposed

model to the methods with published papers.

Models F1 HEQ-Q HEQ-D
BiDAF++ 51.8/50.2 45.3/43.3 2.0/2.2
BiDAF++ w/2-ctx 60.6/60.1 55.7/54.8 5.3/4.0
HAE 63.9/62.4 59.7/57.8 5.9/5.1
FlowQA 64.6/64.1 -/59.6 -/5.8
GraphFlow -/64.9 -/60.3 -/5.1
FlowDelta 66.1/65.5 -/61.0 -/6.9
HAM 66.7/65.4 63.3/61.8 9.5/6.7
RoR 75.7/74.9 73.4/72.2 17.8/16.4
BERT (ours) 67.7/- 62.9/- 7.8/-
GHR (BERT) 69.0/- 64.6/- 8.0/-
ELECTRA (ours) 73.2/72.7 69.8/68.8 12.2/11.9
GHR (ELECTRA) 74.9/73.7 71.7/69.9 14.6/13.7

Table 2: Results on the dev/test set of QuAC.

concatenating the marker embeddings to the pas-
sage embeddings.
HAE (Qu et al., 2019a) introduces a history answer
embedding to incorporate the conversation history
into BERT.
FlowQA (Huang et al., 2019) feeds the model with
the hidden embeddings generated by reasoning in
each new round of conversation.
GraphFlow (Chen et al., 2020) encodes conversa-
tion history into context graphs for context reason-
ing and analysis.
FlowDelta (Yeh and Chen, 2019) passes down the
information gain between different turns to ensure
that the model can focus on more informative cues
in context.
HAM (Qu et al., 2019b) adopts position attention
embeddings for history selection and optimizes the
model from both answer span prediction and dialog
act prediction via a multi-task learning framework.
RoR (Zhao et al., 2021) uses chunk reader to obtain
chunk answers, which are aggregated for document
reader to read again, and votes for the final answer.

3.2 Experimental Results

Table 2 shows the comparison of the existing pub-
lished models with relatively high performance on
the QuAC leaderboard with our GHR models on
both the dev and test set. The test results show that
all improvements of GHR are statistically signif-
icant (paired t-test (Dror et al., 2018), p-value <
0.01). We obtain the following observations.

1) Compared with the baseline models, the per-
formances of the GHR models with BERT and
ELECTRA are improved by 1.3 and 1.7 absolute
F1 scores on the dev set, respectively. It indicates
that GHR is effective for the ConvQA task, even
based on the PLM with stronger representation ca-
pability (ELECTRA). This suggests that general
PLM-dependent ConvQA models may have limita-
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Models F1 HEQ-Q HEQ-D
ELECTRA 73.2 69.8 12.2
w/ 1 GHA layer 74.3 71.2 14.5
w/ 2 GHA layers 74.4 71.3 14.1
w/ 3 GHA layers 74.9 71.7 14.6
w/ 4 GHA layers 74.7 71.5 14.4
w/ 5 GHA layers 73.7 70.3 14.8
w/ 6 GHA layers 73.3 69.8 14.0
w/ 7 GHA layers 72.6 69.3 12.7

Table 3: Effects of the number of GHA layers on the
QuAC dev set.

tions without a step specifically targeting conversa-
tion history interactions.

2) GHR outperforms other models that uti-
lize global conversation history, such as FlowQA,
GraphFlow, and FlowDelta. We believe that these
“flow”-based models tend to attenuate or ignore ear-
lier conversation histories, which may prioritize
recent utterances. Thus, when the current question
is correlated to an earlier history or topic drifts, it
is disadvantageous for the “flow”-based models.
On the contrary, the GHR model still maintains a
high focus on the early utterances through the GHA
mechanism, so it can effectively utilize the global
dialogue history.

3) Compared with the typical ConvQA model
HAM, GHR outperforms it by a 2.3 absolute F1
score on the dev set with the same PLM settings
(BERT). The reason might be that HAM only em-
ploys the answers of at most the first 4 rounds in
conversations and pays more attention to the distri-
bution of answer spans in the context, but does not
model the question. Thus HAM is also difficult to
solve the problem caused by the topic drifting. For
GHR, we believe that modeling global history is
the most effective factor leading to the benefits of
GHR.

4) Compared with the best model on the QuAC
leaderboard (RoR), our GHR is 1.2 absolute F1
scores lower than it on the test set. The reason
is that RoR employs transfer learning to first fine-
tune itself on the CoQA dataset, but such a method
is meaningless for us since the target of this pa-
per is quite different. Moreover, RoR focuses on
modeling long contexts, but not modeling conver-
sation history. It only utilizes the question in the
current round. Also, GHR can be easily combined
with RoR in implementation. Therefore, we sug-
gest fusing the two models to further improve the
performance of the ConvQA task.

We conduct an ablation experiment to investigate
the effect of the number of the global history atten-

tion (GHA) layers on performance. Table 3 shows
the results of the GHR (ELECTRA) models with
from 1 to 7 of GHA layers. We can observe that
the performance is improved when introducing the
GHA layers, which verifies the effectiveness of our
proposed approach. Moreover, GHR (ELECTRA)
achieves the best performance when the number
of GHA layers is 3. We also notice that when the
number of layers is 1-4, the performance gaps be-
tween the models are not large, and all of them are
close to the best performance. When the number
of layers is greater than 4, the model performance
begins to decline. We believe the reason is that the
average round number of QuAC is 7, so a deeper
structure may lead to overfitting.

Finally, we analyze the different results of the
GHR model with its corresponding baseline, to
directly observe the improvement brought by the
global history attention mechanism (See Appendix
A.3 for details).

4 Conclusion

In this paper, we propose a global history reasoning
(GHR) approach to capture interactions between all
utterances for conversational question answering.
Experimental results conducted on QuAC show
the effectiveness of the proposed model. In the fu-
ture, we will explore how to implement interactions
between conversation history and context by the
position features of history answers. In addition,
we will extend our conversation history modeling
approach to the knowledge-grounded conversation
generation task (see more related work in Appendix
A.1).
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A Appendix

A.1 Related Work
To model the history information in conversations,
a kind of study focus on how to explicitly select
important history question-answer pairs at the input
step (Zhu et al., 2018; Reddy et al., 2019; Ju et al.,
2019). Besides, a few studies argue that historical
answer spans in context are more crucial, so they
mark the answers when encoding the context (Choi
et al., 2018; Qu et al., 2019a; Ohsugi et al., 2019;
Qu et al., 2019b).

Another mainline of studies focus on conversa-
tion history reasoning. Huang et al. (2019) pro-
poses a flow operation, feeding models entire hid-
den representation obtained by reasoning process
when answering previous questions. The hidden
states of each turn are passed back in turn by a uni-
directional GRU. To avoid the changes of the cap-
tured representations during multi-turn reasoning,
Yeh and Chen (2019) propose a flowdelta mecha-
nism to explicitly capture the information gain in
the conversation flow. Moreover, Chen et al. (2020)
implement history reasoning by a flow operation
on context graphs.

Recently, Vakulenko et al. (2021) propose to
rewrite the current question using conversation
history, with the goal to seek dependable clues
to recover the default contents or resolve the co-
references. On the basis, Kim et al. (2021) resolve
the conversational dependency via consistency reg-
ularization, and jointly use the original and rewrit-
ten questions to lead the supervised learning of QA
models.

Modeling conversation history is a hot research
area. It has also been widely studied in the direc-
tion of Knowledge-Grounded Conversation Gener-
ation (Kim et al., 2020; Zheng et al., 2020; Zhao
et al., 2020). Such methods tend to model the
full context and knowledge to generate responses,
while GHR tends to model the context that is ef-
fective for answering the current question, and si-
multaneously learn the global history reasoning
gain brought by different turns of history and the
optimization of answer extraction.

A.2 Experiments on CoQA
CoQA (Reddy et al., 2019) is another typical Con-
vQA dataset. Table 4 lists the results of GHR
model with from 1 to 7 of the GHA layers. It
shows that the GHR model only improves 0.7% F1
over the baseline ELECTRA model on CoQA’s dev
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Models F1
ELECTRA 89.0
w/ 1 GHA layer 89.3
w/ 2 GHA layers 89.5
w/ 3 GHA layers 89.7
w/ 4 GHA layers 89.5
w/ 5 GHA layers 89.3
w/ 6 GHA layers 88.8
w/ 7 GHA layers 88.6

Table 4: Effects of the number of GHA layers on the
CoQA dev set.

Case #1
Section: Early political career: John Sherman Cooper
(id: C_5caef3e3024c4f9294e1dacda1ff09b7_1)
Q0: What was the first job he held?
A0: After being urged into politics by his uncle, Judge
Roscoe Tartar, Cooper ran unopposed for a seat in the
Kentucky House of Representatives
Q1: What was the first office he ran for?
A1: Kentucky House of Representatives
Q2: How long was he in office?
A2: CANNOTANSWER
Current Question Q3: Did he run for another political
office after that?
Ground Truth: In 1929, Cooper declared his candidacy
for county judge of Pulaski County.
ELECTRA: In 1939, he sought the Republican guber-
natorial nomination.
GHR (ELECTRA): In 1929, Cooper declared his can-
didacy for county judge of Pulaski County.

Table 5: An example of the results predicted by GHR
(ELECTRA) and ELECTRA on the dev set.

set. This is because CoQA’s problems are quite
straightforward, most of which can be predicted
without conversation history (Yatskar, 2019). Thus
CoQA is not suitable for our global history reason-
ing goals. Nevertheless, we still find that the effect
of GHA layers on GHR was consistent in CoQA
and QuAC, which means that GHR based on the
same pretraining model performed relatively stable
in different ConvQA tasks. As a result, GHR can
play a role in modeling global history information
in a variety of ConvQA tasks.

A.3 Case Study
The example in Table 5 compares the predictions
between the model with ELECTRA and GHR
(ELECTRA) model. On the dev set, we observe
that GHR (ELECTRA) outperforms the ELECTRA
model without the global history reasoning mech-
anism in almost all instances that contain similar
long-distance referential relations. For example,
we can see in Case #1, to correctly answer the cur-
rent question Q3, the model needs to infer that he
refers to Cooper in A0.
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