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Abstract

Cross-lingual Entity Typing (CLET) aims at im-
proving the quality of entity type prediction by
transferring semantic knowledge learned from
rich-resourced languages to low-resourced lan-
guages. In this paper, by utilizing multilingual
transfer learning via the mixture-of-experts ap-
proach, our model dynamically capture the re-
lationship between target language and each
source language, and effectively generalize
to predict types of unseen entities in new
languages. Extensive experiments on multi-
lingual datasets show that our method signifi-
cantly outperforms multiple baselines and can
robustly handle negative transfer. We ques-
tioned the relationship between language sim-
ilarity and the performance of CLET. With a
series of experiments, we refute the common-
sense that the more source the better, and pro-
pose the Similarity Hypothesis for CLET.

1 Introduction

Fine-grained Entity Typing (FET) aims at labeling
entity mentions in a particular context with one or
more specific types organized in a type hierarchy.
For example, Donald Trump is classified as hav-
ing the path of following types: President, Politi-
cian, Person. President is a subclass of Politician
that in turn is a subclass of Person. FET provides
accurate type information, and is therefore quite
useful for various downstream NLP tasks, such
as entity linking (Onoe and Durrett, 2020; Chen
et al., 2020a; Zhu et al., 2020), relation extrac-
tion (Vashishth et al., 2018; Kuang et al., 2020),
text generation (Dong et al., 2021; Elsahar et al.,
2018), and so on.

Supervised learning approaches to FET need
huge amount of labeled training data (Ren et al.,
2016; Shi et al., 2020; Chen et al., 2020b), and can
be applied for a few rich-resourced languages, e.g.,
English, which have enough qualified labeled data.
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Trump was inaugurated as the 45th president of 
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1月23日，特朗普签署了上任后第一份行政
命令，正式宣布美国退出跨太平洋战略经济
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Figure 1: Example of Cross-lingual Entity Typing. We
use knowledge from source language (English) to help
with entity typing task in target language (Chinese).

For the vast majority of low-resourced languages,
we have insufficient training data, or even do not
have labeled data at all. However, languages are
not independent, instead, some are more similar
than others, and form a family tree. For example,
Portuguese is similar to Spanish; Dutch can even
be thought of as half way between German and
English. This motivates us to utilize the knowl-
edge from rich-resourced languages (source) to
help to predict missing types in a low-resourced
language (target), which is called the Cross-lingual
Entity Typing (CLET). Previous research showed
that transferring knowledge from multiple source
languages could improve the performance of en-
tity typing (Chen et al., 2019b). Recent research
proposed a unified CLET model, trained with four
rich source languages (English, Finnish, German,
and Spanish), is able to accept over 100 different
languages (Selvaraj et al., 2021). Behind such uni-
fied models is the assumption that the more rich-
resourced languages a model has, the better the
performance will be. This leads to the search of the
best unified model for all low-resourced languages.

Here, we raise the question: How will the simi-
larity between the source and the target languages
affect the performance? To this end, we carefully
select six languages as follows: German, English,
and Dutch in the west Germanic family, Russian
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in the Slavic family, and Spanish in the Romance
family. This five languages are in the European
family1. We select Chinese in the Sino-Tibetan
family, which is totally different from the other five
languages, as illustrated in Figure 2. The more sim-
ilar two languages are, the higher is their lowest
common ancestor located in the language tree.

Figure 2: Six selected languages are marked with red
circles.

Following the unsupervised multilingual
transfer-learning setup, we use labeled data from
source languages and unlabeled data from the
target language, leverage multilingual BERT as
feature encoder to produce language-independent
features (Devlin et al., 2019), and use mixture-
of-experts (MoE) approach (Jacobs et al., 1991;
Shazeer et al., 2017) to capture the correlations
between the target language and each source
language. For each target example, the predicted
posterior is a weighted combination of all the
experts’ predictions. Experts’ weights reflect
the proximity of the example to each source
language. To further improve transfer quality, we
apply a language discriminator to extract more
language-invariant features from both source and
target languages via adversarial learning. Exten-
sive experiments show that our proposed method
significantly outperforms multiple state-of-the-art
monolingual methods.

In contrast to other cross-lingual FET researches,
our work explores how the similarity between
source and target languages would affect the FET
performance. Our experiment results surprisingly
refute the commonly accepted assumption that the
more and the richer the source languages are, the
better performance it will be. Our results suggests
the importance of the similarity between source
and target languages. The more similar the source
and the target are and the richer the source is, the

1https://thelanguagenerds.com/2019/
feast-your-eyes-on-magnificent-linguistic-family-tree/

better performance it will be. Adding a rich but dis-
similar source may reduce the performance. This
observation refutes the existence of the best unified
model for all target languages. The best cross-
lingual source languages shall be rich and selected
among the cluster of the most similar languages to
the target language.

The rest of this paper is organized as follows.
Section 2 formally defines the problem of cross-
lingual fine-grained entity typing. Section 3 de-
scribes our approach. Section 4 reports two groups
of experiments, one to evaluate our method, the
other to explore the relation between language sim-
ilarity and the performance of type prediction. Sec-
tion 5 reviews some related works. Section 6 con-
cludes our work.

2 Problem Formulation

We use S = {Si}Ni=1 as the set of source languages,
in whichN is the number of source languages, T as
the target language. Types are organized into a tree-
structured hierarchy Y, shared by all languages.

Based on the assumption that each mention can
only have one type-path depending on the context,
we represent each type-path uniquely by the termi-
nal type (which might not be a leaf node). For
example, type-path root-person-athlete
can be represented as just athlete, while
root-person can be unambiguously repre-
sented as the non-leaf person.

For each source language Si ∈ S, we have a set
of training data Si = {(xt, yt)}|Si|t=1. xt = (mt, ct)
contains two parts, mt = 〈wl, . . . , wr〉 is an en-
tity mention and ct = 〈w1, . . . , wL〉 is its context,
both mt and ct are word sequences, where L is the
context length and 1 < l ≤ r < L. yt is the most
specific type ofmt, corresponding to a unique type-
path in Y. For target language T , we create a set of
unlabeled data T = {xt}|T |t=1. We formulate cross-
lingual fine-grained entity typing (CLET) problem
as follows:

Definition 1 Given training data from source lan-
guages S = {Si}Ni=1, and unlabeled data from
target language T , we aim at learning a model
P (y|x) using the source training data and general-
izing well to the target language. Given x ∈ T , our
task is to predict its most specific type ŷ depending
on the learned model P (y|x).

Notations The superscript and the subscript of
an example denote the language from which it is
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sampled, and its index, respectively. For instance,
xSij = (mSij , c

Si
j ) is the jth example in Si. Some-

times we omit superscripts for brevity.

Donald Trump was inaugurated as the 45th president of the United States 

on January 20, 2017. During his first week in office 

1月23日，特朗普签署了上任后第一份行政命令，正式宣布美国退出

Trump nació el 14 de junio de 1946 en el barrio neoyorquino de Queens 

EN

ES

ZH
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Figure 3: Framework of our proposed model. x is an
example from any language. E is the shared encoder
across all languages; FSi is the classifier on the ith

source language, the final prediction PMoE(y|x) is a
weighted combination of all the classifiers’ predictions;
M is the metric learning component, which takes the
encoding of x and source languages {Si}Ni=1 as input
and computes weight α;D is the language discriminator
which is learned during adversarial training.

3 Methodology

3.1 Overview of Our Approach

We model the multiple source languages as a mix-
ture of experts, and learn metric α to weight the
experts for different target examples (Jacobs et al.,
1991; Shazeer et al., 2017). Our model consists of
four key components, as shown in Figure 3, namely
the shared feature extractor E, a set of language-
specific classifier {FSi}Ni=1, metric functionM and
language discriminator D. Our model is a multi-
task learning architecture, with a shared encoder of
all languages, and language-specific classifier FSi
for each language Si. Each input is firstly encoded
with E, and then fed to each classifier to obtain the
language-specific predictions. The final predictions
are then weighted based on the metric M .

3.2 Feature Extractor E

We use multilingual BERT (mBERT) as feature
extractor (Devlin et al., 2019), since it follows

the same model architecture and training proce-
dure as BERT and produces an effective cross-
lingual word representation. Different from BERT,
mBERT is pre-trained on concatenated Wikipedia
data in 104 languages. Formally, given an ex-
ample xi = (mi, ci) in any language, we utilize
mBERT encoder to get its representation E(xi).
Given a mention mi = 〈wl, . . . , wr〉 with its con-
text ci = 〈w1, . . . , wL〉, we simply feed the se-
quence ([CLS], ci, [SEP], mi, [SEP]) to mBERT
encoder and use the output of [CLS] token as the
representation of the mention with its context.

3.3 Expert Classifier F
Each source Si has a language-specific classifier
(expert) FSi . With the representation E(xSij ) of
an example in Si, we employ a softmax classi-
fier parameterized by θSif = [WSif , bSif ] to get the
language-specific prediction (i.e. posterior).

PSi(y|x
Si
j ) = Softmax(WSif E(xSij ) + bSif ) (1)

ŷ = arg max
y

PSi(y|x
Si
j ) (2)

where WSif ∈ RK×dz can be treated as the type

embeddings, bSif ∈ RK is the type bias, K is the
number of types. The predicted type ŷ is the type
with maximum posterior probability. Since FSi is
trained on labeled data from Si, so it will pay more
attention on language-specific feature in Si.

3.4 Mixture of Experts
Given an entity x from the target language, we
model its posterior distribution as a mixture of pos-
teriors produced by experts trained on different
source language data:

PMoE(y|x) =
N∑
i=1

α(x,Si)PSi(y|x) (3)

PSi(·) is the posterior distribution produced by the
ith source classifier FSi (i.e., the ith expert). α(·)
is calculated by metric function M , it measures the
similarities between the target language example x
and each source languages {Si}Ni=1.

We utilize point-to-set distance as metric func-
tion (Guo et al., 2018) to define the distance be-
tween entity x and a source Si is defined as follow.

d(x,Si) = ((E(x)− µSi)>MSi(E(x)− µSi))
1
2

(4)
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where µSi is the mean encoding of Si. Each source
Si has a parameter matrix MSi , which is used to
measure the similarity between an entity and this
source. Based on the distance metric, confidence
score is defined as e(x,Si) = −d(x,Si). The final
metric values α(x,Si) are then obtained by normal-
izing these scores:

α(x,Si) = Softmax(e(x,Si)) (5)

This metric approach hypothesizes that both input
entity and source language distribution are impor-
tant in weight assignment.

3.5 Language Discriminator D
To further improve the quality, we adopt a language
adversarial training module to minimize the diver-
gence between source and target languages. In
other words, feature extractor E should capture
more language-invariant information. Different
from {FSi}Ni=1, D, as a language classifier, can be
trained on unlabeled data in both source and target
languages. Given an entity x, it takesE(x) as input
and predicts the likelihood of the language label
of x. D is defined as a softmax classifier parame-
terized by θd = [Wd, bd], where Wd ∈ R(N+1)×dz

and bd ∈ RN+1.

PLAN (l|x) = Softmax(WdE(x) + bd) (6)

3.6 Model Training

Our model’s parameters include θSif , θd and MSi .
We utilize language-adversarial training method
to optimize parameters in language discriminator
D and other components, separately. During the
training process, E aims at confusing D, so that
D cannot predict the language in which a sam-
ple is written. The hypothesis is that if D cannot
recognize the language of the input, the extracted
features will contain more language-invariant infor-
mation. We propose to use meta-training approach
to learn the parameters in experts (θSif ) and metric
function (MSi) simultaneously. With each iteration
through the training data, we update parameters in
the mBERT encoder as well as parameters in our
model. The training part is described in more detail
in Appendix (Alg.1).

4 Experiments

A series of experiments are conducted to evaluate
our CLET method and to examine how the lan-

EN ES DE ZH NL RU

#train 74,543 19,764 23,709 13,711 16,528 24,918
#dev 35,275 9,334 11,276 6,446 7,521 12,527
#test 50,265 13,181 15,868 9,294 10,736 16,371

Table 1: Dataset Statistics. EN: English, DE: German,
ES: Spanish, ZH: Chinese, NL: Dutch, RU: Russian.

guage similarity affects the performance of CLET.
Our source code is available2 for reference.

4.1 Model Evaluation

4.1.1 Experiment Setting
Dataset We construct our dataset based on the
MVET dataset constructed from Wikipedia and
Freebase (Yaghoobzadeh and Schütze, 2018). Each
entity in MVET has an name in English, names in
other languages, Freebase ID, and FIGER types.
MVET contains 102 FIGER types (Ling and Weld,
2012), which forms a 3-level type hierarchy. For
each entity, we utilize hyper-link in Wikipedia to
find a sentence containing this entity mention. We
collect data for six languages: English, German,
Spanish, Chinese, Dutch, and Russian. Table 1
shows the statistics.
Metrics To evaluate the performance of our
proposed method, we use Accuracy (Strict-F1),
Micro-averaged F1 (Mi-F1) and Macro-averaged
F1 (Ma-F1), which have been used in many FET
systems (Ling and Weld, 2012; Ren et al., 2016;
Xu and Barbosa, 2018; Xin et al., 2018).
Baselines We compare our model with five state-
of-the-art monolingual methods and two our mod-
els as follows: (1) AttNER is an attentive neural
model that utilizes a fixed attention mechanism
to focus on relevant expressions in context (Shi-
maoka et al., 2017); (2) NFETC utilizes a variant
of cross-entropy loss function and hierarchical loss
normalization to handle out-of-context noise and
overly-specific noise (Xu and Barbosa, 2018); (3)
LTR utilises a hybrid classification method beyond
binary relevance to exploit type inter-dependency
with latent type representation (Lin and Ji, 2019);
(4) MLL2R uses multi-level learning to rank ap-
proach that embraces type hierarchy during both
training and prediction (Chen et al., 2020b); (5)
VAT alleviates dataset shift problem in FET by
combining the proposed masked VAT with denois-
ing methods (Shi et al., 2020). Ourno_adv is a
variant of our model Our, which removes language

2https://github.com/SIGKDD/CLET
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discriminator D. For each baseline, we apply the
same feature extractor, given a mention mi with its
context ci, we feed the sequence ([CLS], ci, [SEP],
mi, [SEP]) to mBERT encoder and use the output
of [CLS] token as the representation of the mention
with its context.
Parameter Settings We implement our approach
with PyTorch 1.2.0. In all experiments, Adam is
used for optimizers, with learning rate 0.0002 for
Chinese and 0.001 for European languages, and
weight decay 10−8 for all languages. Batch size
is 32 for Chinese experiment and 64 for European
languages. We use the cased multilingual BERT-
BASE with 12 Transformer blocks, 768 hidden
units, 12 self-attention heads, GELU activations,
a dropout rate of 0.1 and learned positional em-
beddings. WordPiece embeddings are employed
to split a word into subwords, which are then di-
rectly fed into the model without any other pre-
processing. Hyper-parameters are empirically se-
lected and utilized in all experiments as follows:
λ = 0.2 and γ = 0.005 for Chinese as the target
language, λ = 0.2 and γ = 0.01 for Russian as
the target language, λ = 0.25 and γ = 0.005 for
Dutch as the target language.

4.1.2 Overall Comparison Results
We take English, German and Spanish as source
languages (N = 3), and one of the three remaining
as target language. Table 2 show that our model
consistently outperforms the state-of-the-art mono-
lingual entity typing methods on three target lan-
guages. This shows that our model has the strong
ability to transfer knowledge to new languages. Our
model outperforms the best baseline with 4.0% and
3.9% in Mi-F1 and Ma-F1 on Chinese dataset, with
6.4% and 5.2% in Mi-F1 and Ma-F1 on Dutch
dataset, with 6.0% and 6.2% in Mi-F1 and Ma-F1
on Russian dataset, respectively.

4.1.3 Analysis
Compared with monolingual methods, our method
has two advantages. First, it can explicitly cap-
ture the relationship between a target entity and
different source languages via a mixture-of-experts
approach. In testing, metric module will calcu-
late the similarity between the target entity and
each source language. If the test entity is more
similar to Si training examples, the trained metric
function M will predict a higher α for the expert
FSi . Second, we utilize language discriminator to
further improve transfer quality between different

languages. We fine-tune all the parameters from
mBERT as well as parameters in our model jointly.
Our cross-language approach can be seen as an
effective way to augment training data for entity
typing using different languages of data available.

Our full model outperform its variant (which
removes language discriminator D) in all target
languages consistently. This shows that language
adversarial training really improve transfer quality
on new language, because language adversarial
training can be viewed as a kind of pre-training in
target language.

4.1.4 Unseen Entities
We aim at testing whether our model is able to
predict types for new entities.

Data We remove entities which appear during
training (in any source language), we call this
entity-level zero-shot learning. We take English,
German and Spanish as source languages, and one
of the three remaining as target language.

Results and Analysis Table 4 shows that the per-
formance slightly decreased. This shows that our
model has a degree of memory ability, in part be-
cause our model can extract and learn language-
specific and language-invariant features for entities.
These features appear in any source language train-
ing data, so in testing they help to make accurate
judgements.

4.1.5 Type Size and Performance
The aim is to evaluate whether type size could ef-
fect the performance of type prediction.

Data We measure our model’s performance on
different types. They are grouped into two groups:
Head Type Group and Tail Type Group. Head Type
Group has 24 types, each has at least 300 entities;
Tail Type Group has 15 types, each has at most 20
entities.

Results and Analysis Macro-averaged F1 met-
rics are reported in Table 3. Note that we use a
different evaluation metric to calculate the F1 score
for a type (Ren et al., 2016). Experiments results
show that our model outperform other baselines
and works for both type groups. Generally, the per-
formance on Head Type Group is better than Tail
Type Group. Our model consistently outperforms
the other methods on Tail Type Group. This shows
that our model can deal with rare types. As types
in Head Type Group are more coarse-grained and
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Methods EN+DE+ES→ ZH EN+DE+ES→ NL EN+DE+ES→ RU

Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1

AttNER 0.551 0.702 0.722 0.557 0.707 0.724 0.546 0.689 0.706
NFETC 0.582 0.739 0.753 0.572 0.722 0.742 0.561 0.711 0.729
MLL2R 0.575 0.721 0.740 0.581 0.736 0.752 0.572 0.724 0.745

VAT 0.586 0.744 0.761 0.587 0.750 0.765 0.577 0.729 0.749
LTR 0.594 0.753 0.772 0.585 0.744 0.761 0.580 0.733 0.757

Ourno_adv 0.626 0.775 0.791 0.636 0.794 0.822 0.623 0.788 0.812
Our 0.636 0.792 0.812 0.640 0.802 0.829 0.628 0.795 0.817

Table 2: Overall performance on three target languages.

Methods Head Type Group Tail Type Group

Org. Person Loc. Work Avg. Durg Law Algorithm TV channel Avg.

AttNER 0.554 0.527 0.552 0.518 0.524 0.216 0.273 0.316 0.335 0.327
NFETC 0.574 0.539 0.565 0.537 0.536 0.292 0.289 0.344 0.352 0.365
MLL2R 0.568 0.548 0.587 0.562 0.542 0.303 0.318 0.326 0.361 0.377

VAT 0.586 0.623 0.607 0.583 0.547 0.288 0.329 0.357 0.348 0.369
LTR 0.613 0.605 0.612 0.592 0.554 0.316 0.342 0.337 0.350 0.392

Ourno_adv 0.677 0.647 0.625 0.615 0.561 0.317 0.329 0.382 0.373 0.414
Our 0.693 0.652 0.631 0.613 0.565 0.325 0.331 0.386 0.388 0.407

Table 3: Performance on different types.

Target Our Ourno_adv

Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1

ZH 0.627 0.778 0.794 0.621 0.768 0.782
NL 0.635 0.792 0.818 0.627 0.781 0.807
RU 0.622 0.785 0.809 0.615 0.773 0.793

Table 4: Typing performance on unseen entities.

have more training data than types in Tail Type
Group, our model performs better in predicting
types in Head Type Group.

4.2 How does Language Similarity Affect
Cross-lingual Type Prediction?

The idea of using rich source languages to predict
entity types in low resource language may lead to
following two hypotheses: (1) the richer the source
is, the better predicting performance it will be; (2)
the more sources, the better. Following experi-
ments and the experiment results in Table 2 refute
the two hypotheses and show that the similarity
between source and target plays an important role.

4.2.1 Dataset
Languages are grouped into three level of similar-
ity: (1) the similar level has three languages: En-
glish, German, and Dutch. All are in the west Ger-

manic language family; (2) the less similar level
consists of five languages in three language cate-
gories: Spanish in the Romance language family,
Russian in the Slavic language family, and three
languages from the similar level in the Germanic
language family; (3) the dissimilar level consists
of six languages in two language families: Chinese
in the Sino-Tibetan language family, and the five
European languages in the less similar level.

4.2.2 The Similar Group
Language similarity English, German, and
Dutch are west Germanic languages. They are
similar. Spanish is Romance language, and is less
similar to English, German, and Dutch.

Experiments & results We conducted six ex-
periments: (1) three experiments by selecting any
one from {EN, DE, ES} as source; (2) three ex-
periments select any two from {EN, DE, ES} as
sources. Experiment results in Table 5 show that:
(1) Comparing with using English or German as
single source language, using both of them achieves
the best performance. Dutch is one of the closest
relatives of both German and English and is collo-
quially said to be “roughly in between” them. For
Dutch, some linguistic features are similar with
English, some features are more similar with Ger-
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S+ T Baseline Ourno_adv Our

Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1

EN→NL 0.561 0.709 0.726 0.627 0.776 0.793 0.634 0.789 0.814
DE→NL 0.580 0.735 0.751 0.631 0.786 0.809 0.638 0.799 0.826
ES→NL 0.556 0.702 0.719 0.619 0.766 0.782 0.615 0.758 0.773

EN+DE→NL 0.592 0.758 0.774 0.642 0.805 0.833 0.652 0.819 0.843
DE+ES→NL 0.572 0.723 0.743 0.620 0.768 0.783 0.632 0.788 0.811
EN+ES→NL 0.564 0.715 0.733 0.623 0.771 0.787 0.628 0.780 0.797

EN+DE+ES→NL 0.587 0.750 0.765 0.636 0.794 0.822 0.640 0.802 0.829

EN→RU 0.586 0.742 0.766 0.614 0.773 0.792 0.619 0.781 0.801
DE→RU 0.564 0.713 0.727 0.601 0.759 0.775 0.597 0.752 0.770
ES→RU 0.584 0.739 0.762 0.626 0.793 0.814 0.633 0.802 0.827

EN+DE→RU 0.583 0.736 0.760 0.618 0.779 0.799 0.622 0.784 0.808
DE+ES→RU 0.576 0.727 0.744 0.615 0.775 0.795 0.624 0.789 0.811
EN+ES→RU 0.591 0.751 0.773 0.620 0.782 0.803 0.627 0.795 0.815

EN+DE+ES→RU 0.580 0.733 0.757 0.623 0.788 0.812 0.628 0.795 0.817

EN→ZH 0.573 0.719 0.738 0.615 0.754 0.771 0.621 0.768 0.782
DE→ZH 0.559 0.696 0.713 0.604 0.742 0.760 0.611 0.750 0.768
ES→ZH 0.577 0.726 0.744 0.610 0.748 0.763 0.617 0.760 0.775

EN+DE→ZH 0.590 0.748 0.766 0.623 0.771 0.786 0.631 0.783 0.805
DE+ES→ZH 0.583 0.737 0.756 0.619 0.764 0.779 0.626 0.775 0.792
EN+ES→ZH 0.580 0.731 0.750 0.632 0.785 0.807 0.628 0.778 0.797

EN+DE+ES→ZH 0.594 0.753 0.772 0.626 0.775 0.791 0.636 0.792 0.812

Table 5: Typing performance on target language with different source language combinations.

man, so take both of them into account is the best
way; (2) Adding less similar language source, here,
adding Spanish to English and German, decreases
the performance from 0.652 (shown in Table 3) to
0.640 (shown in Table 2). This shows that we do
not need to use all of the training data in different
languages, sometimes it may mislead the model’s
judgment.

4.2.3 The Less Similar Group

Language similarity English and German are
Germanic languages, Spanish is a Romance lan-
guage. As a Slavic language, Russian is less similar
to Spanish, and much less similar to English and
German.

Experiments & results We conducted six exper-
iments: (1) three experiments by selecting any one
from {EN, DE, ES} as source; (2) three experi-
ments by selecting any two from {EN, DE, ES} as
source. Experiment results in Table 5 show that:
(1) Using Spanish as the single source reaches the
best performance 0.633; (2) If Spanish appears in
the source language set, the performance is better;
(3) Adding less similar language source (adding

EN and DE to SP) may decrease the performance.
The performance 0.628 of using all three languages
is shown in Table 2; (4) Adding similar language
source (adding German to English, or vice versa)
improves the performance.

4.2.4 The Dissimilar Group

Language similarity English, German, and
Spanish as source in the European language family,
and Chinese as the target in the Sino-Tibetan lan-
guage family, and is significantly dissimilar from
the European languages.

Experiments & results We conducted six exper-
iments: (1) three experiments by selecting any one
from {EN, DE, ES} as source; (2) three experi-
ments by selecting any two from {EN, DE, ES} as
source. Experiment results in Table 5 show adding
dissimilar source consistently increases the perfor-
mance. The best performance 0.636 is achieved
by using all three source languages, shown in Ta-
ble 2. English is relatively more important than Ger-
man and Spanish, to predict Chinese entity types.
Besides the fact that English has more training
samples than German and Spanish, English has

3077



Dutch Russian Chinese0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

Ex
pe

rt 
W

ei
gh

ts
EN weight
DE weight
ES weight

Figure 4: Average expert weights aggregated on lan-
guage level.

the poorest inflection system among all of Indo-
European and Ural-Altaic languages, and shares
some similarity with Chinese, in the sense that the
word-order plays the dominant role in conveying
meanings (Bates et al., 1984; Li et al., 1993).

4.2.5 From Expert Weights to Peep How
Language Similarity Affects Type
Prediction

We take the setting of using three source languages,
and compute the instance-level expert weights for
each entity, then average across all entities in the
validation set, resulting a final language-level aver-
age expert weight for each source language. Fig. 4
shows the average expert weights for each target
language, and further strengthens our claim that the
more similar between the source language and the
target, the larger weight the source language expert
will be. In particular, (1) for Dutch, German Expert
has the largest weight, and English and German
Experts have much larger weights than Spanish
Expert; (2) for Russian, Spanish Expert has much
larger weight than German and English Experts,
and English Expert has lightly larger weight than
German Expert; (3) for Chinese, English Expert
has the largest weight that is slightly larger than
German Expert that is slightly larger than Spanish.

4.2.6 Similarity Hypothesis for Cross-Lingual
Entity Typing

As a summary, we propose the Similarity Hypoth-
esis for CLET as follows: The more similar the
source and the target are, the better the perfor-
mance will be; A large set of source languages
with a high deviation of similarity performs worse
than one of its subsets whose members are more
similar to the target than other sources.

5 Related Work

Fine-grained Entity Typing. FET research targets
at utilising sentence-level context for making pre-
dictions (Ling and Weld, 2012) and (Gillick et al.,
2014), in which they created the commonly used
FIGER and OntoNotes datasets. (Shimaoka et al.,
2017) proposed an attentive LSTM network model
to encode an entity context, and proposed an at-
tention mechanism to allow the model to focus on
relevant expressions in a context. (Xu and Barbosa,
2018) studied two kinds of noises, namely, out-
of-context noise and overly-specific noise in train-
ing data. (Wu et al., 2019) leveraged a novel cost
function to jointly model the correlation among hi-
erarchical types and label noises. (Xiong et al.,
2019) presented an effective method to impose
label-relational inductive bias on fine-grained entity
typing models. (Onoe and Durrett, 2019) investi-
gated the problem of denoising distant training data
for entity typing tasks. (Chen et al., 2019a) regu-
larized distantly supervised models with Compact
Latent Space Clustering (CLSC) to effectively uti-
lize noisy data. (Lin and Ji, 2019; Shi et al., 2020)
employed contextualized word representations to
further boosts the performance.

Cross-lingual task in NLP. To tackle the low-
resourced problem, many cross-lingual transfer
learning models have been proposed. Most of the
research focuses on bilingual transfer case. (Xu and
Yang, 2017) introduced a framework for distillation
of discriminative knowledge across languages, fo-
cusing on the domain/distribution mismatch issues
in cross-lingual text classification problem. (Chen
et al., 2018) utilized an adversarial deep averaging
network to extract language-invariant features for
cross-lingual sentiment classification. (Wu et al.,
2020) proposed a teacher-student learning method,
where NER models in the source languages are
used as teachers to train a student model on unla-
beled data in the target language. Recently, some
researches focus on the multi-source scenario, also
known as multilingual transfer learning (MLTL).
(Chen et al., 2019b) used both language-invariant
and -specific features to improve the performance
on the target language. (Karamanolakis et al., 2020)
presented a cross-lingual text classification method,
which extracts and transfers a small number of
task-specific seed words, and creates a teacher that
provides weak supervision to train a more powerful
student in the target language.
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6 Conclusions and Discussions

We address the problem of Cross-Lingual Entity
Typing (CLET) in an unsupervised setting, and
propose a mixture-of-experts (MoE) approach to
dynamically capture the relation between the target
language and each source language, which enables
to acquire more knowledge from source languages.
Experiments on multi-lingual datasets show that
this approach outperforms various baselines and
can effectively predict types of unseen entities in
new languages. The presented work is the first
to investigate how language similarity affects the
performance of CLET, and propose the Similarity
Hypothesis. This will be helpful for the empirical
selection of source languages, and raises new ques-
tions, such as how we can quantitatively compute
and compare similarities among languages.
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Algorithm 1: model training

Input: Training data on multiple source languages S = {Si}Ni=1, test data on target language T
Output: Cross-lingual Fine-grained Entity Typing model PMoE(y|x)
repeat

# D iteration, update parameters in language discriminator D
for iter = 1 to k do
LD ← 0
Sample N source mini-batches {xS1t }mt=1, · · · , {x

SN
t }mt=1 from S

for i = 1 to N do
Calculate cross-entropy loss of language label on source Si, and add to LD

end
Sample a target mini-batch {xTi }mi=1 from T
Calculate cross-entropy loss of language label on target T , and add to LD
Update parameters in D using∇LD

end
# Main iteration, update parameters in encoder E, experts {FSi}Ni=1 and metric function M
Lmoe,Lsup,Ladv ← 0

Sample N source mini-batches {(xS1t , y
S1
t )}mt=1, · · · , {(x

SN
t , ySNt )}mt=1 from S

for i = 1 to N do
Set meta-target as Tmeta = Si, meta-sources as Smeta = {Sj}Nj=1,j 6=i

Calculate cross-entropy loss of type information on Tmeta, and add to Lsup
Calculate metric weight α(x,S ′) for each x ∈ Tmeta and S ′ ∈ Smeta

Calculate MoE loss over (Smeta, Tmeta) using α, and add to Lmoe

Calculate cross-entropy loss of language label on Tmeta, and add to Ladv
end
Sample a target mini-batch {xTi }mi=1 from T
Calculate cross-entropy loss of language label on target T , and add to Ladv

L ← λ · Lmoe + (1− λ) · Lsup + γ · Ladv
Update parameters in E, {FSi}Ni=1 and M using∇L

until convergence;
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