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Abstract

Generalising to unseen domains is under-
explored and remains a challenge in neural ma-
chine translation. Inspired by recent research in
parameter-efficient transfer learning from pre-
trained models, this paper proposes a fusion-
based generalisation method that learns to com-
bine domain-specific parameters. We propose a
leave-one-domain-out training strategy to avoid
information leaking to address the challenge of
not knowing the test domain during training
time. Empirical results on three language pairs
show that our proposed fusion method outper-
forms other baselines up to +0.8 BLEU score
on average.

1 Introduction

Building robust machine translation (MT) mod-
els that can perform well on a test set outside the
domain of training examples is highly desired in
real-world scenarios. Despite recent great progress
in neural machine translation (NMT) research,
NMT models have been found sensitive to distri-
bution shift and adversarial examples (Koehn and
Knowles, 2017; Belinkov and Bisk, 2018; Müller
et al., 2020). While improving an NMT model
to a new domain has been studied extensively in
domain adaptation settings where in-domain par-
allel or monolingual data is given (Chu and Wang,
2018), generalising NMT models to unseen do-
mains is under-explored (Specia et al., 2020).

Domain generalisation is a problem setting in
machine learning that tackles the challenge of learn-
ing a robust model for unseen domains from mul-
tiple existing domains. This problem is closely
related to several settings such as multi-task learn-
ing, transfer learning, and domain adaptation in
terms of learning models from one or more given
tasks/domains to enhance performance on some
target tasks/domains. The main difference and chal-
lenge in domain generalisation is that the test do-
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mains are unknown in advance. Previous works
on domain generalisation focused on learning in-
variant features by minimising the difference in
the representations of the given domains for the
classification tasks (Li et al., 2018; Wang et al.,
2020b; Gulrajani and Lopez-Paz, 2020). Learning
a domain-invariant representation is applicable to
the classification problems where such invariances
may be sufficient to predict the target classes. How-
ever, it may be inadequate for translation tasks. A
good translation should not only preserve the invari-
ant features such as syntax and grammar, but also
be able to maintain the domain-specific features
such as style of the source sentence.

In this paper, we propose a fusion-based ap-
proach to the domain generalisation problem for
NMT. Our method comprises two training stages.
The first stage is to learn domain-specific fea-
tures through adapter modules added to the pre-
trained encoder-decoder model. Previous works
have shown that the task-specific adapter is an ef-
fective alternative method to fine-tuning. It allows
fast adaptation of pretrained language models to
downstream tasks (Houlsby et al., 2019), and multi-
lingual NMT models to new language pairs (Philip
et al., 2020; Berard, 2021). In the second stage,
we propose to use an AdapterFusion module (Pfeif-
fer et al., 2021) and train it to effectively combine
features of the existing domains in order to handle
unseen domains.

Unlike (Pfeiffer et al., 2021) who trains the
AdapterFusion module for transfer learning (from
existing tasks to a seen target task), we do not have
access to the test domain during training. To ad-
dress this challenge, we propose a novel leave-one-
domain-out (LODO) training strategy by creating
homogeneous mini-batches consisting of training
examples from a single domain and disabling the
corresponding domain adapter when optimising
the fusion layer. This training strategy is related to
model selection for domain generalisation (Gulra-
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Figure 1: Leave-one-out adapter fusion training strategy

jani and Lopez-Paz, 2020), where the aim is to max-
imise the expected performance w.r.t an unknown
meta-distribution over domains. Unlike (Gulrajani
and Lopez-Paz, 2020), we use LODO to train the
AdapterFusion module instead of model selection.

Our contributions can be summarised as follows:
(i) We extend AdapterFusion for domain general-
isation, where the target domain is not available
during training; (ii) We propose a novel leave-one-
out training strategy to avoid over-fitting of the
fusion layer to the given training domains; (iii) We
demonstrate the efficacy of our proposed fusion
method on three language pairs and four unseen
domains. Empirical results show that our approach
outperforms the learning invariant feature baseline
on most of unseen test domains with an improve-
ment up to +0.8 BLEU score on average1.

2 Our Approach

Problem Formulation. We define domain gen-
eralisation for NMT as the problem of learning
an NMT model on training datasets from multiple
domains D = {D1, ..., DK} such that it performs
well at some unseen test domain DK+1. A dataset
Dk = {(xxxki , yyyki )}

nk
i=1 in domain k contains nk ex-

amples from a distribution Prk(X,Y ) where X
ranges over sentences in the source language, and
Y is its translation in the target language.

Domain-specific parameter learning. We insert
a small adapter module in transformer layers of the

1Source code will be available at https://github.
com/trangvu/lodo-nmt.

Algorithm 1 LODO Training of AdapterFusion
Function: trainFusion
Input: Training data D = {D1, ..., DK}, NMT model θ,
adapters {ω1, ..., ωK}
Output: Fusion layer ψ
1: while not converge do
2: shuffle D
3: {bkjj }

J
j=1 ← {(xxx,yyy) ∈ Dkj |Dkj ∈ D}) // create

homogeneous minibatches
4: for j = 1 to J do
5: dj ← {1, ...,K} \ {kj} // active domains
6: for all transformer layer l do
7: hhh(l) ← θ(l)(b

kj
j ,hhh

(l−1)) // hidden state

8: {h̃hh
(l)

k } ← {hhh(l) + ωk(hhh
(l))}k∈dj // adapter out-

puts

9: hhh(l) ← ψ(l)(hhh(l), {h̃hh
(l)

k }k∈dj , {h̃hh
(l)

k }k∈dj ) // fu-
sion output

10: end for
11: ψ ← ψ − γ∇ψLNMT (yyy,xxx,hhh

(L))
12: end for
13: end while
14: return ψ

pretrained NMT model to capture domain-specific
features (Houlsby et al., 2019). Adapters are task-
specific modules introduced to a pretrained network
to enable fast adaptation to new tasks. Follow-
ing (Pfeiffer et al., 2021), we add the adapter only
after the last feed-forward layer. The adapter mod-
ule includes a down-projection WWW (l)

down followed
by an up-projection WWW

(l)
up to project the hidden

state hhh(l) in layer l to a lower-dimension space
then project back to high-dimension space

hhh(l) = hhh(l) + f(hhh(l)WWW
(l)
down)WWW

(l)
up (1)

where f(.) is a nonlinear activation function. We
denote ω = {WWW (l)

down,WWW
(l)
up}Ll=1 as adapter parame-

ters. We learn the adapter modules while freezing
the encoder and decoder parameters. At training
time, we only train the adapter with the training
data from the corresponding domain.

Domain generalisation with AdapterFusion To
help the NMT model generalise to unseen domains,
we learn a fusion layer (Pfeiffer et al., 2021) to
combine domain-specific adapters while freezing
all other parameters. Since we do not have access to
unseen domains at training time, we propose leave-
one-domain-out (LODO) training strategy to train
the fusion layer. We create homogeneous batches of
training data from individual domains. For a given
batch bkjj from domain kj where j ∈ {1, ..., J}
ranges over all possible batches in a training epoch,
the adapter corresponding to this domain is dis-
abled, and the fusion layer learns to combine the
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Train Dev Test
Domain De-En Fr-En Pl-En De-En Fr-En Pl-En De-En Fr-En Pl-En

WMT 37.4M 35.1M 7.1M 2K 2K 5.3K 1.4K 3K 1K
LAW 454K 596K 1.3M 2K 2K 2K 2K 2K 2K
MED 705K 705K 666K 2K 2K 2K 2K 2K 2K
IT 158K 230K 97K 2K 2K 2K 2K 2K 2K
KORAN 17.8K 28K 30K 2K 2K 2K 2K 2K 2K
SUB 494K 492K 491K 2K 2K 2K 2K 2K 2K

BOOK 44K 114K 0.9K 2K 2K 459 2K 2K 516
TED 164K 190K 174K 4.1K 4.2K 4K 4.4K 4.8K 4.9K
ROBUST - - - - - - 1K/5.6K - -
TICO19 - - - - 971 - - 2.1K -

Table 1: Number of sentences in train, dev and test set for each domain and language pairs. There are no training
data released in ROBUST and TICO19 dataset. For En-De ROBUST dataset, there are two different test set for
En−→De (1K) and De−→En (5.6K) directions.

output of otherK−1 adapters as shown in Figure 1.
Algorithm 1 describes our proposed LODO

training strategy. We denote dj ← {1, ...,K} \
{kj} the index set of active adapters for a batch bkjj
in domain kj (line 5). The adaptive hidden state
for domain k ∈ dj in transformer layer l is com-
puted using eq. (1) (line 8). The fusion module in
transformer layer l parametrised by ψ(l) combines
the adapter outputs {hhh(l)k } using the self-attention
mechanism with the adapter input as query, adapter
outputs as key and value. We train the fusion mod-
ule with cross-entropy loss while freezing other
parameters (line 11).

3 Experiments

We evaluate our proposed approach to generalise a
pretrained NMT model to unseen domains on three
language pairs English-German (En-De), English-
French (En-Fr), and English-Polish (En-Pl).

3.1 Experimental Setup

Dataset. The pretrained NMT models are trained
on generic domain datasets from WMT2014 for
En-Fr, WMT2020 for the other language pairs. Fol-
lowing the recipe in Koehn and Knowles (2017),
we create five source domains: legal (LAW), IT
(IT), Koran (KORAN), Medical (MED), and Sub-
titles (SUB) from OPUS (Tiedemann, 2012). We
consider BOOK dataset from OPUS (Tiedemann,
2012), TED talk (TED) (Qi et al., 2018), TICO-
19 (TICO19) (Anastasopoulos et al., 2020) and
WMT20 Robustness task (ROBUST) (Specia et al.,
2020) as unseen test domains. Data statistics are
reported in Table 1.

Baselines. We consider two backbone pretrained
NMT models: (i) generic-domain (mBARTWMT ) -
an mBART model (Liu et al., 2020) finetuned on
WMT dataset; and (ii) multi-domain (mBARTMD)
- an mBART model finetuned on the combination
of training data from all available source domains.
We evaluate our proposed domain generalisation
approach against the following baselines:

• Zeroshot uses the pretrained backbone mod-
els mBARTWMT and mBARTMD to evaluate
on the unseen domains.

• Finetuning (FT) which further trains the
backbone on multi-domain datasets.

• Adversarial domain discriminator (disc)
which adds a domain discriminator on top of
the encoder to learn domain-invariant features
by jointly training with MT and adversarial
domain discrimination loss (Britz et al., 2017).

We also report the BLEU score of finetuning
mBART on the test domain, which serves as a su-
pervised oracle.

Architecture and hyperparameters. We fine-
tune mBART-based models using a batch size of
4048 tokens with mixed-precision training up to
200K update steps and early stopping on 4 V100
GPUs. We apply Adam with an inverse square
root schedule, a linear warmup of 5000 steps and
a learning rate of 3e-5. We use dropout and label
smoothing with a rate of 0.3 and 0.2. For multi-
domain training, we use temperature-based sam-
pling with T = 1.5 to balance training size be-
tween domains (Arivazhagan et al., 2019).

584



Fr
oz

en TrainAlg En-De En-Fr En-Pl #params
Backbone (Data) BOOK ROBUST TED avg BOOK TICO19 TED avg BOOK TED avg trained

Translate to English
mBART ✗ sup. oracle 30.55 - 48.05 - 23.77 - 50.28 - 7.84 36.44 - 610M

mBARTMD ✓ zeroshot 18.87 29.10 29.87 25.95 15.04 27.50 34.46 25.67 5.51 22.76 14.14 -
mBART ✗ disc(MD) 18.92 30.17 29.82 26.30 14.52 28.86 34.02 25.80 5.66 22.82 14.24 610M
mBARTMD ✓ LODO(MD) 19.15† 30.92† 30.38† 26.82 15.06 29.61† 34.41 26.36 6.06† 22.81 14.44 37M

mBARTWMT ✓ zeroshot 25.99 30.93 37.30 31.41 15.26 33.52 33.43 27.40 8.23 22.69 15.46 -
mBARTWMT ✗ FT(MD) 16.76 30.14 30.28 25.73 14.72 27.82 33.61 25.38 5.97 21.82 13.90 610M
mBART ✗ FT(all) 18.16 30.40 28.80 25.79 13.85 27.08 33.12 24.68 5.99 20.03 13.01 610M
mBARTWMT ✓ LODO (MD) 26.68† 31.28† 37.77† 31.91 15.77† 33.82† 34.00† 27.86 8.50† 22.85 15.68 37M

Translate from English
mBART ✗ sup. oracle 21.45 - 35.33 - 27.45 - 50.53 - 3.65 25.13 - 610M

mBARTMD ✓ zeroshot 11.55 28.01 25.08 21.55 20.57 25.92 32.86 26.45 4.03 19.21 11.62 -
mBART ✗ disc(MD) 11.07 28.15 26.30† 21.84 20.62 25.67 32.90 26.40 4.20 20.14 12.17 610M
mBARTMD ✓ LODO(MD) 12.12† 28.67† 25.89 22.23 20.81 26.39† 33.03 26.74 4.38 20.09 12.24 37M

mBARTWMT ✓ zeroshot 17.13 31.19 33.59 27.30 19.61 27.14 34.23 26.99 3.96 20.44 12.20 -
mBARTWMT ✗ FT(MD) 12.34 28.48 29.46 23.43 20.01 27.37 32.68 26.69 4.34† 20.14 12.24 610M
mBART ✗ FT(all) 11.44 28.28 24.21 21.31 19.48 27.02 30.97 25.82 3.81 20.02 11.92 610M
mBARTWMT ✓ LODO (MD) 17.67† 32.34† 34.02† 28.01 20.29† 27.59† 34.57† 27.47 3.89 20.82† 12.36 37M

Table 2: BLEU score on unseen test domains. The first two columns show the pretrained backbones and whether
they are frozen during training: off-the-self mBART (mBART), finetuned mBART on WMT data (mBARTWMT ),
and finetuned mBART on multi-domain data (mBARTMD). The third column presents the training methods with
the data used in brackets: zeroshot, finetuning (FT), domain discriminator (disc), and our proposed method (LODO)
on the multi-domain data (MD) or all data including WMT and MD. Best and second best scores of each column
are marked in bold and underline respectively. † indicates that the best score is statistically significant difference to
the second best (p-value ≤ 0.05) using paired bootstrap resampling.

For adapter modules, we use the adapter architec-
ture of Pfeiffer et al. (2021), which is added once
only after the last feed-forward layer for each trans-
former layer of encoder and decoder. We set the
bottleneck dimension to 256 in all experiments and
use ReLU as the nonlinear activation function. We
train the adapters for each domain separately with
a learning rate of 2e-4 up to 120K steps with early
stopping and 2000 warmup steps. Other hyperpa-
rameters are the same as in the mBART finetuning.

Following Pfeiffer et al. (2021), we initialise the
value matrix V of the fusion layer with a diagonal
of ones and the rest with random weights of a small
norm 1e-6. The query matrix Q and key matrix K
are initialised randomly. We train the fusion layers
with a learning rate of 5e-5 up to 200K steps with
early stopping and 10K warmup updates.

Evaluation. We report BLEU scores calculated
by SacreBLEU (Post, 2018)2.

3.2 Main Result and Ablation

We present the results on unseen domains for from-
English and to-English translation of three lan-
guage pairs in Table 2. There are big gaps between

2nrefs:1|case:mixed|eff:no|tok:
none|smooth:exp|version:2.0.0

En−→De De−→En
Book ROBUST TED Book ROBUST TED

LODO-homo 17.67 32.34 34.02 26.68 31.28 37.77
LODO-mixed 17.28 32.15 34.62 26.24 31.16 35.67
all-homo 16.82 31.76 33.88 25.79 30.79 32.33
all-mixed 16.12 31.82 33.52 26.33 30.22 32.75

Table 3: Ablation of fusion layer training strategies on
(i) leave-one-domain-out training (LODO) vs. fusion
all adapters (all), and (ii) whether to have homogeneous
batches (homo) or mixed-domain batches (mixed). All
models are trained with the mBARTWMT backbone.

the supervised oracles and the domain generalisa-
tion methods, except for the En-Pl BOOK domain
where the training data is relatively small. Over-
all, the mBARTWMT backbones outperform the
mBARTMD backbones on the unseen domains. It
is expected that WMT datasets can be considered as
generic, and the mBARTMD backbone may overfit
to the seen domains.

Finetuning the mBARTWMT backbones on
multi-domain datasets (FT(MD)) degrades perfor-
mance on unseen domain significantly. We observe
a similar trend when finetuning on both WMT and
multi-domain datasets (FT(all)). It may be due
to dataset imbalance and negative interference be-
tween domains. Learning domain-invariant fea-
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tures (disc(MD)) are able to improve BLEU score
on unseen domains over the mBARTMD backbone.
On average, our proposed fusion method outper-
forms other baselines in most translation directions
without retraining the backbones.

Ablation on AdapterFusion training strategy.
We do an ablation study of our LODO training
strategy with homogeneous batches on En-De with
the mBARTWMT backbone in Table 3. Compared
to LODO, we observe performance drop on all do-
mains when activating all adapters. However, there
is no significant difference between homogeneous
and mixed batches.

4 Related works

Domain generalisation for NMT. Domain gen-
eralisation has been mostly studied in computer
vision (Wang et al., 2021b). The main approaches
include invariant feature learning (Li et al., 2018;
Wang et al., 2020b), data augmentation (Wang
et al., 2020a), and meta learning (Balaji et al., 2018;
Wang et al., 2021a). Although domain mismatch
is a known challenge in NMT (Müller et al., 2020),
domain generalisation has just recently drawn at-
tention with the introduction of zeroshot evaluation
in WMT2020 Robustness shared task (Specia et al.,
2020), but is still under-explored.

Adapters. Adapter-based methods have been
shown effective in transferring to new languages
in multilingual NMT (Üstün et al., 2021; Berard,
2021; Cooper Stickland et al., 2021; Zhu et al.,
2021) and fast adaptation to new domains (Bapna
and Firat, 2019). Combining task-specific adapters
with attention mechanism (Pfeiffer et al., 2021)
or ensemble (Wang et al., 2021c) allows efficient
transfer to low-resource natural language under-
standing (NLU) and NMT tasks. When target do-
main examples are unavailable, adapters can be
combined during inference to better generalise to
unseen domains for NLU tasks (Gururangan et al.,
2021).

5 Conclusion

In this paper, we propose a fusion-based approach
to the domain generalisation problem for NMT. Our
method first captures domain-specific features via
adapters, then learns to combine them with leave-
one-out strategy training. Experiments show the
effectiveness of our methods without retraining the
NMT backbone. Hence, it is a potential method

to quickly incorporate newly arriving domains into
the existing NMT systems.
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