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Abstract
We explore the notion of uncertainty in the
context of modern abstractive summariza-
tion models, using the tools of Bayesian
Deep Learning. Our approach approximates
Bayesian inference by first extending state-
of-the-art summarization models with Monte
Carlo dropout and then using them to perform
multiple stochastic forward passes. Based on
Bayesian inference we are able to effectively
quantify uncertainty at prediction time. Hav-
ing a reliable uncertainty measure, we can im-
prove the experience of the end user by fil-
tering out generated summaries of high un-
certainty. Furthermore, uncertainty estimation
could be used as a criterion for selecting sam-
ples for annotation, and can be paired nicely
with active learning and human-in-the-loop ap-
proaches. Finally, Bayesian inference enables
us to find a Bayesian summary which performs
better than a deterministic one and is more
robust to uncertainty. In practice, we show
that our Variational Bayesian equivalents of
BART and PEGASUS can outperform their
deterministic counterparts on multiple bench-
mark datasets.

1 Introduction

State-of-the-art text summarization methods have
achieved remarkable performance in various bench-
marks (Song et al., 2019; Dong et al., 2019; Lewis
et al., 2019; Zhang et al., 2020). The majority of
these methods use very large Transformer models
pre-trained on language generation tasks.

Although such methods can generate high qual-
ity summaries for texts similar to their training set,
they suffer from a couple of issues when the inputs
lie far from the training data distribution. They are
prone to generating particularly bad outputs (Xu
et al., 2020; Kryściński et al., 2020) and are usually
fairly confident about them (Gal and Ghahramani,
2016; Xiao et al., 2020). These shortcomings are
bound to cause problems once a summarization
model is deployed to solve a practical problem.

Since the output of automatic summarization
models is usually expected to be consumed by hu-
mans, it is very important to know when such an
output is of good enough quality to be served to
users. In most cases, it is very much preferable to
not serve an output at all, instead of serving a bad
output. This will in turn increase users’ trust to
automated summarization systems.

Model uncertainty is one way of detecting when
a model’s output is likely to be poor on the grounds
of predicting far away from it’s training distribu-
tion. Recent summarization methods have focused
heavily on improving the overall performance, but
model uncertainty has been explored very little (Xu
et al., 2020).

In addition to improving user experience, the
development of uncertainty measures for summa-
rization can pave the way for active learning ap-
proaches (Gal et al., 2017; Houlsby et al., 2011; Liu
et al., 2020; Lyu et al., 2020). The value of active
learning stems from the fact that obtaining labeled
samples for training is hard, but it is relatively easy
to obtain large amounts of unlabeled samples. Sum-
marization is no different in this perspective, since
creating good quality target summaries for training
can be very costly.

This work explores uncertainty estimation for
state-of-the-art text summarization models, from
a Bayesian perspective. We extend the BART
(Lewis et al., 2019) and PEGASUS (Zhang et al.,
2020) summarization models with Monte Carlo
dropout (Gal and Ghahramani, 2016), in order to
create corresponding Variational Bayesian PEGA-
SUS (VarPEGASUS) and BART (VarBART) mod-
els. Sampling multiple summaries from those mod-
els allows us to approximate Bayesian inference
in a practical way, which in turn enables us to es-
timate summarization uncertainty. To the best of
our knowledge this is the first attempt to apply
Bayesian summary generation with large Trans-
former models.
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Based on Bayesian approximation, we adapt the
Monte Carlo BLEU variance metric (Xiao et al.,
2020) to the summarization task, and investigate its
efficacy as a measure of summarization uncertainty.
Our findings suggest that this uncertainty metric
correlates well with the quality of the generated
summaries and can be effective at identifying cases
of questionable quality.

Finally, we take the summarization uncertainty
study one step further, and select the summary
with the lowest disagreement out of multiple sum-
maries sampled from our Variational models. Ex-
periments across multiple benchmark datasets show
that this method consistently improves summariza-
tion performance (see Table 5), and by using it
our VarPEGASUS and VarBART models achieve
better ROUGE F-scores compared to their original
deterministic counterparts.

The rest of this paper is structured as follows.
Section 2 discusses related work on Bayesian deep
learning and uncertainty estimation methods. Sec-
tion 3 presents our approach. Section 4 describes
our experimental setup, while Section 5 presents
and discusses the results. Finally, Section 6 con-
cludes our work and considers its broader impact.

2 Related work

Uncertainty estimation in deep learning is a topic
that has been studied extensively. Bayesian deep
learning includes a family of methods that attempt
to capture the notion of uncertainty in deep neural
networks. Such methods have gained increased
popularity in the deep learning literature and there
exist multiple applications in subfields such as
Computer Vision (Kendall and Gal, 2017; Litjens
et al., 2017; Gal et al., 2017) and Natural Language
Processing (NLP) (Siddhant and Lipton, 2020; Liu
et al., 2020; Lyu et al., 2020; Xiao et al., 2020).

Despite their obvious advantage of modeling un-
certainty, the main problem with Bayesian deep
learning methods is the computational cost of full
Bayesian inference. To tackle this problem, Gal
and Ghahramani (2016) propose using standard
dropout (Srivastava et al., 2014) as a practical ap-
proximation of Bayesian inference in deep neural
networks and call this method Monte Carlo dropout.
Gal et al. (2017) use a convolutional neural network
with Monte Carlo dropout in order to obtain an un-
certainty estimate for active learning in the task of
image classification. Houlsby et al. (2011) sam-
ple many networks with Monte Carlo simulation

and propose an objective function that takes into
account the disagreement and confidence of the
predictions coming from these networks.

Similar methods have also been applied to NLP.
In machine translation, Xiao et al. (2020) extend
the Transformer architecture with MC dropout to
get a Variational Transformer, and use it to sample
multiple translations from the approximate poste-
rior distribution. They also introduce BLEUVar,
an uncertainty metric based on the BLEU score
(Papineni et al., 2002) between pairs of the gen-
erated translations. Lyu et al. (2020) extend the
work of Xiao et al. (2020) to question answering
and propose an active learning approach based on
a modified BLEUVar version. Similarly, Liu et al.
(2020) use a conditional random field to obtain un-
certainty estimates for active learning and apply
their method to named entity recognition.

Although summarization is a prominent NLP
task, summarization uncertainty has not been
widely studied. Xu et al. (2020) is the only work
that focuses on uncertainty for summarization, but
their work does not make use of Bayesian methods.
They define a generated summary’s uncertainty
based on the entropy of each token generated by the
model during the decoding phase. Their study in-
cludes experiments on CNN/DM and XSum using
the PEGASUS and BART summarization models.
Their main focus is on understanding different prop-
erties of uncertainty during the decoding phase, and
their work is not directly comparable to ours.

3 Methods

We first introduce Bayesian inference, in the con-
text of deep neural networks and show how it can
be used to measure uncertainty. Subsequently, we
show how Bayesian inference can be applied to
summarization in order to estimate the uncertainty
of a summary generated for a given input. Finally,
we show how Bayesian inference can be employed
for producing better summaries.

3.1 Monte Carlo dropout

Contrary to standard neural networks, Bayesian
probabilistic models capture the uncertainty notion
explicitly. The goal of such models is to derive the
entire posterior distribution of model parameters θ
given training data X and Y (Equation 1).

P (θ|X,Y ) =
P (Y |X, θ)P (θ)

P (Y |X)
(1)
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At test time, given some input x, a prediction ŷ
can be made by integrating over all possible θ val-
ues (Equation 2). The predictive distribution’s vari-
ance can then be used as a measure of the model’s
uncertainty.

P (ŷ|x,X, Y ) =

∫
P (ŷ|x, θ)P (θ|X,Y )dθ (2)

In practice, integrating over all possible parame-
ter values for a deep neural network is intractable,
and therefore Variational methods are used to ap-
proximate Bayesian inference. A neural network
trained with dropout can be interpreted as a Varia-
tional Bayesian neural network (Gal and Ghahra-
mani, 2016), and as a result making stochastic for-
ward passes with dropout turned on at test time
is equivalent to drawing from the model’s predic-
tive distribution. This Monte Carlo (MC) dropout
method can be easily applied to any neural network
that has been trained with dropout.

3.2 Summary uncertainty
MC dropout is a simple yet effective method that
requires no adjustment to the underlying model. It
is possible to convert any state-of-the-art summa-
rization model to a Variational Bayesian model,
with the use of MC dropout. For Transformer
based models in particular, the Transformer blocks
that make up the encoder and decoder are usually
trained with dropout, and therefore the conversion
is trivial by simply turning dropout on at test time.

In Variational models, the variance of the predic-
tive distribution can be used to measure the model’s
uncertainty. For a text summarization model, we
can approximate the variance of this distribution,
by measuring the dissimilarity ofN stochastic sum-
maries y1, y2 . . . yN , generated with MC dropout.

The BLEU metric (Papineni et al., 2002) is com-
monly used for measuring the similarity between
a pair of texts. As in Xiao et al. (2020), we ap-
proximate the model’s predictive variance with
the BLEU Variance (BLEUVar) metric over the N
summaries generated with MC dropout as shown
in Equation 3. BLEUVar is computed by summing
the squared complement of BLEU among all pairs
of summaries (twice as BLEU is asymmetric) gen-
erated for the same input with different dropout
masks.

BLEUVar =
N∑
i=1

N∑
j 6=i

(1− BLEU(yi, yj))
2 (3)

Because we sum over all pairs of N samples
twice, scores that are computed with different N
values are not directly comparable. To alleviate
this issue we propose a normalized version of the
metric, BLEUVarN, where we divide BLEUVar by
N(N − 1) (Equation 4). This allows for compar-
isons between scores computed with different N
values.

BLEUVarN =

∑N
i=1

∑N
j 6=i(1− BLEU(yi, yj))

2

N(N − 1)
(4)

By running multiple stochastic forward passes
for the same input, we essentially create an ensem-
ble of models with different parameters. Making
predictions with this ensemble has the following
effects. For inputs close to the learned distribu-
tion the summaries generated by all models in the
ensemble will be similar to one another, and as a re-
sult BLEUVarN will be low. On the other hand, for
inputs lying away from the learned distribution, the
generated summaries will differ wildly and BLEU-
VarN will be high, indicating high uncertainty.

3.3 Bayesian summary generation

Inspired by the fact that making multiple predic-
tions with MC dropout is equivalent to ensembling
multiple stochastic models, we propose a novel
Bayesian approach to summary generation. Instead
of generating a single deterministic summary with-
out dropout, as is commonly the case with modern
summarization approaches, we consider using the
predictive mean of multiple predictions made with
MC dropout. Because the predictions in our case
are summaries their predictive mean is not well
defined, so instead we opt for selecting one of the
N summaries.

We assume that the predictive mean of the N
summaries generated with MC dropout should be
the one having the lowest disagreement with the
rest of the N − 1 summaries. Since the pairwise
complement of BLEU between all pairs of the sam-
pled summaries has already been computed when
estimating BLEUVarN uncertainty, it can be fur-
ther used to help us find the lowest disagreement
summary. In practice, we select the summary µ̂
that maximizes the sum of symmetric BLEU simi-
larity with the rest of the summaries (Equation 5)
(Xiao et al., 2020). This summary could be seen
as the median of all the summaries generated with
MC dropout, although this is not a mathematically
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correct expression.

µ̂ = argmax
yi

N∑
j 6=i

[BLEU(yi, yj) + BLEU(yj , yi)] (5)

The intuition behind this approach is based on
the following assumption. We expect the median
summary to integrate the key concepts that all in-
dividual summaries agree on. Consequently, for
inputs close to the model’s learned distribution, the
individual summaries will be similar to one another
and as a result the median summary will be the best
choice. On the other hand, for out-of-distribution
inputs, the median out of a number of very different
summaries will result in a more robust and overall
better final summary. In practice, even for well
trained models, we expect to have a fairly large
number of inputs that are not close to the mod-
els’ learned distribution, and therefore we expect
to benefit from the positive effects of ensembling
multiple outputs.

4 Experimental Setup

We first present the three datasets that are involved
in our experiments, their main statistics and the
reasons for including them in our empirical study.
Then we present the two summarization models
that we employed, along with their parameters and
details on stochastic summary generation.

4.1 Datasets
In order to verify the effectiveness of our Bayesian
abstractive summarization approach, we conducted
a series of experiments on three well-known sum-
marization benchmarks:

• XSum (Narayan et al., 2018) is a dataset of
227k BBC articles on a wide variety of top-
ics. Each article is accompanied by a human
written, single-sentence summary.

• CNN/DailyMail (Hermann et al., 2015) is a
dataset containing a total of 93k articles from
the CNN, and 220k articles from the Daily
Mail newspapers. All articles are paired with
bullet point summaries. The version used is
the non-anonymized variant similar to (See
et al., 2017).

• AESLC (Zhang and Tetreault, 2020) is a
dataset of 18k emails from the Enron corpus
(Klimt and Yang, 2004). The body of each

Table 1: Basic statistics for each one the datasets used
in our experiments. The document and summary length
are measured in words.

Size Length
Dataset Val. Test Doc. Sum.
XSum 11,332 11,334 431 23
CNN/DM 13,368 11,490 760 46
AESLC 1,960 1,906 75 4

email is used as source text and the subject as
summary.

The main criteria for selecting these datasets
are the availability of recent, open source models
trained on them and their relatively short texts that
would allow us to run a number of different experi-
ments quickly. Since our methods do not involve
training, we will only focus on the validation and
test set of each dataset. All datasets are obtained
from the Hugging Face datasets repository1. Table
1 presents some basic statistics for these datasets.

4.2 Models

BART (Lewis et al., 2019) and PEGASUS (Zhang
et al., 2020) are Transformer based sequence-to-
sequence models, pre-trained on massive corpora
of unsupervised data (Web and news articles).
Since our experiments do not involve training, we
utilize open-source models fine-tuned on the train-
ing set of each dataset. These models can be found
in the Hugging Face models repository2.

Our BART models follow the BARTLARGE archi-
tecture with 12 Transformer blocks for the encoder
and the decoder. BART is pre-trained as a denois-
ing autoencoder, where the text is corrupted and the
model learns to reconstruct the original text. Open-
source fine-tuned BART models are only available
for XSum and CNN/DM. Our PEGASUS models
follow the PEGASUSLARGE architecture and have
16 Transformer blocks for the encoder and the de-
coder. PEGASUS is pre-trained on the C4 and
HugeNews datasets, on a sentence infilling task.
Open-source fine-tuned PEGASUS models exist
for all three datasets considered in our experiments.

In order to convert BART and PEGASUS to
Variational models, we enable dropout for all Trans-
former blocks of the encoder and decoder. For each
sample, we generate N summaries using beam

1https://huggingface.co/datasets
2https://huggingface.co/models
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search decoding with 8 beams. We experimented
with N equal to 10 (MC-10) and 20 (MC-20). The
rest of the hyper-parameters used were identical to
the original papers.

5 Results

Our main experiment evaluates BLEUVarN’s effec-
tiveness in quantifying uncertainty for summariza-
tion models. A second experiment investigates the
potential of the Bayesian summarization method
proposed in Section 3.3 as a way of improving
summarization performance at test time.

5.1 Evaluating Bayesian uncertainty

We here evaluate the effectiveness of BLEUVarN
in measuring the model’s uncertainty. The per-
formance versus data retention curve (Filos et al.,
2019) measures how well a model would perform
if we completely removed the k% most uncertain
outputs from the test set. In the x-axis we have the
fraction of data from the test set that are removed,
while in the y-axis we have the performance met-
rics. An effective uncertainty measure should show
a consistent improvement in performance as we
discard more samples based on high uncertainty.
In this experiment, we arrange samples by decreas-
ing BLEUVarN score and gradually remove the
samples with the highest score.

Figure 1 shows, for each dataset, the perfor-
mance of our Variational models in terms of
ROUGE-1 F-score versus the fraction of data
discarded based on BLEUVarN. ROUGE-2 and
ROUGE-L F-scores follow similar patterns and
can be found in the Appendix A. For reference, we
are also plotting the performance of the determin-
istic models using all data as straight lines. Also,
in Table 2 we quantify the percentage increase in
ROUGE F-scores as we discard different fractions
of the full test datasets based on BLEUVarN.

All ROUGE F-scores improve as we gradually
discard samples with high BLEUVarN, an obser-
vation that is consistent across all test datasets and
models. More specifically, we notice that the in-
crease is linear for the first 80% of the data, but
then becomes almost exponential. From these ob-
servations we can draw two conclusions. First,
models indeed perform significantly worse on sam-
ples with high uncertainty. Second, BLEUVarN
is effective at quantifying uncertainty and can be
used to identify high uncertainty samples.

Furthermore, we notice that the performance

Table 2: Percentage increase in ROUGE F-scores
when discarding 25%, 50% and 75% of the data based
on the highest BLEUVarN.

25% 50% 75%
Model R-1/R-2/R-L R-1/R-2/R-L R-1/R-2/R-L

XSum
VarBart-10 6.4/13.8/8.3 12.2/25.2/15.4 22.1/41.9/26.1
VarBart-20 6.5/14.1/8.3 13.2/26.7/16.5 22.5/42.6/27.2

VarPegasus-10 7.5/15.8/9.6 14.9/29.4/18.6 25.2/4.9/29.9
VarPegasus-20 8.0/16.8/10.3 15.8/31.2/19.6 26.3/48.1/31.2

CNN/DM
VarBart-10 2.9/7.2/4.8 5.4/13.1/8.5 8.8/20.4/13.3
VarBart-20 3.2/7.8/5.1 5.3/12.8/8.5 8.3/19.4/12.6

VarPegasus-10 4.1/9.9/6.1 7.8/17.4/10.9 12.6/26.1/16.8
VarPegasus-20 4.6/10.7/6.8 8.5/19.0/11.9 14.7/29.6/18.7

AESLC
VarPegasus-10 17.5/33.5/17.7 30.6/51.9/31.1 54.4/75.0/54.7
VarPegasus-20 18.7/36.3/18.9 36.0/59.7/36.6 58.4/78.0/58.8

increase is significantly higher in the XSum and
AESLC datasets compared to CNN/DM. In particu-
lar, VarPEGASUS-20 shows a staggering 58 point
increase in ROUGE-1 score. We think that this
difference might be related to the more extractive
nature of CNN/DM summaries as opposed to the
other two datasets. Such a finding would mean that
Bayesian uncertainty filtering is more beneficial in
abstractive rather than extractive setups.

To further illustrate how BLEUVarN behaves
across different parts of the data, Figure 2 shows
the decrease in the average BLEUVarN of all Varia-
tional models as we gradually discard samples with
low ROUGE-1 scores from each dataset. We ob-
serve that for the samples with the highest ROUGE
performance BLEUVarN becomes almost zero.
This observation further supports our argument
that model uncertainty has a significant impact on
model performance.

5.1.1 MC-10 vs MC-20
From Figure 1 we can see that MC dropout with 20
samples performs better than 10 samples, resulting
in higher performance. In more detail, for highly
uncertain data, both MC-10 and MC-20 converge
to similar BLEUVarN values (Figure 2) as well
as ROUGE scores (Figure 1). On the other side
of the spectrum, for low uncertainty data, using
20 samples leads to bigger performance increase
along with a little higher BLEUVarN scores.

Based on these observations, we conclude that
MC dropout with 20 samples is generally better
in terms of performance. This comes at the cost
of increased computational overhead because it re-
quires running twice as many stochastic passes with
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Figure 1: ROUGE-1 scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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Figure 2: BLEUVarN curves as a function of data discarded due to low ROUGE-1 scores.

MC dropout. However, this computation is embar-
rassingly parallelizable in modern hardware, and
can be easily optimized by batching MC dropout
generations with different dropout masks for each
sample within the batch.

Although we have shown that MC dropout with
20 samples performs better than 10 samples, we
observed that further increasing this number, for
example to 30 or 50 samples, was beginning to
bring diminishing returns. Furthermore, the perfor-
mance increase we got by using 10 and 20 samples
was substantial enough while the runtimes for MC
dropout with more samples were becoming a lot
longer. For these reasons we refrained from increas-
ing it even further in order to keep computational
capacity manageable.

5.1.2 VarBART vs VarPEGASUS

Out of the two models, VarPEGASUS is consis-
tently showing the biggest increase in performance
as more uncertain samples are dropped from the
dataset. It should be noted here, that the decline in
performance as data uncertainty increases, is much
steeper for VarBART than it is for VarPEGASUS
on both the XSum and the CNN/DM dataset. This
coincides with the fact that VarPEGASUS also has
much higher BLEUVarN uncertainty as shown in
Figure 2, which hints us that the PEGASUS model
is in general less confident about the outputs it
generates. Anecdotally, we can say here that PE-
GASUS is more aware of the things it does not
know, and as a result it seems to benefit more from
the uncertainty estimates.
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5.2 Bayesian vs deterministic summarization

The next experiment focuses on the Bayesian sum-
marization method proposed in Section 3.3. We
compare the performance of Bayesian summariza-
tion using the VarBART and VarPEGASUS mod-
els against the standard summarization paradigm
using the deterministic BART and PEGASUS mod-
els. Our goal is to verify the efficacy of Bayesian
summarization as a post-hoc way of improving
summarization performance.

Table 3 reports the ROUGE-1, ROUGE-2 and
ROUGE-L F-scores of our VarBART and VarPE-
GASUS models along with the deterministic BART
and PEGASUS models on all benchmark datasets,
re-evaluated for consistency. The results show that
Bayesian summarization is effective, with both Var-
BART and VarPEGASUS outperforming their de-
terministic counterparts on all datasets. Further-
more, increasing the number, N , of samples gener-
ated during the Bayesian inference, improves per-
formance for all datasets except for AESLC, at
the cost of increased computational complexity as
discussed in Section 5.1.

Note that our goal in this work was not to com-
pete with other state-of-the-art models. What we
want to show is that relying on the agreement be-
tween multiple Bayesian summaries for the same
input, is an effective way to boost the summariza-
tion performance of deterministic models. Also,
this is a post-hoc method and does not involve train-
ing new models, which makes it easily applicable
to many different scenarios.

Figure 3 plots the difference in ROUGE-1 of
each Variational model with its deterministic coun-
terpart versus the fraction of the data discarded
due to high uncertainty. Similar plots for ROUGE-
2 and ROUGE-L can be found in Appendix A.
Positive values indicate that the Variational model
achieves a higher score than the deterministic one.
These plots give us a better view of how the Vari-
ational models fare against the deterministic ones
for different levels of uncertainty. As far as we
know, this is the first study to directly compare
Variational and deterministic models on data with
varying levels of uncertainty.

Looking at the curves, we clearly see that the dif-
ferences are positive for most uncertainty levels but
start decreasing as more data with high uncertainty
are discarded. For the top 10% − 20% most cer-
tain samples we start seeing a fluctuation between
positive and negative values. This pattern is in line

with the observations made in Figure 1, and leads
us to believe that there is a significant gap between
the deterministic model’s performance on the 20%
most certain samples and the rest of the data.

These observations lead us to the following con-
clusions. For samples of very low uncertainty, we
can expect both Variational and deterministic mod-
els to converge to equally good outputs. In contrast,
as uncertainty becomes higher, we observe a clear
advantage of the Variational summaries over the de-
terministic ones. This pattern is consistent across
all models and datasets, and underpins our case
that Bayesian summarization is beneficial for the
majority of inputs.

5.3 Qualitative analysis

In order to better illustrate our findings in this
work, we present a couple of real examples from
VarPEGASUS-10 on XSum. For each example, we
show the 10 sample summaries generated with MC
dropout for the same input, as well as the corre-
sponding BLEUVarN score. We have highlighted
the median summary in bold typeface and for the
sake of comparison we also show the summary
generated by the deterministic PEGASUS model.

The first example (Table 4) is a case of high
uncertainty from the XSum dataset. We can see
that all 10 samples are considerably different from
one another, which leads to a high BLEUVarN
score. In contrast, the second example (Table 5)
has much lower uncertainty. In this case all 10
samples seem to mostly agree on the main points
and as a result BLEUVarN is fairly low. Here, the
median summary is the one that represents better
this agreement.

Looking at the ROUGE-1 score for both exam-
ples we can see there’s a rather drastic difference
as well. For the sample in Table 4 we can see that
neither the deterministic nor the Bayesian summary
show a strong performance, yet even in that case the
median Bayesian summary scores a bit higher. On
the other hand, the sample in Table 5 showcases
a solid performance from both the deterministic
and the Bayesian summary. Here it is evident that
the median Bayesian summary is close but slightly
better than the deterministic summary in terms of
ROUGE.

6 Conclusions and future work

This work explored Bayesian methods in the con-
text of text summarization. We extended state-of-
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Table 3: A comparison of our VarBART and VarPEGASUS models against the deterministic BART and PEGA-
SUS.

XSum CNN/DM AESLC
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
BART 42.69 20.66 35.29 42.32 20.28 36.21 - - -

VarBART-10 42.97 20.86 35.56 42.65 20.64 36.56 - - -
VarBART-20 43.07 20.97 35.68 42.76 20.76 36.69 - - -

PEGASUS 44.90 23.33 37.74 41.68 20.24 36.17 35.97 20.28 35.09
VarPEGASUS-10 44.93 23.54 38.01 42.04 20.75 36.76 36.36 21.40 35.58
VarPEGASUS-20 45.32 23.87 38.29 42.25 20.98 36.94 36.41 21.00 35.53
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Figure 3: Difference in ROUGE-1 between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-1 is lower than Variational.

the-art summarization models with MC dropout to
approximate Bayesian inference, and demonstrated
how BLEUVarN can be used to quantify model un-
certainty. This allows us to effectively identify high
uncertainty summaries at prediction time, which
can be a significant advantage.

Furthermore, we show that ensembling multi-
ple stochastic summaries generated by Variational
Bayesian models can lead to improved performance
compared to similar deterministic models. This
finding is verified by experiments for two different
models and across 3 benchmark datasets.

It should be noted here that the proposed meth-
ods are directly applicable to other abstractive sum-
marization datasets as well. We acknowledge that
some of the more interesting summarization prob-
lems involve much longer summaries, for example
scientific abstracts. In this work we focused on
datasets of short summaries in order to be more
resource efficient and conduct more experiments.
There’s a lot of interesting work that focuses on
the summarization of longer documents (Gidiotis

and Tsoumakas, 2020; Zaheer et al., 2020) that
could potentially be applied in combination with
the methods we propose here.

Our work can have a broader impact in several
ways. To the research community, being the first
work to study Bayesian uncertainty for abstrac-
tive summarization and paving the way for other
similar methods. To the industry, because it im-
proves automatic summarization systems and can
be paired nicely with active learning and human-
in-the-loop approaches. Finally, to the end users,
improving their experience and building up confi-
dence towards automatic summarization systems.
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A Appendix

Figures 4 and 5 show the performance versus data
retention curves of our Variational models in terms
of ROUGE-2 and ROUGE-L F-score respectively.
The observations here are similar to Figure 1.

Figures 6 and 7 show the differences in ROUGE-
2 and ROUGE-L performance of the Variational
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Figure 4: ROUGE-2 scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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Figure 5: ROUGE-L scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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models versus the deterministic ones. What we see
here is in aggreement with Figure 3.
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Figure 6: Difference in ROUGE-2 between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-2 is lower than Variational.
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Figure 7: Difference in ROUGE-L between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-L is lower than Variational.
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