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Abstract

Aspect-based sentiment analysis (ABSA) pre-
dicts sentiment polarity towards a specific as-
pect in the given sentence. While pre-trained
language models such as BERT have achieved
great success, incorporating dynamic semantic
changes into ABSA remains challenging. To
this end, in this paper, we propose to address
this problem by Dynamic Re-weighting BERT
(DR-BERT), a novel method designed to learn
dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT lay-
ers as a primary encoder to grasp the overall
semantic of the sentence and then fine-tune it
by incorporating a lightweight Dynamic Re-
weighting Adapter (DRA). Note that the DRA
can pay close attention to a small region of the
sentences at each step and re-weigh the vitally
important words for better aspect-aware senti-
ment understanding. Finally, experimental re-
sults on three benchmark datasets demonstrate
the effectiveness and the rationality of our pro-
posed model and provide good interpretable in-
sights for future semantic modeling.

1 Introduction

Aspect-based sentiment analysis is a branch of sen-
timent analysis, which aims to identify sentiment
polarity of the specific aspect in a sentence (Jiang
et al., 2011). For example, given a sentence “The
restaurant has attentive service, but the food is
terrible.”, the task aims to predict the sentiment
polarities towards “service” and “food”, which
should be positive and negative respectively.

As a fundamental technology, the ABSA task
has broad applications, such as recommender sys-
tem (Chin et al., 2018; Zhang et al., 2021b) and
question answering (Wang et al., 2019). Therefore,
a great amount of research has been attracted from
both academia and industry. Among them, deep
neural networks (DNN) (Nguyen and Shirai, 2015;

∗ Corresponding author.

Tang et al., 2015, 2016; Zheng et al., 2020), at-
tention mechanism (Wang et al., 2016; Ma et al.,
2017) and graph neural/attention networks (Huang
and Carley, 2019; Zhang et al., 2019a; Wang et al.,
2020) have significantly improved the performance
through deep feature alignment between the aspect
representations and context representations.

Recently, the large-scaled pre-trained language
models, such as Bidirectional Encoder Represen-
tations from Transformers (BERT) (Devlin et al.,
2019), realize a breakthrough for improving many
language tasks, which further attracts considerable
attention to enhance the semantic representations.
In ABSA, Xu et al. (2019a) designed BERT-PT,
which explores a novel post-training approach on
the BERT model. Song et al. (2019) further pro-
posed a text pair classification model BERT-SPC,
which prepares the input sequence by appending
the aspects into the contextual sentence. Although
great success has been achieved by the above stud-
ies, some critical problems remain when directly
applying attention mechanisms or fine-tuning the
pre-trained BERT in the task of ABSA.

Specifically, most of the existing approaches se-
lect all the important words from a contextual sen-
tence at one time. However, according to neuro-
science studies, the essential words during seman-
tic comprehension are dynamically changing with
the reading process and should be repeatedly con-
sidered (Kuperberg, 2007; Tononi, 2008; Brouwer
et al., 2021). For example, when judging the senti-
ment polarity of the aspect “system memory” in a
review sentence “It could be a perfect laptop if it
would have faster system memory and its radeon
would have DDR5 instead of DDR3”, the impor-
tant words should change from general sentiment
words {“faster”, “perfect”, “laptop”} into aspect-
aware words {“would have”, “faster”, “could”,

“be”, “perfect”}. Through these dynamic changes,
the sentiment polarity will change from positive to
the ground truth sentiment label negative.
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Meanwhile, simply initializing the encoder with
a pre-trained BERT does not effectively boost the
performance in ABSA as we expected (Huang and
Carley, 2019; Xu et al., 2019a; Wang et al., 2020).
One possible reason could be that training on two
specific tasks, i.e., Next Sentence Prediction and
Masked LM, with rich resources leads to better
semantic of the overall sentences. However, the
ABSA task is conditional, which means the model
needs to understand the regional semantics of sen-
tences by fully considering the given aspect. For
instance, BERT tends to understand the global sen-
timent of the above sentence “It could be a perfect
laptop ... of DDR3” regardless of which aspect is
given. But in ABSA, the sentence is more likely
to be different sentiment meanings for different as-
pects (e.g., negative for “system memory” while
positive for “DDR5”). Therefore, the vanilla BERT
is hardly to pay closer attention to relevant informa-
tion for the specific aspect, especially when there
are multiple aspects in one sentence.

To equip the pre-trained models with the abil-
ity to capture the aspect-aware dynamic semantics,
we present a Dynamic Re-weighting BERT (DR-
BERT) model, which considers the aspect-aware
dynamic semantics in a pre-trained learning frame-
work. Specifically, we first take the Stack-BERT
layers as primary sentence encoder to learn overall
semantics of the whole sentences. Then, we devise
a Dynamic Re-weighting Adapter (DRA), which
aims to pay most careful attention to a small region
of the contextual sentence and dynamically select
and re-weight one critical word at each step for bet-
ter aspect-aware sentiment understanding. Finally,
to overcome the limitation of vanilla BERT men-
tioned above, we incorporate the light-weighted
DRA into each BERT encoder layer and fine-tune
it to adapt to the ABSA task. We conduct extensive
experiments on three widely-used datasets where
the results demonstrate the effectiveness, rational-
ity and interpretability of the proposed model.

2 Related Work

2.1 Aspect-based Sentiment Analysis
Aspect-based sentiment analysis identifies specific
aspect’s sentiment polarity in the sentence. Some
approaches (Ding and Liu, 2007; Jiang et al., 2011;
Kiritchenko et al., 2014) designed numerous rules-
based models for ABSA. For example, Ding and
Liu (2007) first performed dependency parsing to
determine sentiment polarity about the aspects.

In recent years, most research studies make use
of the attention mechanism to learn the word’s se-
mantic relation (Tang et al., 2015, 2016; Wang
et al., 2016; Ma et al., 2017; Xing et al., 2019;
Liang et al., 2019; Zhang et al., 2021a). Among
them, Wang et al. (2016) proposed an attention-
based LSTM to identify important information re-
lating to the aspect. Ma et al. (2017) developed
an interactive attention to model the aspect and
sentence interactively. Fan et al. (2018) defined
a multi-grained network to link the words from
aspect and sentence. Li et al. (2018) designed a
target-specific network to integrate aspect informa-
tion into sentence. Tan et al. (2019) introduced a
dual attention to distinguish conflicting opinions.

In addition, another research trend is to leverage
syntactic knowledge to learn syntax-aware features
of the aspect (Tang et al., 2019; Huang and Car-
ley, 2019; Zhang et al., 2019a; Sun et al., 2019;
Wang et al., 2020; Tang et al., 2020; Chen et al.,
2020; Li et al., 2021; Tian et al., 2021). For ex-
ample, Tang et al. (2020) developed dependency
graph enhanced dual-transformer network to fuse
the flat representations. More recently, pre-trained
methods have been proved remarkably successful
in the ABSA task. Song et al. (2019) devised an at-
tentional encoder and a BERT-SPC model to learn
features between aspect and context. Wang et al.
(2020) reshaped the dependency trees and proposed
a relational graph attention network to encode the
syntax relation feature. Tian et al. (2021) explicitly
utilize dependency types with a type-aware graph
networks to learn aspect-aware relations.

However, these methods largely ignore the pro-
cedure of dynamic semantic comprehension (Ku-
perberg, 2007; Kuperberg and Jaeger, 2016; Wang
et al., 2017; Zhang et al., 2019c; Brouwer et al.,
2021) and can not fully reveal dynamic semantic
changes of the aspect-related words. Thus, it’s hard
for ABSA models to achieve the same performance
as human-level sentiment understanding.

2.2 Human Semantic Comprehension
Actually, no matter in the early days or now, im-
itating the procedure of human semantic compre-
hension has always been one of the original inten-
tion of many studies (Bezdek, 1992; Wang et al.,
2017; Zheng et al., 2019; Li et al., 2019; Zhang
et al., 2019d; Peng et al., 2020; Golan et al., 2020),
such as machine reading comprehension (Zhang
et al., 2019d; Peng et al., 2020), visual object detect-
ing (Spampinato et al., 2017) and relevance estima-
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Figure 1: An illustration of the proposed framework. The blue blocks constitute a pre-trained BERT model which
are frozen during fine-tuning, and the right block represents the dynamic re-weighting adapter that is inserted after
each BERT encoder layer and trained during fine-tuning. Moreover, S and A represent the sentence sequence and
the aspect sequence respectively. N indicates the number of layers of the BERT encoder.

tion (Li et al., 2019). For example, attention mecha-
nism (Vaswani et al., 2017) has a widespread influ-
ence, which allows the model to focus on important
parts of the input as human’s attention. Spampinato
et al. (2017) aimed to learn human–based features
via brain-based visual object. Wang et al. (2017)
built a dynamic attention model to model human
preferences for article recommendation.

Moreover, some psychologists and psycholin-
guists have also done many research on the mecha-
nisms of human semantic comprehension (Kuper-
berg, 2007; Kuperberg and Jaeger, 2016; Brouwer
et al., 2021). Specifically, some scholars (Yang and
McConkie, 1999; Rayner, 1998) found that most
people may focus on 1.5 words. Moreover, Koch
and Tsuchiya (2007) and Tononi (2008) assumed
that people can only remember the meaning of
about 7 to 9 words at each time. The phenomenons
indicate that most people only focused on a small
region of the sentence at one time and need to re-
peatedly process important parts for better semantic
understanding (Sharmin et al., 2015).

Inspired by the above research and linguistic psy-
chology theories, in this paper, we explore aspect-
aware semantic changes of the ABSA task by incor-
porating the procedure of dynamic semantic com-
prehension into the pre-trained language model.

3 Dynamic Re-weighting BERT
In this section, we introduce the technical detail of
DR-BERT. Specifically, we start with the problem
definition, followed by an overall architecture of
DR-BERT as illustrated in Figure 1.
Problem Definition In ABSA, a sentence-aspect
pair (S,A) is given. In this paper, the sentence is

represented as S = {ws
1, w

s
2, ..., w

s
ls
} which con-

sists of a series of ls words. The specific aspect
is denoted as A = {wa

1 , w
a
2 , ..., w

a
la
} which is a

part of S. la is the length of aspect words. The
goal of ABSA is to learn a sentiment classifier that
can precisely predict the sentiment polarity of sen-
tence S for specific aspect A. As the aspect-related
information plays a key role in the prediction (Li
et al., 2018; Zheng et al., 2020), this paper aims
to dynamically select and encode the aspect-aware
semantic information through the proposed model.

Overall Architecture DR-BERT mainly contains
two components (i.e., BERT encoder and Dynamic
Re-weighting Adapter), together with two modules
(i.e., the embedding module and sentiment predic-
tion module). The technical details of each part
will be elaborated on as follows.

3.1 Embedding Module
To represent semantic information of the aspect
words and context words better, we first map each
word into a low-dimensional vector. Specifically,
the inputs of DR-BERT are the sentence sequence
and the corresponding aspect sequence. For the
sentence sequence, we construct the BERT input
as “[CLS]” + sentence +“[SEP]” and the sentence
S = {ws

1, w
s
2, ..., wls} can be transformed into

the hidden states s = {si | i = 1, 2, . . . , ls} with
BERT embedding. For aspect sequences, we adopt
the same method to get the representation vector
of each word. Thus, through the embedding mod-
ule, the aspect sequence A = {wa

1 , w
a
2 , ..., w

a
la
} is

mapped to as = {aj | j = 1, 2, . . . , la}. Note that,
if the aspect sequence is a single word like “food”,
the aspect representation is the embedding of the
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single word “food”. While for the cases where the
sequence contains multiple words such as “system
memory”, the aspect representation is the average
of each word embedding (Sun et al., 2015). We can
denote the aspect embedding process as:

a =


a1, if la = 1 ,

(
∑la

j=1 aj)/ la , if la > 1 ,

(1)

where aj is the embedding of word j in the aspect
sequence. a denotes the embedding of the aspect.

3.2 BERT Encoder
The architecture of BERT (Devlin et al., 2019) is
akin to the Transformer (Vaswani et al., 2017). For
simplicity, we omit some architecture details such
as position encoding, layer normalization (Xu et al.,
2019b) and residual connections (He et al., 2016).

1) Multi-head Self-attention Mechanism. In re-
cent years, the multi-head self-attention mechanism
(MultiHead) has received a wide range of applica-
tions in natural language processing. In the pa-
per, we adopt MultiHead with h heads to obtain
the overall semantics of the whole sentence. The
product from each self-attention network is then
concatenated and finally transformed as:

m = {mi | i = 1, 2, . . . , ls}

= MultiHead(sWQ
h , sW

K
h , sW

V
h ),

(2)

where h denotes the h-th attention head, WQ
i , WK

i

and WV
i are learnable parameters. Finally, the out-

put feature is m = {mi | i = 1, 2, . . . , ls}. For
detailed implementation of MultiHead, please re-
fer to Transformer (Vaswani et al., 2017).

2) Position-wise Feed-Forward Network. Since
the multi-head attention is a series of linear trans-
formations, we then apply the position-wise feed-
forward network (FFN) to learn the feature’s non-
linear transformation. Specifically, the FFN con-
sists of two linear transformations along with a
ReLU activation in between. More formally:

f = {fi | i = 1, 2, . . . , ls}
= max(0,mW1 + b1)W2 + b2,

(3)

where W1, b1, W2 and b2 are learnable parame-
ters in the linear transformations.

So far, with the input S = {ws
1, w

s
2, ..., w

s
ls
}, we

obtain the hidden states f = {fi | i = 1, 2, . . . , ls}
via the BERT encoder. Then, for the words’ hidden

states of the sentence from FFN, we utilize the max-
pooling operation to fairly select crucial features in
the sentence (Lai et al., 2015; Zhang et al., 2019b),
so as to obtain the original sentence representation
hs at the beginning of each re-weighting step:

hs = Max_Pooling(fi | i = 1, 2, . . . , ls). (4)

3.3 Dynamic Re-weighting Adapter (DRA)
The currently attention mechanism in deep learning
is essentially similar to the selective visual attention
of human beings (Vaswani et al., 2017; You et al.,
2016). However, as for the text semantic under-
standing, human brain will discover the intentional
relationship of words at a sentential level (Taatgen
et al., 2007; Sha et al., 2016; Sen et al., 2020) and
link the incoming semantic information with pre-
existing information stored within memory. Thus,
we design a dynamic re-weighting adapter (DRA)
which can dynamically emphasize the important
aspect-aware words for the ABSA task.

As shown in the right part of Figure 1, based
on overall semantics of the whole sentence, DRA
further selects the most important word at each
step with consideration of the specific aspect rep-
resentation. Specifically, the inputs of DRA are
the final outputs of the BERT encoder (i.e., hs)
and the original aspect embedding (i.e., a). In
each step, we first utilize re-weighting attention to
choose the word for current input from the input
sequence ({si | i = 1, 2, . . . , ls}). Then, we utilize
Gated Recurrent Unit (GRU)(Cho et al., 2014) to
encode the chosen word and update the semantic
representation of the review sentence.

Formally, we regard the calculation process as:

at = F ([s1, s2, . . . , sls ] ,ht−1,a) ,

ht = GRU (at,ht−1) , t ∈ [1, T ]
(5)

where a is the original embedding vector of the
aspect words. at is the output of re-weighting func-
tion F . T denotes the dynamic re-weighting length
over the sentences, which represents the cognitive
threshold of human beings. h0 = hs is the initial
state and hT is the output hidden states of DRA.

1) The Re-weighting Function. More specifi-
cally, we utilize the attention mechanism to achieve
the re-weighting function F, which aims to select
the most important aspect-related word at each step.
The calculation can be formulated as:

S = [s1, s2, . . . , sls ] ,

M = WsS + (Wdht−1 + Waa)⊗w,

m = ωT tanh (M) ,

(6)
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where S denotes the original sentence embedding,
M is the fusion representation of the aspects and
the sentences. Ws, Wd, Wa and ω are trainable
parameters. w ∈ Rls is a row vector of 1 and ⊗
denotes the outer product.

Subsequently, to better encode aspect-aware se-
mantics, we choose the most important word (i.e.,
one word) at each step for the specific aspect.

αi =
exp (mi)∑ls

k=1 exp (mk)
,

at = sj , (j = Index(max(αi)))

(7)

where mi and αi are the hidden state and the atten-
tion score of i-th word in the sentence. at is the
chosen word which is most related to the specific
aspect at t-th step. However, Index(max(·)) oper-
ation has no derivative, which means its gradient
could not be calculated. Inspired by softmax func-
tion, we modify the Eq.7 and employ the following
operation to re-weight the contextual words:

at =

ls∑
i=1

exp (λmi)∑ls
k=1 exp (λmk)

si . (8)

Note that, we design a hyper-parameter λ to en-
sure our model achieves the above purpose. Specif-
ically, the softmax function can exponentially in-
crease or decrease the signal, thereby highlighting
the information we want to enhance. Thus, when λ
is an arbitrarily large value, the attention score of
the chosen word is infinitely close to 1, and other
words are infinitely close to 0. In this way, the most
important word (i.e., one word) will be extract from
the context at each re-weighting step.

2) The GRU Function. To better encode seman-
tic of the whole sentence, we also employ GRU to
further imitate the procedure of human semantic
comprehension under the specific context, which is
consistent with the process of people adjusting to
a new text based on their understanding behavior.
Therefore, given a previous vector embedding, the
hidden vectors of GRU are calculated by receiving
it as input:

zt = σ (Wz · [ht−1,at])

rt = σ (Wr · [ht−1,at])

h̃t = tanh (W · [rt ∗ ht−1,at])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t ,

(9)

where σ is the logistic sigmoid function. zt and rt
denote the update gate and reset gate respectively
at the time step t.

Datasets
#Positive #Negative #Neural #L #M
Train Test Train Test Train Test

Restaurant 2164 728 807 196 637 196 20 45.5
Laptop 994 341 870 128 464 169 19 36.5
Twitter 1561 173 1560 173 3127 346 16 10.2

Table 1: The statistics of three benchmark datasets. #L
is the average length of sentences. #M is the proportion
(%) of samples with multiple (i.e., more than 1) aspects.

3.4 Sentiment Predicting
After applying BERT layers and DRA on the input
sentence, its root representation (i.e., s) is convert
into the feature representation e:

e = {ei | i = 1, 2, . . . , ls}
= (Wef + UehT + be) ,

(10)

where We, Ue and be are trainable parameters. Af-
ter N -th stacked BERT layers, we obtain the final
representation of the sentence (i.e., eN ). Then, we
feed it into a Multilayer Perceptron (MLP) and map
it to the probabilities over the different sentiment
polarities via a softmax layer:

Rl = Relu(WlRl−1 + bl) ,

ŷ = softmax (WoRh + bo) ,
(11)

where Wl, Wo , bl and bo are learned parameters.
Rl is the hidden state of l-th layer MLP (R0 = eN ,
l ∈ [1, h]). Rh is the state of final layer which
is also regard as the output of the MLP. ŷ is the
predicted sentiment polarity distribution.

3.5 Model Training
Finally, we applies the cross-entropy loss function
for model training:

L = −
M∑
i=1

C∑
j=1

yji log
(
ŷji

)
+ β‖Θ‖22 , (12)

where yji is the ground truth sentiment polarity. C
is the number of labels (i.e, 3 in our task). M is the
number of training samples. Θ corresponds to all
of the trainable parameters.

4 Experiment

4.1 Datasets
We mainly conduct experiments on three bench-
mark ABSA datasets, including “Laptop”, “Restau-
rant” (Pontiki et al., 2014) and “Twitter” (Dong
et al., 2014). Each data item is labeled with three
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Category
Methods

Datasets Laptop Restaurant Twitter

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Attention.

ATAE-LSTM (Wang et al., 2016) 68.57 64.52 76.58 67.39 67.27 66.43
IAN (Ma et al., 2017) 70.84 65.73 76.88 68.36 68.74 67.61
MemNet (Tang et al., 2016) 72.32 67.03 78.12 68.99 70.19 68.22
AOA (Huang et al., 2018) 74.56 68.77 79.42 70.43 71.68 69.25
MGNet (Fan et al., 2018) 75.37 71.26 81.28 72.07 72.54 70.78
TNet (Li et al., 2018) 76.54 71.75 80.69 71.27 74.93 73.60

Pre-trained.

BERT (Devlin et al., 2019) 77.29 73.36 82.40 73.17 73.42 72.17
BERT-PT (Xu et al., 2019a) 78.07 75.08 84.95 76.96 – –
BERT-SPC (Song et al., 2019) 78.99 75.03 84.46 76.98 74.13 72.73
AEN-BERT (Song et al., 2019) 79.93 76.31 83.12 73.76 74.71 73.13
RGAT-BERT (Wang et al., 2020) 78.21 74.07 86.60 81.35 76.15 74.88
T-GCN (Tian et al., 2021) 80.88 77.03 86.16 79.95 76.45 75.25

Ours. DR-BERT 81.45 78.16 87.72 82.31 77.24 76.10

Table 2: Experimental results (%) in three benchmark datasets. We underline the best performed baseline.

sentiment polarities (i.e., positive, negative and neu-
tral). The statistics of the datasets are presented in
Table 1. Moreover, we follow the dataset configu-
rations of previous studies strictly. For all datasets,
we randomly sample 10% items from the training
set and regard them as the development set.

4.2 Hyperparameters Settings
In the implementation, we build our framework
based on the official bert-base models (nlayers=12,
nheads=12, nhidden=768). The hidden size of GRUs
and re-weighting length of DRA are set to 256 and
7. The learning rate is tuned amongst [2e-5, 5e-5
and 1e-3] and the batch size is manually tested in
[16, 32, 64, 128]. The dropout rate is set to 0.2.
The hyper-parameter l , β and λ have been care-
fully adjusted, and final values are set to 3, 0.8 and
100 respectively. The model is trained using the
Adam optimizer and evaluated by two widely used
metrics. The parameters of baseline models are in
accordance with the default configuration of the
original paper. We run our model three times with
different seeds and report the average performance.

4.3 Baselines
• Attention-based Models: MemNet (Tang

et al., 2016), ATAE-LSTM (Wang et al.,
2016), IAN (Ma et al., 2017), AOA (Huang
et al., 2018), MGNet (Fan et al., 2018),
TNet (Li et al., 2018).

• Pre-trained Models: Fine-tune BERT (De-
vlin et al., 2019), BERT-PT (Xu et al.,
2019a), BERT-SPC, AEN-BERT (Song et al.,
2019), RGAT-BERT (Wang et al., 2020), T-
GCN (Tian et al., 2021).

The baseline methods have comprehensive cov-
erage of the recent related SOTA models recently.
Most of them are detailed in Section 2.1. For space-
saving, we do not detail them in this section.

4.4 Experimental Results

From the results in Table 2, we have the follow-
ing observations. First, BERT-based methods beat
most of the attention-based methods (e.g., IAN and
TNet) in both metrics. The phenomenon indicates
the powerful ability of the pre-trained language
models. That is also why we adopt BERT as base
encoder to learn the overall semantic representation
of the whole sentences.

Second, by comparing non-specific BERT mod-
els (i.e., BERT and BERT-PT) with task-specific
models (e.g., RGAT-BERT) for ABSA, we find that
the task-specific BERT models perform better than
the non-specific models. Specifically, we can also
observe the performance trend that T-GCN&RGAT-
BERT >AEN-BERT>BERT-PT>BERT, which is
consistent with the previous assumption that aspect-
related information is the crucial influence factor
for the performance of the ABSA model.

Finally, despite the outstanding performance of
previous models, our DR-BERT still outperforms
the most advanced baseline (i.e., T-GCN or RGAT-
BERT) no matter in terms of Accuracy or F1-score.
The results demonstrate the effectiveness of the dy-
namic modeling strategy based on the procedure of
semantic comprehension. Meantime, it also indi-
cates that our proposed DRA can better grasp the
aspect-aware semantics of the sentence than other
BERT plus-in components in previous methods.
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Model Variants
Laptop

Accuracy F1-score

BERT-Base 77.29 73.36
(1): + MLP 77.94 74.42
(2): + DRA 80.66 77.13

(3): + DRA on top 3 layers 78.64 75.16
(4): + DRA on top 6 layers 79.17 75.93
(5): + DRA on top 9 layers 80.22 76.49
(6): DR-BERT 81.45 78.16

Table 3: The ablation study on different components
which conducted on the test set of the Laptop dataset.
“BERT-Base” indicates the vanilla BERT. “+” indicates
the setting with plus-in components.
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Figure 2: The ablation study on the re-weighting length
of the adapter. Red lines indicate Accuracy/ F1 scores
while blue and green lines indicate the performance of
the best baseline and BERT-base model respectively.

4.5 Ablation Study
Ablations on the Proposed Components. In

Table 3, we study the influence of different com-
ponents in our framework, including the DRA and
MLPs. We can find that without utilizing adapters
and MLPs, DR-BERT degenerates into the BERT
model, which gains the worst performance among
all the variants. The phenomenon indicates the ef-
fective of the DRA and MLP modules. Moreover,
through comparing (1) and (2), we can easily con-
clude that DRA plays a more crucial role in the
final sentiment prediction than MLPs.

Since BERT models are usually quite deep (e.g.,
12 layers), we only insert the dynamic re-weighting
adapter into top layers (i.e., 3-th, 6-th, and 9-th lay-
ers) to further verify the effectiveness of the DRA
module. The results are shown in Table 3 (3), (4),
and (5). We observe that when introducing adapters
to the top layers of DR-BERT, our framework still
outperforms the BERT model, showing that the
DRA is efficient in encoding the aspect-aware se-
mantics over the whole sentence. In addition, we
can also find that the more adapter incorporated

While the $20 entree range is not overly 
expensive, in New York City, there is definitely 

better food in that range, and so Sapphire, despite 
it is lovely atmosphere, will most likely not be a 

restaurant to which I will return .

food, better, while, definitely, not, return, …

(a) Human Cognition

(b) DRA Chosen Words

Figure 3: Comparison of the semantic understanding
process between human reading and DRA when judg-
ing the sentiment polarity of aspect “food”. (a) is the
visualization of the human understanding process from
the eye tracker†. (b) denotes aspect-aware words from
re-weighting function.

in BERT layers the higher performance gained,
illustrating the importance of modeling the deep
dynamic semantics over the sentence.

Ablations on the Scale of Adapter. In this sub-
section, we investigate the influence of the scale
of adapters on different datasets. As shown in Fig-
ure 2, we tune the adapter’s dynamic re-weighting
length (T ) in a wide range (i.e., 2 to 10). Specifi-
cally, the performance of DR-BERT first becomes
better with the increasing of re-weighting length
and achieving the best result at around 7. Then, as
the length continues to increase, the performance
continues to decline. This phenomenon is consis-
tent with the psychological findings that human
memory focuses on nearly seven words (Tononi,
2008; Koch and Tsuchiya, 2007), which further
indicates the effectiveness of DRA in modeling
human-like (dynamic) semantic comprehension.

Besides, compared with the best-performed base-
line (blue lines), our model can achieve better per-
formance with only 4 or 5 times of re-weighting at
most test sets, illustrating the efficiency of the re-
weighting adapter. On the other hand, we can also
find that DR-BERT always gives superior perfor-
mance compared to the BERT-based model (green
lines), even with the lowest re-weighting length.
All those results show that DR-BERT could better
comprehend aspect-aware dynamic semantics in
aspect-based sentiment analysis.

4.6 Interpretability Verification

Comparison of Semantic Comprehension. To
evaluate model rationality and interpretability, we
conduct an study for dynamic semantic compre-
hension by eye tracker. As shown in Figure 3 (a),

†The procedure of the human semantic comprehension is
generated by the eye tracker: https://www.tobiipro.
com/product-listing/nano/
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It could be a perfect laptop if it would have faster system memory 
and its radeon would have DDR5 instead of DDR3.

It could be a perfect laptop if it would have faster system memory       
and its radeon would have DDR5 instead of DDR3.

Prediction: Negative
System, memory, faster, would, have…

Prediction: Positive
DDR5, would, instead, DDR3…

“System memory”
Negative

“DDR5”
Positive

It could be a perfect laptop if it would have faster system memory 
and its radeon would have DDR5 instead of DDR3.

Prediction: Negative 
DDR3, instead, of, DDR3…

“DDR3”
Negative

Figure 4: Visualization results of multiple aspects in the same sentence. The blue part indicates the aspect and its
ground truth. The middle subfigures represent the procedure of human’s semantic comprehension which is targeted
at one specific aspect. The green subfigures are the predicted labels and the chosen word sequences from DRA.

Case Examples. The label in brackets represents ground truth. BERT-base RGAT-BERT DR-BERT

Aspects: “system memory”(Neg.), “DDR5”(Pos.), “DDR3”(Neg.) Pos/Neg/Neg Neg/Pos/Pos Neg/Pos/Neg
Sentence: It could be a perfect laptop if it would have faster system
memory and its radeon would have DDR5 instead of DDR3. % / % /% " / " /% " /" /"

Aspects: “Supplied software” (Neu.), “software” (Pos.), “Windows” (Neg.) Pos/ Pos/ Pos Pos/Pos/Neu Pos/Pos/Neg
Sentence: Supplied software: The software that comes with this machine
is greatly welcomed compared to what Windows comes with. % / " /% % / " /% % /" /"

Aspects: “waiter” (Neg.), “served” (Neg.), “specials” (Pos.) Neg/Neg/Neg Neg/Neg/Neu Neg/Neg/Pos
Sentence: First, the waiter who served us neglected to fill us in on the
specials, which I would have chosen had I known about them. " / " /% " / " /% " /" /"

Table 4: Error analysis of two review items from laptop and restaurant. The colored words in brackets represents
ground truth sentiment label of the corresponding aspect. The symbol X means the predicting sentiment is correct,
and the other symbol means the predicting sentiment is wrong.

when a person tries to understand a relatively long
sentence, he/she first read the entire sentence. Sub-
sequently, after giving a specific aspect, he/she will
dynamically select related words based on the pre-
vious memory state until he/she fully understands
the sentiment polarity of the given aspect.

Interestingly, the above phenomenon is consis-
tent with our dynamic re-weighting adapter’s cho-
sen result. Specifically, as Figure 3 (b) shows, with
the re-weighting function F (i.e., Equation 5 and 6),
our model dynamically choose the words “food,
better, while, definitely, not, ...”, which have proven
to be very important for predicting the sentiment of
aspect “food” in Figure 3 (a). Those experimental
results again fully indicate the effectiveness and
interpretability of our proposed model in dynamic
learning aspect-aware information.

The Influence of multiple Aspects. As aspect-
related information plays a key role in ABSA and at
least 10.2% of reviews contain multiple aspects as
shown in Table 1, we are curious about the model’s
performance in the complex scenarios, e.g., a re-
view sentence contains multiple aspects. Therefore,
we randomly choose an example to explore how the
selection of the context words will correspondingly
change with different inputs. The visualization re-

sults are shown in Figure 4. Specifically, the chosen
sentence has three different aspects with their sen-
timent polarity, i.e., “System memory”-negative,

“DDR5”-positive and “DDR3”-negative. Take the
aspect “DDR5” as example, it is positive which is
contrary to “DDR3”. After receiving the overall
semantic of the whole sentence, readers tend to as-
sociate “DDR5” with the context words {“would”,

“have”} to predict the correct sentiment “positive”.
For other two aspects, the observations are consis-
tent with “DDR5”. In summary, all those results
show that DR-BERT could dynamically extract the
vital information to achieve aspect-aware semantic
understanding even in a more complex scenario.

4.7 Error Analysis

Table 4 displays three review examples and their
prediction results by BERT, RGAT-BERT, and our
DR-BERT. As we can see from the “BERT-base”
column, when there are multiple aspects, the vanilla
BERT often makes the wrong classification since
it tends to learn the overall sentiment polarity of
the sentences instead of the aspect-aware semantic.
While RGAT-BERT can alleviate the problem to a
certain extent, it is also hard to predict the accurate
sentiment label with few dependency relations. For
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Methods
Laptop Restaurant Twitter

S E T S E T S E T

(1) DR-BERT 157s 10 26.1m 183s 10 30.5m 379s 10 63.2m
(2) T-GCN-BERT 168s 10 28.0m 188s 10 31.3m 411s 10 68.5m

(3) BERT-base 133s 10 22.2m 158s 10 26.3m 242s 10 40.3m
(4) ATAE-LSTM 3s 30 1.50m 4s 30 2.00m 5s 30 2.50m

Table 5: Runtime comparison between DR-BERT, T-GCN-BERT, BERT-base and ATAE-LSTM. Specifically, “S”
represents the training time (seconds) for a single epoch, “E” denotes the number of training epochs, and “T” is
the total training time (minutes).

example, in the first sentence, “DDR3” has few
helpful syntactic dependency relations. Therefore,
RGAT-BERT makes a wrong sentiment prediction.
However, our DR-BERT model, succeeding in pre-
dicting most sentiment labels by considering the
dynamic changing of the aspect-aware semantic.
For other two case examples, the observations are
consistent. Note that, for aspect “Supplied software”
in second sentence, two overlap aspects appear in
the same sentence makes it more difficult to distin-
guish the different sentiment between them. Thus,
precisely determine its sentiment polarity is a big
challenge for human, let alone deep learning mod-
els. This also leaves space for future exploration.

5 Computation Time Comparison

We also compared the computation runtime of three
baseline methods. All of the models are performed
on a Linux server with 64 Intel(R) CPUs and 4
Tesla V100 32GB GPUs. From the results shown
in Table 5, we can first observe that the training
time of a single epoch in DR-BERT performs better
than T-GCN, which is based on GCN. Meanwhile,
the training time of all these BERT-based models
is similar (i.e., there is no significant difference).
The possible reason is that the official datasets are
small, and it is hard to influence the overall run-
time of PLMs with such a small amount of data.
Second, compared with other models, the training
time of the ATAE-LSTM model is less (always an
order of magnitude lower). For example, the ATAE-
LSTM only needs about two minutes to achieve op-
timal performance in the restaurant dataset, while
BERT-based models require more than 26 minutes.
Therefore, though DR-BERT contains a Dynamic
Re-weighting adapter based on GRU, the compu-
tation time is much lower than the BERT-based
framework. In summary, the observations above
show that the computation time of our DR-BERT
model is within an acceptable range.

6 Conclusion and Future Works

This paper introduced a new approach named Dy-
namic Re-weighting BERT (DR-BERT) for aspect-
based sentiment analysis. Specifically, we first em-
ployed the BERT layers as a base encoder to learn
the overall semantic features of the whole sentence.
Then, inspired by human semantic comprehension,
we devised a new Dynamic Re-weighting Adapter
(DRA) to enhance aspect-aware semantic features
in the sentiment learning process. In addition, we
inserted the DRA into the BERT layers to address
the limitations of the vanilla pre-trained model in
ABSA task. Extensive experiments on three bench-
mark datasets demonstrated the effectiveness and
interpretability of the proposed model, with good
semantic comprehension insights for future nature
language modeling. Moreover, the error analysis
was performed on incorrectly predicted examples,
leading to some insights into the ABSA task.

We hope our research can help boost excellent
work for aspect-based sentiment analysis from dif-
ferent perspectives. In the future, we plan to extend
our method to other tasks like Sentence Semantic
Matching, Relation Extraction, etc., which can also
benefit from utilizing the dynamic semantics. Be-
sides, we will explore whether DR-BERT can make
any positive changes based on previous mistakes
during the dynamic semantic understanding.
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