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Abstract

Despite profound successes, contrastive rep-
resentation learning relies on carefully de-
signed data augmentations using domain-
specific knowledge. This challenge is magni-
fied in natural language processing, where no
general rules exist for data augmentation due
to the discrete nature of natural language. We
tackle this challenge by presenting a Virtual
augmentation Supported Contrastive Learning
of sentence representations (VaSCL). Originat-
ing from the interpretation that data augmenta-
tion essentially constructs the neighborhoods
of each training instance, we in turn utilize
the neighborhood to generate effective data
augmentations. Leveraging the large training
batch size of contrastive learning, we approx-
imate the neighborhood of an instance via its
K-nearest in-batch neighbors in the represen-
tation space. We then define an instance dis-
crimination task regarding the neighborhood
and generate the virtual augmentation in an ad-
versarial training manner. We access the per-
formance of VaSCL on a wide range of down-
stream tasks and set a new state-of-the-art for
unsupervised sentence representation learning.

1 Introduction

Universal sentence representation learning has
been a long-standing problem in Natural Language
Processing (NLP). Leveraging the distributed word
representations (Bengio et al., 2003; Mikolov et al.,
2013; Collobert et al., 2011; Pennington et al.,
2014) as the base features to produce sentence
representations is a common strategy in the early
stage. However, these approaches are tailored to
different target tasks, thereby yielding less generic
sentence representations (Yessenalina and Cardie,
2011; Socher et al., 2013; Kalchbrenner et al., 2014;
Cho et al., 2014).

∗∗ The code and pretrained checkpoints can be
found at https://github.com/amazon-research/
sentence-representations. Correspondence to De-
jiao Zhang <dejiaoz@amazon.com>.

This issue has motivated more research efforts
on designing generic sentence-level learning objec-
tives or tasks. Among them, supervised learning
on the Natural Language Inference (NLI) datasets
(Bowman et al., 2015a; Williams et al., 2017; Wang
et al., 2018) has established benchmark transfer
learning performance on various downstream tasks
(Conneau et al., 2017; Cer et al., 2018; Reimers
and Gurevych, 2019a; Zhang et al., 2021). De-
spite promising progress, the high cost of collecting
annotations precludes its wide applicability, espe-
cially when the target domain has scarce annota-
tions but differs significantly from the NLI datasets
(Zhang et al., 2020).

On the other hand, unsupervised learning of sen-
tence representations has seen a resurgence of in-
terest with the recent successes in self-supervised
contrastive learning. These approaches rely on
two main components, data augmentation and an
instance-level contrastive loss. The popular con-
trastive learning objectives Chen et al. (2020); He
et al. (2020) and their variants thereof have empiri-
cally shown their effectiveness in NLP. However,
the discrete nature of the text makes it challeng-
ing to establish universal rules for effective text
augmentation generation.

Various contrastive learning based approaches
have been proposed for sentence representation
learning, where the main difference lies in how the
augmentations are generated (Fang and Xie, 2020;
Giorgi et al., 2020; Wu et al., 2020; Meng et al.,
2021; Yan et al., 2021; Kim et al., 2021; Gao et al.,
2021). Somewhat surprisingly, a recent work (Gao
et al., 2021) shows that Dropout (Srivastava et al.,
2014), i.e., augmentations obtained by feeding the
same instance to the encoder twice, outperforms
common data augmentations obtained by operating
on the text directly, including cropping, word dele-
tion, or synonym replacement. Again, this obser-
vation validates the inherent difficulty of attaining
effective data augmentations in NLP.
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This paper tackles the challenge by presenting
a neighborhood-guided virtual augmentation strat-
egy to support contrastive learning. In a nutshell,
data augmentation essentially constructs the neigh-
borhoods of each instance, with the semantic con-
tent being preserved. We take this interpretation
in the opposite direction by leveraging the neigh-
borhood of an instance to guide augmentation gen-
eration. Benefiting from the large training batch
of contrastive learning, we approximate the neigh-
borhood of an instance via its K-nearest in-batch
neighbors. We then define an instance discrimi-
nation task within this neighborhood and generate
the virtual augmentation in an adversarial training
manner. We run in-depth analyses and show that
our VaSCL model leads to a more dispersed repre-
sentation space with the data semantics at different
granularities being better captured. We evaluate our
model on a wide range of downstream tasks and
show that our model consistently outperforms the
previous state-of-the-art results by a large margin.

2 Related Work

Universal Sentence Representation Learning
Arguably, the simplest and most common ap-
proaches for attaining sentence representations are
bag-of-words (Harris, 1954) and variants thereof.
However, bag-of-words suffers from data sparsity
and a lack of sensibility to word semantics. In the
past two decades, the distributed word represen-
tations (Bengio et al., 2003; Mikolov et al., 2013;
Collobert et al., 2011; Pennington et al., 2014) have
become the more effective base features for pro-
ducing sentence representations. The downside
is that these approaches are tailored to the target
tasks (Yessenalina and Cardie, 2011; Socher et al.,
2013; Kalchbrenner et al., 2014; Cho et al., 2014),
and thereby the resulting sentence representations
attain limited transfer learning performance.

More recent efforts focus on directly design-
ing the sentence-level learning objectives or tasks.
On the supervised learning regime, Conneau et al.
(2017); Cer et al. (2018) empirically show the ef-
fectiveness of leveraging the NLI task (Bowman
et al., 2015a; Williams et al., 2017) to promote
generic sentence representations. The task involves
classifying each sentence pair into one of three
categories: entailment, contradiction, or neutral.
Reimers and Gurevych (2019b) further bolster the
performance by using the pre-trained transformer
(Devlin et al., 2018; Liu et al., 2019) as backbone.

On the other end of the spectrum, Hill et al. (2016);
Bowman et al. (2015b) propose using the denoising
or variational autoencoders for sentence representa-
tion learning. Kiros et al. (2015); Hill et al. (2016)
extend the distributional hypothesis to the sentence
level and train an encoder-decoder to construct the
surrounding context for each sentence. Alterna-
tively, Logeswaran and Lee (2018) present a model
that learns to discriminate the target context sen-
tences from all contrastive ones.

Contrastive Learning Contrastive learning has
been the pinnacle of recent successes in sentence
representation learning. Gao et al. (2021); Zhang
et al. (2021) substantially advance the previous
state-of-the-art results by leveraging the entailment
sentences in NLI as positive pairs for optimiz-
ing the properly designed contrastive loss func-
tions. Nevertheless, we focus on unsupervised con-
trastive learning and form the positive pairs via data
augmentation since such methods are more cost-
effective and applicable across different domains
and languages. Along this line, several approaches
have been proposed recently, where the augmen-
tations are obtained via dropout (Yan et al., 2021;
Gao et al., 2021), back-translation (Fang and Xie,
2020), surrounding context sampling (Logeswaran
and Lee, 2018; Giorgi et al., 2020), or perturba-
tions conducted at different semantic-level (Wu
et al., 2020; Yan et al., 2021; Meng et al., 2021).

Consistency Regularization Our work is also
closely related to consistency regularization, which
is often used to promote better performance by reg-
ularizing the model output to remain unchanged un-
der plausible input variations that are often induced
via data augmentations. Bachman et al. (2014);
Sajjadi et al. (2016); Samuli and Timo (2017); Tar-
vainen and Valpola (2017) show randomized data
augmentations such as dropout, cropping, rotation,
and flipping yield effective regularization. Berth-
elot et al. (2019, 2020); Verma et al. (2019) im-
prove the performance by applying Mixup (Zhang
et al., 2017) and its variants on top of stochastic
data augmentations. However, data augmentation
has long been a challenge in NLP as there are no
general rules for effective text transformations. An
alternative that comes to light when considering
the violation of consistency regularization can in
turn be used to find the most sensitive perturbation
for a model. Therefore, we utilize consistency reg-
ularization to promote informative virtual augmen-
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Figure 1: Illustration of VaSCL. For each instance xi in a randomly sampled batch, we optimize (i) an instance-wise
contrastive loss with the dropout induced augmentation obtained by forwarding the same instance twice, i.e., xi
and xi′ denote the same text example; and (2) a neighborhood constrained instance discrimination loss with the
virtual augmentation proposed in Section 3.2.

tation for a training instance in the representation
space while leveraging its approximated neighbor-
hood to regularize the augmentation sharing similar
semantic content as its original instance.

3 Method

3.1 Preliminaries

Self-supervised contrastive learning often aims to
solve the instance discrimination task. In our sce-
nario, let f denote the transformer encoder that
maps the ith input sentence xi to its representation
vector ei = f(xi)

1. Further let h be the contrastive
learning head and zi = h(f(xi)) denote the final
output for xi. Let B = {i, i′}Mi=1 denote the indices
of a randomly sampled batch of paired examples,
where xi,xi′ are two independent variations of the
ith instance. A popular loss function (Chen et al.,
2020) for contrastive learning is defined as follows,

`B(zi, zi′) = (1)

− log
esim(zi,zi′ )/τ

esim(zi,zi′ )/τ +
∑

j∈B\(i,i′) e
sim(zi,zj)/τ

,

where τ is the temperature hyper-parameter and
sim(·) denotes the cosine similarity, i.e., sim(·) =
zTi zi′/‖zi‖2‖zi′‖2. Similarly, `B(zi′ , zi) is de-
fined by exchanging the roles of zi and zi′ in the
above equation. Intuitively, Equation (1) defines
the log-likelihood of classifying the ith instance as
its positive i′ among all 2M–1 candidates within

1By an abuse of notation, we assume f outputs either the
pre-defined sentence representation (a.k.a. [CLS] embedding,
(Devlin et al., 2018)), or the mean/max pooling of all tokens’
embeddings of that sentence.

the same batch B. Therefore, minimizing the above
log-loss guides the encoder to map each positive
pair close in the representation space, and negative
pairs further apart.

Dropout based contrastive learning As Equa-
tion (1) implies, the success of contrastive learn-
ing relies on effective positive pairs construction.
However, it is challenging to generate strong and
effective data transformations in NLP due to the
discrete nature of natural language. This chal-
lenge is further demonstrated in a recent work
(Gao et al., 2021), which shows that augmenta-
tions obtained by Dropout (Srivastava et al., 2014),
i.e., zi, zi′ obtained by forwarding the same in-
stance xi twice, outperforms the common text aug-
mentation strategies such as cropping, word dele-
tion, or synonym replacement. Dropout provides a
natural data augmentation by randomly masking its
inputs or the hidden layer nodes. The effectiveness
of using Dropout as pseudo data augmentations can
be traced back to Bachman et al. (2014); Samuli
and Timo (2017); Tarvainen and Valpola (2017).
Nevertheless, the augmentation strength is weak
with Dropout only. There is room for improvement,
which we investigate in the following section.

3.2 Neighborhood Constrained Contrastive
Learning with Virtual Augmentation

In essence, data augmentation can be interpreted
as constructing the neighborhood of a training in-
stance, with the semantic content being preserved.
In this section, we take the interpretation in the
opposite direction and leverage the neighborhoods
of each instance to generate the augmentation. To
be more specific, let B̄ = {i}Mi=1 denote the indices
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of a randomly sampled batch with M examples.
We first approximate the neighborhood N (i) of
the ith instance as its K-nearest neighbors in the
representation space,

N (i) = {k : ek has the top-K similarity with ei

among all other M-1 instances in B̄
}

We then define an instance-level contrastive loss
regarding the ith instance and its neighborhood as
follows,

`N (i)(z
δ
i , zi) = (2)

− log
esim(zδi ,zi)/τ

esim(zδi ,zi)/τ +
∑

k∈N (i) e
sim(zδi ,zk)/τ

.

In the above equation, zδi = h(eδi ) denotes the
output of the contrastive learning head with the per-
turbed representation eδi = ei + δi as input. Here,
the initial perturbation δi is chosen as isotropic2

Gaussian noise. As it implies, Equation (2) shows
the negative log-likelihood of classifying the per-
turbed ith instance as itself rather than its neigh-
bors. Then the augmentation of the ith instance
is retained by identifying the optimal perturbation
that maximally disturbs its instance-level identity
within the neighborhood. That is,

δ∗i = arg max
‖δi‖2≤∆

`N (i)(z
δ
i , zi) ,

ei∗ = ei + δ∗i .
(3)

For the ith instance, denote NA(i) as the aug-
mented neighborhood that consists of its K nearest
neighbors and their associated augmentations. That
is, NA(i) = {k, k∗}Kk=1 with ek and ek∗ denoting
the original representation and the augmented rep-
resentation of the kth nearest neighbor of instance
i, respectively. Here, each augmentation ek∗ is
obtained by solving Equations (3) with respect to
the neighborhood N (k) of ek. We then discrimi-
nate the ith instance and its augmentation from the
augmented neighborhood NA(i),

`NA(i) = `NA(i)(z
∗
i , zi) + `NA(i)(zi, z

∗
i ) . (4)

Here both terms on the right hand side are defined
in the same way as Equation (2) with respect to the
augmentation e∗i and the augmented neighborhood
NA(i) of the ith instance.

2δi is sampled from a multivariate normal distribution with
the covariance matrix being a scaled identity matrix.

Putting it all together Therefore, for each ran-
domly sampled minibatch B with M samples, we
minimize the following:

LVaSCL =
1

2M

M∑
i=1

{`B̄(zi, zi′) + `B̄(zi′ , zi)

+`NA(i)(zi, z
∗
i ) + `NA(i)(z

∗
i , zi)

}
(5)

The last two terms of the right hand side are defined
in Equation 4. Notice that, `B̄(zi, zi′) is defined
in the same way as Equation (1) except that zi, zi′
are retained by feeding the ith instance in B̄ to the
encoder twice. In summary, two instance discrim-
ination tasks are posed for each training example:
i) discriminating each instance and its dropout in-
duced variation from the other in-batch instances;
and ii) separating each instance and its virtual aug-
mentation from its K nearest neighbors and their
associated virtual augmentations.

4 Experiment

In this section, we mainly evaluate VaSCL against
SimCSE (Gao et al., 2021) which leverages the
dropout (Srivastava et al., 2014) induced noise as
data augmentation. We show that VaSCL consis-
tently outperforms SimCSE on various downstream
tasks that involve semantic understanding at differ-
ent granularities. We carefully study the regulariza-
tion effects of VaSCL and empirically demonstrate
that VaSCL leads to a more dispersed representa-
tion space with semantic structure better encoded.
Please refer to Appendix A for details of our imple-
mentations and the dataset being used.

4.1 Evaluation Datasets
In addition to the popular semantic textual simi-
larity (a.k.a STS) related tasks, we evaluate two
additional downstream tasks, short text clustering
and few-shot learning based intent classification.
Our motivation is twofold. First, these two tasks
provide a new evaluation aspect that complements
the pairwise similarity-oriented STS evaluation by
assessing the high-level categorical semantics en-
coded in the representations. Second, two desired
challenges are posted as short text clustering re-
quires more effective representations due to the
weak signal each text example manifests; and in-
tent classification often suffers from data scarcity
since the intents can vary significantly over differ-
ent dialogue systems and the intent examples are
costly to collect.
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STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.
RoBERTadistil 54.41 46.85 56.96 65.79 64.22 61.10 59.01 58.33
SimCSEdistil 65.58 77.42 70.17 79.31 78.45 67.66 77.98 73.79
VaSCLdistil 67.68 80.61 72.19 80.92 78.59 68.81 77.32 75.16

RoBERTabase 53.95 47.42 55.87 64.73 63.55 62.94 58.40 58.12
SimCSEbase 68.88 80.46 73.54 80.98 80.68 69.54 80.29 76.34
VaSCLbase 69.02 82.38 73.93 82.54 80.96 69.40 80.52 76.96

RoBERTalarge 55.00 50.14 54.87 62.14 62.99 58.93 54.56 56.95
SimCSElarge 69.83 81.29 74.42 83.77 79.79 68.89 80.66 76.95
VaSCLlarge 73.36 83.55 77.16 83.25 80.66 72.96 82.36 79.04

Table 1: Spearman rank correlation between the cosine similarity of sentence representation pairs and the ground
truth similarity scores.

Semantic Textual Similarity The semantic tex-
tual similarity (STS) tasks are the most commonly
used benchmark for evaluating sentence represen-
tations. STS consists of seven tasks, namely STS
2012-2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), the STS Benchmark (Cer et al., 2017), and
the SICK-Relatedness (Marelli et al., 2014). For
each sentence pair in these datasets, a fine-grained
similarity score ranges from 0 to 5 is provided.

Short Text Clustering Compared with general
text clustering, short text clustering has its own
challenge due to lack of signal. Nevertheless, texts
containing only a few words grow at unprecedented
rates from a wide range of popular resources, in-
cluding Reddit, Stackoverflow, Twitter, and Insta-
gram. Clustering those texts into groups of sim-
ilar texts plays a crucial role in many real-world
applications such as topic discovery (Kim et al.,
2013), trend detection (Mathioudakis and Koudas,
2010), and recommendation (Bouras and Tsogkas,
2017). We evaluate six benchmark datasets for
short text clustering. As shown in Table 4, the
datasets present the desired diversities regarding
both the cluster sizes and the number of clusters
contained in each dataset.

Intent Classification Intent classification aims
to identify the intents of user utterances, which is
a critical component of goal-oriented dialog sys-
tems. Attaining high intent classification accuracy
is an important step towards solving many down-
stream tasks such as dialogue state tracking (Wu
et al., 2019; Zhang et al., 2019) and dialogue man-
agement (Gao et al., 2018; Ham et al., 2020). A
practical challenge is data scarcity because differ-

ent systems define different sets of intents, and it is
costly to obtain enough utterance samples for each
intent. Therefore, few-shot learning has attracted
much attention under this scenario, which is also
our main focus. We evaluate four intent classifi-
cation datasets originating from different domains.
We summarize the data statistics in Appendix B.1.

4.2 Main Results

4.2.1 Evaluation Setup
Semantic Textual Similarity. Same as Reimers
and Gurevych (2019b); Gao et al. (2021), in Ta-
ble 1 we report the Spearman correlation3 between
the cosine similarity of the sentence representa-
tion pairs and the ground truth similarity scores.
Short Text Clustering. We evaluate the sentence
representations using K-Means (MacQueen et al.,
1967; Lloyd, 1982) given its simplicity and report
the clustering accuracy4 averaged over ten indepen-
dent runs in Table 2. Intent Classification. We
freeze the transformer and fine-tune a linear classi-
fication layer with the softmax-based cross-entropy
loss. We merge the training and validation sets,
from which we sample K training and validation
samples per class. We report the mean and standard
deviation of the testing classification accuracy eval-
uated over five different splits in Table 3.5 We set
the learning rate to 1e-04 and batch size to 32. For
each task, we train the model with 1000 iterations

3Same as Reimers and Gurevych (2019b); Gao et al.
(2021), we concatenate all the topics and report the overall
Spearman’s correlation.

4The clustering accuracy is computed by using the Hun-
garian algorithm (Munkres, 1957).

5In each setting, we fix the five different splits for all
models.
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Ag Search Stack Bio- Tweet Google AvgNews Snippets Overflow medical News
RoBERTadistil 59.32 33.18 14.16 24.69 37.10 58.05 37.75
SimCSEdistil 73.33 60.74 66.97 35.69 50.68 67.55 59.16
VaSCLdistil 71.71 62.76 73.98 38.82 51.35 67.66 61.05

RoBERTabase 66.50 30.83 15.63 26.98 37.80 58.51 39.38
SimCSEbase 65.53 55.97 64.18 38.12 49.16 65.69 56.44
VaSCLbase 68.33 47.26 76.15 39.53 51.50 67.10 58.31

RoBERTalarge 69.35 53.00 27.89 33.25 46.08 64.04 48.93
SimCSElarge 62.93 51.55 54.11 35.39 50.92 67.86 53.79
VaSCLlarge 66.09 61.57 69.04 42.91 56.74 67.75 60.68

Table 2: Clustering accuracy reported on six short text clustering datasets.

and evaluate the validation set every 100 iterations.
We report the testing accuracy on the checkpoint
achieving the best validation accuracy.

SNIPS BANK77 CLINC150 HWU64

5-
Sh

ot RoBERTa 76.71±4.84 38.77±2.29 55.19±1.99 51.52±2

SimCSE 76.94±2.53 67.48±1.63 72.84±1.5 66.1±1.9

VaSCL 78.51±1.39 70.10±1.76 74.23±1.17 67.06±2.17

10
-S

ho
t RoBERTa 85.63±2.43 46.55±1.84 60.55±1.16 57.47±0.91

SimCSE 85.14±2.18 72.19±0.88 77.13±0.76 70.87±1.35

VaSCL 84.83±1.05 75.25±0.81 79.15±0.82 72.43±1.12

20
-S

ho
t RoBERTa 88.14±1.54 51.65±1.42 63.51±1.08 60.93±1.27

SimCSE 88.43±1.2 75.13±0.78 78.59±0.78 74.44±0.74

VaSCL 89.11±1.29 78.06±0.37 81.39±0.60 76.39±0.26

Table 3: Few-shot learning evaluation of Intent Classi-
fication. Each result is aggregated over 5 independent
splits. We choose RoBERTa-base as backbone.

4.2.2 Evaluation Results

We report the evaluation results in Tables 1, 2, and
3. As we can see, both SimCSE and VaSCL largely
improve the performance of the pre-trained lan-
guage models, while VaSCL consistently outper-
forms SimCSE on most tasks. To be more spe-
cific, we attain 0.6% − 2.1% averaged absolute
improvement over SimCSE on seven STS tasks
and 1.8%− 6.9% averaged absolute improvement
on six short text clustering tasks. We also achieved
considerable improvement over SimCSE on intent
classification tasks under different few-shot learn-
ing scenarios. We do not include the evaluation on
ATIS in Table 3 as this dataset is highly imbalanced
with one single class account for more than 73% of
the data. Please refer to Appendix C for details.

4.3 Analysis
To better understand what enables the good perfor-
mance of VaSCL, we carefully analyze the repre-
sentations at different semantic granularities.

Neighborhood Evaluation on Categorical Data
We first evaluate the neighborhood statistics on
StackOverflow (Xu et al., 2017) which contains 20
balanced categories, each with 1000 text instances.
For each instance, we retrieve its K nearest (top-
K) neighbors in the representation space, among
which those from the same class as the instance it-
self as treated as positives. In Figure 2a, we report
both the percentage of true positives and the aver-
age distance of an instance to its top-K neighbors.
For each top-K value, the evaluation is averaged
over all 20,000 instances.

As indicated by the small distance values re-
ported in Figure 2a, the representation space of
the original RoBERTa model is tighter and is in-
capable of uncovering the categorical structure of
data. In contrast, both VaSCL and SimCSE are
capable of scattering representations apart while
better capturing the semantic structures. Compared
with SimCSE, VaSCL leads to even more dispersed
representations with categorical structures being
better encoded. This is also demonstrated by the
better performance attained on both clustering and
few-shot learning reported in Tables 2&3.

Fine-grained Semantic Understanding We
then compare VaSCL against SimCSE and
RoBERTa on encoding more fine-grained semantic
concepts. We randomly sample 20,000 premises
from the combined set of SNLI (Bowman et al.,
2015a) and MNLI (Williams et al., 2017), where
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(a) Neighborhood evaluation on StackOverflow. Instances from
the same category are treated as true positives.
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(b) Fine-grained semantics encoding evaluation on NLI.

Figure 2: VaSCL leads to more dispersed representa-
tion with data structure being better uncovered.

the associated entailment and contradiction
hypotheses are also sampled for each premise
instance. In Figure 2b, we report both the
distributions of the pairwise distances of the
entailment or the contradiction pairs (left). While
on the right-hand side, we plot the distance of each
premise to its entailment hypothesis over that to its
contradiction hypothesis (right).

We observe the same trend that both SimCSE
and VaSCL well separate different instances apart
in the representation space while better discrimi-
nating each premise’s entailment hypothesis from
the contradiction one. Figure 2b also demonstrates
that VaSCL outperforms SimCSE on better cap-
turing the fine-grained semantics when separating
different instances apart. This advantage of VaSCL
is further validated by Table 1, where VaSCL con-
sistently outperforms SimCSE on the STS tasks
that require pairwise semantic inference on an even
more fine-grained scale.

4.4 Explicit Data Augmentation

To better evaluate our virtual augmentation-
oriented VaSCL model, we compare it against dif-
ferent explicit data augmentation strategies that
directly operate on the discrete text. Specifically,
we consider the following approaches:6 WDel (ran-
dom word deletion) removes words from the input

6They are implemented using the nlpaug library https:
//github.com/makcedward/nlpaug.

text randomly; WNet (WordNet synonym substi-
tute) transforms a text instance by replacing its
words with the WordNet synonyms (Morris et al.,
2020; Ren et al., 2019); and CTxt (contextual syn-
onyms substitute) leverages the pre-trained trans-
formers to find top-n suitable words of the input
text for substitution (Kobayashi, 2018). For each
strategy, we evaluate three augmentation strengths
by partially changing 5%, 10%, and 20% words of
each text instance. For a positive pair (xi, x

′
i), xi

denotes the original text and xi′ is the associated
augmentation. We also explore the case where both
xi and xi′ are the transformations of the original
text, which we find yielding worse performance.

Virtual Augmentation Performs Better The
performance of explicit text augmentation is eval-
uated using the standard dropout for training,
i.e., "SimCSE w/ {WDel/WNet/CTxt)}" in Fig-
ure 3. As Figure 3a shows, contrastive learning
with moderate explicit text augmentations, i.e., aug-
mentation strength less than 20%, does yield bet-
ter sentence representations when compared with
the original RoBERTa model. Nevertheless, both
virtual augmentation strategies, i.e., SimCSE &
VaSCL, substantially outperform all three explicit
text augmentation strategies on almost all down-
stream tasks. Although a bit surprising, especially
considering the performance gap between SimCSE
and explicit augmentations, this comparison pro-
vides a new perspective on interpreting the under-
lying challenge of designing effective transforma-
tions that operate on the discrete text directly.

VaSCL Outperforms SimCSE Figure 3a also
empirically demonstrates that VaSCL outperforms
SimCSE no matter in the presence of explicit text
augmentations or not. The only exception occurs
when the explicit augmentation strength is too large,
i.e., 20% of the words of each text are perturbed.
One possible explanation is that undesired noises
are generated by the large perturbations on discrete
texts directly, which can violate the coherent se-
mantics maintained by a neighborhood and hence
make it hard for VaSCL to generate effective virtual
augmentations.

New Linguistic Patterns Are Required An-
other observation drawn from Figure 3a is that both
SimCSE and VaSCL attain worse performance on
most downstream tasks when combining with ex-
plicit text augmentations. Although VaSCL does
improve the performance of explicit augmentations
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Figure 3: Comparing and combining virtual augmentation with explicit augmentation.

in most cases, this is undesired as we expect a win-
win outcome that moderate explicit augmentations
could further enhance VaSCL. We hypothesize that
new and informative linguistic patterns are missing
for the expected performance gain.

To validate our hypothesis, in Figure 3b we re-
port the cosine similarity between each original
training example and its augmentation evaluated on
the representation spaces of different models. Our
observation is twofold. First, the representations
induced by RoBERTa and the one trained with con-
textual synonyms substitution ("SimCSE w/ CTxt")
are very similar in all three settings, which also
explains why "SimCSE w/ WDel" attains similar
performance as RoBERTa on the downstream tasks.
We attribute this to the fact that CTxt leverages
the transformer itself to generate augmentations
which hence carry limited unseen and effective lin-
guistic patterns. Second, as indicated by the com-
paratively smaller similarity values in Figure 3b,
the incorporation of explicit augmentations tight-
ens the representation spaces of both SimCSE and
VaSCL, which also results in a worse performance
of downstream tasks. One possible explanation is
that all the three explicit augmentations are weak
and noisy, which harms both the instance discrim-

ination force and the semantic relevance of each
neighborhood.

5 Conclusion

In this paper, we present a virtual augmentation-
oriented contrastive learning framework for unsu-
pervised sentence representation learning. Our key
insight is that data augmentation can be interpreted
as constructing the neighborhoods of each train-
ing instance, which can, in turn, be leveraged to
generate effective data augmentations. We evalu-
ate VaSCL on a wide range of downstream tasks
and substantially advance the state-of-the-art re-
sults. Moreover, we conduct in-depth analyses and
show that VaSCL leads to a more dispersed repre-
sentation space with the data semantics at different
granularities being better encoded.

On the other hand, we observe a performance
drop of both SimCSE and VaSCL when combined
with the explicit text augmentations. We suspect
this is caused by the linguistic patterns generated by
explicit augmentations being less informative yet
noisy. We hypothesize effective data augmentation
operations on the discrete texts could complement
our virtual augmentation approach if new and in-
formative linguistic patterns are generated.
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A Implementation

Same as the original SimCSE work (Gao et al.,
2021), we adopted 106 randomly sampled sen-
tences from English Wikipedia as training data.7

We implement our models with Pytorch (Paszke
et al., 2017). We use the pre-trained RoBERTa
models as the backbone. We choose a two-layer
MLP with size (d×d, d×128) to optimize our con-
trastive learning losses, where d denotes the dimen-
sion of the sentence representations. We use Adam
(Kingma and Ba, 2015) as our optimizer with a con-
stant learning rate of 5e-04, which we scale to 5e-
06 for updating the backbones/transformers. We set
the virtual augmentation strength of VaSCL, i.e., ∆
in Equation (3), to 15 for both DistilRoBERTa and
RoBERTaBase, and 30 for RoBERTaLarge.

We train SimCSE (Gao et al., 2021) using 3e-05
for optimizing the contrastive learning head and the
backbone. We also tried the default learning rate
1e-05 (suggested in Gao et al. (2021)) as well as
our learning rate setup for optimizing the RoBERTa

7We download the training data via https:
//github.com/princeton-nlp/SimCSE/blob/
main/data/download_wiki.sh.

models with SimCSE. We found 3e-05 yields bet-
ter performance. For both SimCSE and VaSCL, we
set the batch size to 1024, train all models over five
epochs and evaluate the development set of STS-
B every 500 iterations. We report all our evalua-
tions on the downstream tasks with the associated
checkpoints attaining the best performance on the
validation set of STS-B.

B Dataset Statistics

B.1 Intent Classification Dataset
We evaluate our model on four intent classification
datasets: (1) SNIPS (Coucke et al., 2018) is a SLU
benchmark that consists of 7 distinct intents. (2)
BANKING77 (Casanueva et al., 2020) is a large
fine-grained single banking domain intent dataset
with 77 intent classes. (3) HWU64 (Liu et al.,
2021) contains 25,716 examples for 64 intents in
21 domains. (4) CLINC150 (Larson et al., 2019)
spans 150 intents and 23,700 examples across 10
domains. As we can see here, SNIPS are limited to
only a small number of classes, which oversimpli-
fies the intent detection task and does not emulate
the true environment of commercial systems. The
remaining three datasets contain much more diver-
sity and are more challenging.

B.2 Short Text Clustering Dataset

Dataset N W̄ C ImN
AgNews 8.0K 23 4 1
SearchSnippets 12.3K 18 8 7
StackOverflow 20K 8 20 1
Biomedical 20K 13 20 1
GoogleNews 11.1K 28 152 143
Tweet 2.5K 8 89 249

Table 4: Statistics of six short text clustering datasets.
N: number of text samples; W̄ : average number of
words each text example has; C: number of clusters;
ImN: imbalance number defined as the size of the
largest class divided by that of the smallest class.

• SearchSnippets is extracted from web search
snippets, which contains 12340 snippets asso-
ciated with 8 groups Phan et al. (2008).

• StackOverflow is a subset of the challenge
data published by Kaggle8, where 20000 ques-
tion titles associated with 20 different cate-
gories are selected by Xu et al. (2017).

8https://www.kaggle.com/c/predict-closed-questions-on-
stackoverflow/download/train.zip
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(a) Evaluating VaSCL in presence of different explicit data augmentation strategies.
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(b) Cosine similarity between the representations of each original training example and its augmentation evaluated
on different models. From left to right, the augmentations are obtained via WDel, WNet, and CTxt. Each point is
averaged over 20,000 randomly sampled training examples.

Figure 4: Comparing and combining virtual augmentation with explicit text augmentations. (Full plot of Figure 3
in Section 4.4.)

• Biomedical is a subset of PubMed data dis-
tributed by BioASQ9, where 20000 paper ti-
tles from 20 groups are randomly selected by
Xu et al. (2017).

• AgNews is a subset of news titles (Zhang
and LeCun, 2015), which contains 4 topics
selected by Rakib et al. (2020).

• Tweet consists of 89 categories with 2472
tweets in total (Yin and Wang, 2016).

• GoogleNews contains titles and snippets of
11109 news articles related to 152 events (Yin
and Wang, 2016).

C Full Evaluation of Intent Classification

ATIS (Hemphill et al., 1990) is a benchmark for
the air travel domain. This dataset is highly im-
balanced, with the largest class containing 73% of
all the training and validation examples. Moreover,
more than 60% classes have less than 20 examples.
We thereby exclude this task in our evaluation.

9http://participants-area.bioasq.org
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