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Abstract

Recognizing the language of ambiguous texts
has become a main challenge in language iden-
tification (LID). When using multilingual ap-
plications, users have their own language pref-
erences, which can be regarded as external
knowledge for LID. Nevertheless, current stud-
ies do not consider the inter-personal varia-
tions due to the lack of user annotated training
data. To fill this gap, we introduce preference-
aware LID and propose a novel unsupervised
learning strategy. Concretely, we construct
pseudo training set for each user by extracting
training samples from a standard LID corpus
according to his/her historical language distri-
bution. Besides, we contribute the first user la-
beled LID test set called “U-LID”. Experimen-
tal results reveal that our model can incarnate
user traits and significantly outperforms exist-
ing LID systems on handling ambiguous texts.
Our code and benchmark have been released.1

1 Introduction

Language identification (LID) is widely applied
in a range of web services where a multitude of
languages may be presented, such as translation
systems, search engines, and social media (Yao
et al., 2020a; Sun et al., 2020; Li et al., 2020; Bi
et al., 2020; Xu et al., 2021). It predicts the natural
language that a text is written in, and decides which
language-specific model to invoke in downstream
natural language processing (NLP) tasks (Lui et al.,
2014; Yao et al., 2020b; Tambi et al., 2020).

Several recent studies have well tackled LID by
designing a feature set for a traditional or neural
classifier (Kocmi and Bojar, 2017; Vo and Khoury,
2020; Jauhiainen et al., 2021). However, these
researches merely explore textual information re-
gardless of external knowledge about the user. In
a real-world scenario, there exists large amount of

∗Baosong Yang is the corresponding author.
1https://github.com/xzhren/PreferenceAwareLID

User Input Text Label Prefer. Baseline Ours
velo es (veil) es en es
velo fr (bike) fr en fr
fundas huawei y7 es (huawei y7 cases) es en es
kello kitty en (hello kitty) de it en

Table 1: Examples of ambiguous text that are difficult
to be accurately recognized. “Label” shows the lan-
guage label that is annotated by a user and conforms
to his/her input intention. “Prefer.” denotes the lan-
guage most frequently used by the corresponding user.
“Baseline” and “Ours” indicate the predictions of base-
line LID system and the proposed model, respectively.

ambiguous user inputs, such as texts with false-
friend, code-switching, and misspelling, as shown
in Table 1. On the one hand, the languages of these
texts are difficult (even impossible) to be explic-
itly identified without external knowledge. On the
other hand, for different users, a good LID should
flexibly give different results to the same ambigu-
ous input, thus conforming to users’ intention (Lin
et al., 2021). It can be said that classifying am-
biguous user inputs remains a main challenge in
LID (Xia et al., 2010; Stiller et al., 2010).

When drawing on a multilingual NLP applica-
tion, every person has his/her own accustomed lan-
guages. The historical behavior implicitly mirrors
the user language preference and can be exploited
for LID. To this end, we propose a task named
preference-aware LID, where the historical lan-
guage distribution of a user is leveraged for the
disambiguation of mistakable texts, and guides LID
to predict different languages for different users.

A major bottleneck for this task lies in the lack
of well-labeled training data. In particular, it is
unavailable to obtain large amount of ambiguous
texts labeled with different languages by different
users. To overcome this issue, we propose a novel
unsupervised strategy that builds synthetic data for
each user via sampling natural training examples
according to his/her historical language distribution.
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We build our model upon Transformer (Vaswani
et al., 2017) and introduce two kinds of extensions.
One is directly revising the predicted probability of
LID using the user language preference. In order
to maintain the robustness, the other encodes the
user traits into inductive bias.

Our models are trained using a publicly available
dataset extracted from Wikipedia. Towards evalu-
ating the effectiveness, we construct a user-driven
LID test set “U-LID”. The benchmark consists of
21 languages, each of which contains 500 examples
collected from a real-world translation system and
labeled by users. Extensive analyses demonstrate
the superiority and the robustness of our approach
on recognizing error-prone cases.

2 Preliminary

Problem Formulation Given an input text X ,
the vanilla LID model with parameter θ predicts
the probability of the language y by P (y|X; θ).
As an extension of conventional LID, preference-
aware LID considers the traits of each user, thus
facilitating the classifying of ambiguous texts. In
this paper, we treat the language preference of user
as the external knowledge, which can be implicitly
embodied in historical language distribution D(u)

of user u. Consequently, our task aims to model
P
(
y(u)|X,D(u); θ

)
, as illustrated in Figure 1.

User Annotated Test Set In order to assess the
effectiveness of the proposed method, we construct
a preference-aware LID test set called “U-LID”.
The training instance is represented as a triplet
〈X,D(u), y(u)〉. The samples are collected from a
real-world translation system - Alibaba Translate.2

We mine user annotated data as follows: Given
a user input, the translation system first returns a
predicted language label and the associated trans-
lation results. When the user is dissatisfied with
the prediction result, he/she may change the pre-
dicted language label. We argue that this operation
not only reflects the user intention concerning the
language, but also implies that the classification
of the current input is error-prone. Accordingly,
we collect texts whose predicted labels are revised
by users. The test set is further manually checked
and carefully desensitized by linguistic experts to
maintain the data quality. Finally, the benchmark
consists of 21 languages and 11,031 samples.3 The

2https://translate.alibaba.com
3Including: English (en), Chinese (zh), Russian (ru), Por-

tuguese (pt), Spanish (es), French (fr), German (de), Italian
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Figure 1: Illustration of the preference-aware LID task.
The input text “basket” is a false-friend in English and
French. Our model considers user language preference
D(u), thus being able to identify ambiguous text and
generate distinct results for different users.

average word count in each sample is 2.08, and the
average number with respect to character is 13.27.

3 Methodology

3.1 Preference-Aware Model

Our model is built upon the advanced neural-
based model – Transformer (Vaswani et al., 2017).
Given an input query X , the output token repre-
sentations can be formally expressed as: Z =
Transformer(X).

The final probability distribution is calculated by
assigning an output layer:

Y = softmax(WoZ + bo), (1)

where Z denotes the mean of the token represen-
tations Z. Wo ∈ RL×H , bo ∈ RL are trainable
parameters with H being the hidden size and L
being the number of languages. softmax(·) repre-
sents a non-linear function that is used to normalize
the probability distribution of labels.

We propose the preference-aware model to lever-
age user language preference into LID includes two
types of approaches:

Revision-Based Model Intuitively, we can mul-
tiply the output Y and the user language preference
D(u) directly. The final distribution is revised as:

Y (u) = softmax(Y D(u)). (2)

In this paradigm, we regard D(u) as a reviser at
the model training time. Note that, revision-based
model can be also exploited in a plug-and-play
fashion without any model training.

(it), Dutch (nl), Japanese (ja), Korean (ko), Arabic (ar), Thai
(th), Hindi (hi), Hebrew (he), Vietnamese (vi), Turkish (tr),
Polish (pl), Indonesian (id), Malay (ms), and Ukrainian (uk).
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Figure 2: Illustration of the construction of synthetic
data. We use smoothed language preference of a user
to sample examples from the standard training corpus.

Representation-Based Model A natural alterna-
tive is to encode language preference into a rep-
resentation, which is then served as an inductive
bias in the output layer. Here, we assign L train-
able language embeddings We ∈ RL×L. The user
representation is the weighted sum of language em-
beddings regarding to user language distribution:
WeD

(u). We modified Equation 1 as follows:

Y (u) = softmax(WoZ +WeD
(u) + bo). (3)

3.2 Unsupervised Training
The main challenge of our task lies in the lack of
user annotated training data. It is hard to construct
large amount of training examples in the triplet
form 〈X,D(u), yu〉. Although we construct a test
set by mining user operations on switching lan-
guages, such kind of approach depends on expen-
sive manual review due to the massive noises.

To tackle this problem, we propose a novel unsu-
pervised training strategy, as illustrated in Figure 2.
In an existing LID training corpus T , each text
is labeled to a language. Given the user histori-
cal language distribution D(u), we sample a subset
T (u) from T and guarantee the language distribu-
tion of T (u) to be consistent with D(u). Neverthe-
less, most people only use one or two languages,
making their historical distribution concentrated
on a few languages. Immediately utilizing D(u) to
sample examples for training may cause overcon-
fidence problem. Firstly, the model may tend to
overlook either the user information or the input
text. Secondly, texts of which language frequency
is relatively low in D(u) may fail to be correctly
classified, especially for those languages not ap-
pearing in the user’s historical inputs. Accordingly,
we borrow the idea of up-sampling (Pereyra et al.,

2017; Wan et al., 2022) into our approach. The
final sampling distribution can be calculated as:

S(u) = softmax((1− α)D(u) + α/L). (4)

Here, we set α = 0.01 and collect 100 examples
for each user as default. Besides, in order to main-
tain the robustness and cope with the situation that
the user’s historical input is none or inaccessible,
we treat the uniform distribution as D(u), then sup-
plement the same number of standard training ex-
amples to that in current synthetic corpus.

4 Experiments

4.1 Experimental Setting
Data Setting We collect 100 thousand (K) users
from the log of the real-world translation system
Alibaba Translate. Considering the standard LID
corpus T , we follow Vo and Khoury (2020) to ex-
tract the natural training data from the released
datasets: W2C corpus (Majlis and Zabokrtský,
2012), Common Crawl corpus (Schäfer, 2016) and
Tatoeba (Tiedemann and Thottingal, 2020). Finally
T consists of 21 languages, each of which contains
5 million (M) samples. We examine models on
U-LID test set. Moreover, in order to investigate
the robustness of our methods on conventional LID
task, we further collect a publicly available test set
KB-21 from Kocmi and Bojar (2017), using a sub-
set of 21 languages. KB-21 consists of 2,100 sam-
ples, the average amounts of words and characters
in each sample are 4.47 and 34.90, respectively.

Implementation Details We follow the Base
model setting as Vaswani et al. (2017), excepting
that the number of layers is set to 1 for the compu-
tational efficiency.4 To avoid the problem of out-
of-vocabulary, we follow existing LID approaches
to exploit character-based embedding (Jauhiainen
et al., 2019), in which vocabulary size is set to 15K.

In this study, 1-Layer TRANSFORMER model
is served as baseline. We reimplement widely
used text classification models, FASTTEXT (Joulin
et al., 2017) and TEXTCNN (Kim, 2014) as well
as recent LID approach ATTENTIONCNN (Vo and
Khoury, 2020), as listed in Table 2. In addi-
tion, we reproduced a state-of-the-art model Naive
Bayes (Jauhiainen et al., 2021) in VarDial2021 task
(Chakravarthi et al., 2021). Moreover, we also
examine popular LID systems on our LID tasks,

4We verified that complex networks marginally contribute
to LID, which is consistent with findings in Ceolin (2021).
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Model U-LID KB-21
Existing LID Systems

Langid.py (Lui and Baldwin, 2012) 63.52 91.33
LanideNN (Kocmi and Bojar, 2017) 67.23 92.71

Reimplemented Models
NAIVE BAYES (Jauhiainen et al., 2021) 60.53 89.91
FASTTEXT (Joulin et al., 2017) 59.25 88.69
TEXTCNN (Kim, 2014) 61.58 91.24
ATTENTIONCNN (Vo and Khoury, 2020) 62.16 91.41

Ours
TRANSFORMER (Baseline) 67.35 92.81

+Revision-Based Model 89.23†† 91.19
+without training 84.79†† 92.81

+Representation-Based Model 88.74†† 93.09†

Table 2: Classification accuracy (ACC) on test sets.
For reference, when immediately regarding the user
preference language as the predicted result, the ACC on
U-LID is 66.42. The proposed preference-aware LID
models show significant improvements on U-LID tasks.
Experimental results of neural-based models own av-
eraged over 5 independent runs.“†” and “††” indicate
the improvement over TRANSFORMER is statistically
significant (p < 0.05 and p < 0.01, respectively), esti-
mated by bootstrap sampling (Koehn, 2004).

including Langid.py5 (Lui and Baldwin, 2012) and
LanideNN6 (Kocmi and Bojar, 2017).

For training, we used Adam optimizer (Kingma
and Ba, 2015) with the same learning rate schedule
as Vaswani et al. (2017) and 8k warmup steps. Each
batch consists of 1,024 examples and dropout rate
is set to a constant of 0.1. Models are trained on a
single Tesla P100 GPU.

Considering the compared models, we exploit
1-3 gram to extract characters and words for FAST-
TEXT (Joulin et al., 2017). As to TEXTCNN (Kim,
2014), we apply six filters with the size of 3, 3, 4,
4, 5, 5 and a hidden size of 512. For computational
efficiency, 1 layer network is used as default if no
confusion is possible. Other configurations of our
reimplementations are same to common settings de-
scribed in corresponding literature or the released
source codes.

4.2 Results

The results are concluded in Table 2. Our mod-
els significantly outperform the compared methods
over 17%-22% accuracy on U-LID task, indicating
the effectiveness of the utilization of user informa-
tion. Specifically, treating user’s language prefer-
ence as a reviser performs best on U-LID, while

5https://github.com/saffsd/langid.py
6https://github.com/kocmitom/LanideNN
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Figure 3: Effects of the number of historical inputs on
U-LID. Representation-based model is more robust.

declining the quality on KB-21. We attribute this to
the overconfidence of revision-based model on user
historical language distribution, which weakens the
learning of LID model on original text classifica-
tion. It is encouraging to see that revision-based
model without training can yields considerable re-
sult on U-LID, in the meanwhile, does not affect
the quality on KB-21 by feeding the uniform his-
torical distribution. By contrast, representation-
based model alleviates the overconfidence problem
and achieves good performance in both U-LID and
KB-21. Accordingly, we use representation-based
model as the default setting in subsequent analyses.

4.3 Analysis

Robustness Analysis User’s language prefer-
ence greatly affects our model. The less the user
historical inputs, the higher the uncertainty of user
preference is. Accordingly, the robustness of our
model is necessary to be assessed. We plot Figure 3
to show the effects of the number of historical in-
puts. Obviously, revision-based model yields lower
accuracy when there exists relatively bare user his-
torical information, verifying our hypothesis that
the model suffers from the problem of overconfi-
dence on historical language distribution. On the
contrary, representation-based model draws a more
smooth line, which demonstrates its robustness.

Qualitative Analysis Table 1 shows several iden-
tification results. In the first two cases, “velo” is a
Spanish and French false-friend. The third example
is code-switching in which “huawei y7” is a mobile
phone module, preceded by a Spanish word which
means “case”. For the last case, “kello” presents a
misspelled English word “hello”. Results indicate
that vanilla LID model fails to correctly identify
these cases, while our model can exactly predict
distinct results that conform to the user intention.
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5 Conclusion

We explore preference-aware LID. Major contribu-
tions of our work are four-fold: 1) We introduce
preference-aware LID task that leverages user lan-
guage preference to improve LID. We hope our
work can attract more attention to explore tech-
niques on this topic; 2) We propose a novel un-
supervised strategy to guide model to take user
historical language distribution into account; 3)
We collect U-LID and make it publicly available,
which may contribute to the subsequent researches
on LID; and 4) Extensive analyses indicate the ef-
fectiveness and robustness of our method, verifying
that LID can profit from personality information to
make the results conform to user intention.
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