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Abstract

Identifying the relation between two sentences
requires datasets with pairwise annotations. In
many cases, these datasets contain instances
that are annotated multiple times as part of dif-
ferent pairs. They constitute a structure that
contains additional helpful information about
the inter-relatedness of the text instances based
on the annotations. This paper investigates
how this kind of structural dataset information
can be exploited during training. We propose
three batch composition strategies to incorpo-
rate such information and measure their per-
formance over 14 heterogeneous pairwise sen-
tence classification tasks. Our results show
statistically significant improvements (up to
3.9%) - independent of the pre-trained lan-
guage model - for most tasks compared to
baselines that follow a standard training pro-
cedure. Further, we see that even this baseline
procedure can profit from having such struc-
tural information in a low-resource setting.1

1 Introduction

Datasets that define pairwise relations between
sentence-level text instances are widely used in Nat-
ural Language Processing (NLP). They describe the
relation of sentence pairs with an annotated label.
Common examples of such pairwise classification
tasks are Paraphrase Identification (Wang et al.,
2017; Dolan et al., 2004), Natural Language In-
ference (Williams et al., 2018a; Bowman et al.,
2015), Semantic Textual Similarity (Cer et al.,
2017; Reimers et al., 2019), or Argument Convinc-
ingness (Habernal and Gurevych, 2016).

In many such datasets (eq. six out of 11 GLUE
tasks), single sentences can occur in multiple pair-
wise annotations. Figure 1 shows such an exam-
ple where three annotated pairs share a common
question. Besides the annotations themselves, such

1We provide the code and hyperparameter opti-
misation details at https://github.com/UKPLab/
acl2022-structure-batches

Figure 1: Example of three pairwise annotations
(edges) using four unique questions (nodes), taken
from the QQP dataset (Wang et al., 2018). Q1 is the
common element of all annotations.

structural properties of datasets carry additional
helpful information about the inter-relatedness of
the text instances. We argue that the defined dis-
criminative attributes of a text instance are learned
most readily when the instance is encountered in
multiple contexts. Therefore, we hypothesize that
a (neural) learner can utilize such additional infor-
mation when provided appropriately.

There are several ways to control the training pro-
cess considering such external information. Con-
trastive learning (Chen et al., 2020; Giorgi et al.,
2021; Gao et al., 2021) aims at learning text rep-
resentations in a self-supervised fashion where
similar instances are aligned and dissimilar pairs
are separated using an external measure - i.e. se-
mantic similarities. In Curriculum Learning (Ben-
gio et al., 2009) the training data order is deter-
mined by the estimated difficulty of the instances
using a additional heuristic. Inspired by such
work, we want to examine whether considering
the dataset-annotation structures affects the mod-
els’ performance. But neither we create new pairs
nor open a dependency to an external heuristic.
More specifically, we present three different strate-
gies to compile training batches that consider that
text instances occur in multiple pairwise configu-
rations. This approach is also motivated by recent
work (Dodge et al., 2020; Zhou et al., 2020) investi-
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gating the effect of training order and inter-instance
correlations on model performance.

We evaluate the strategies on 14 heterogeneous
tasks from different domains and in two different
scenarios to measure the generalizability of our
approach. Our experimental results show signifi-
cant performance improvements on a wide range
of tasks for both scenarios compared to a standard
training setup. Our contributions can be summa-
rized as follows:

1. we propose three different batching strategies
for pairwise text classification tasks to inte-
grate inter-instance relations into the training
procedure

2. we show statistically significant performance
improvements on a wide range of heteroge-
neous tasks in our experimental results

3. we discuss the role of dataset characteristics,
additional computational complexity and the
stability of our approach

To foster the reproducibility of our work, we
publish all experimental code and hyperparame-
ters.

2 Approach

By analysing different pairwise annotated datasets,
we found that various ones contain single sentences
that occur in multiple annotation instances (see De-
gree in Table 1). For example, every sentence of the
QNLI dataset is annotated with 1.9 other sentences
on average. With our approach, we want to exploit
this untouched information to improve the tasks’
performance. Thus, we show how we capture this
information in a graph structure and strategies to
implicitly present it to the neural network.

2.1 Annotation Graph (AG)

We use a graph structure to represent all annota-
tions of a dataset - as in Figure 1. In this graph,
nodes are unique sentences, edges represent a label
for a pair of them, and the degree k indicates the
number of connected edges of a node. Based on
the typed of annotations, this graph can be directed
or undirected.

In Figure 2 we show an example of such a graph
structure and its construction. It includes six sen-
tences V = {V1, ..., V6} and seven pairwise anno-
tations E = {(V1, V2), ..., (V5, V6)}. Within the

graph, we define a nodes’ neighbourhood as all di-
rectly connected nodes - like {V1, V2} for node V3.
In the case of an edge, we consider edges connect
to one of its starting points as the neighbours - for
example, (V4, V5) and (V5, V6) are neighbours.

Using this structure, we define different opera-
tions: fe(n) returns all edges of a given node n,
and fs(c, x) randomly samples x elements from a
collection of edges c. Further, we use the average
degree µk, its standard deviation σk, and coeffi-
cient of variation (CVk = σk

µk
) to characterise an

AG. Using these measurements, we can group the
selected tasks into three groups (see Table 1). The
first one (G1) includes tasks (all in-domain tasks,
UKP-A, BWS) that do not show extreme patterns
in the graph (CV ≈ 1). The second group,G2 (Arg-
Conv, and Evi-Conv), has a high average degree
but a lower std. dev. (CV < 1). The third group G3

fits tasks (Evi-St, ArgQ-St, Arg-KP) where a few
nodes with a high degree are connected to many
others with a small degree (CV > 1).

Dataset Label Degree Group Metric

In
-D

om
ai

n

SICK-NLI 3-Class 3.2± 2.1 G1 acc
SICK-REL* 1-5 3.2± 2.1 G1 ρ
RTE 3-Class 1.1± 0.6 G1 acc
QNLI Binary 1.9± 0.8 G1 acc
MNLI-m 3-Class 1.5± 0.9 G1 acc
MNLI-mm 3-Class 1.5± 0.9 G1 acc
QQP Binary 1.6± 2.2 G1 F1

C
ro

ss
-T

op
ic

UKP-A Binary 3.5± 3.0 G1 F1 macro
BWS* 0-1 1.6± 1.5 G1 ρ
Arg-Conv Binary 22.2± 4.6 G2 acc
Evi-Conv Binary 6.2± 4.4 G2 acc
Evi-St Binary 1.9± 5.8 G3 F1 macro
Arg-KP Binary 7.1± 18.1 G3 F1 macro
ArgQ-St 3-Class 2.0± 20.7 G3 acc

Table 1: Overview of the 14 used datasets for the In-
Domain and Cross-Topic Scenario. In the latter we
train on different topics then we evaluate. Degree de-
notes average number of edges of a node and datasets
marked with (*) are regression tasks.

Figure 2: Construction of an annotation graph (AG)
with a degree of 2.5± 0.84 and CVk = 0.34.
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Figure 3: Example batch for the strategy NODE

2.2 Batching Strategies

With the following strategies, we randomly traverse
through the graph, either with the focus on the
neighbourhood of nodes (NODE) or edges (EDGE-
I, EDGE-II). Since NODE will incorporate all the
neighbours of a node, it could overfit towards them
- given a high µk. Thus, EDGE-I and EDGE-II
focus on just a limited neighbourhood to reduce
this potential dominance.

NODE This strategy composes a batch by focus-
ing on common nodes within the AG. Figure 3
shows this process with a set of example nodes
(N = {V3, V5}). For every node n, we select all
connected edges ({(V1, V3), (V3, V2)} for node V3).
The loss L is equal to the average error (using the
cross-entropy objective function J ) for each edge
e, as defined in Equation 1.

L = − 1∑N
n |fe(n)|

N∑
n

fe(n)∑
e

J (ŷe, ye) (1)

EDGE-I The second strategy starts from a set
of randomly selected edges E to construct a sin-
gle batch. For each base edge e ∈ E, a set
of context edges E′ is sampled from the neigh-
bourhood of e. To select these neighbours, we
consider the two nodes (i, j) that are the start-
ing points of e - as in Equation 2. For both
of them, we randomly select two2 directly con-
nected edges using fs (Equation 3). Figure 4
shows an example batch that considers the two
base edges B = {(V1, V3), (V5, V6)}. For base
edge (V1, V3), the set of context edges is E′ =
{(V1, V2), (V1, V6), (V3, V2)}. To calculate the
loss, we sum the average error of base and the
context edges - as in Equation 4.

E′ =
E⋃

(i,j)

f ′e(i) ∪ f ′e(j) \ {(i, j)} (2)

2We check different node numbers during early prelimi-
nary experiments and found two works the best.

Figure 4: Example batch for the strategy EDGE-I

f ′e =

{
fe(n) if |fe(n)| ≤ 2

fs(fe(n), 2)
(3)

L =
−1
|E|

E∑
e

J (ŷe, ye) +
−1
|E′|

E′∑
e′

J (ŷe′ , ye′)

(4)

EDGE-II Within EDGE-I all context edges are
treated equally and independently of their base
edge. In EDGE-II we adapt the calculation of the
loss to focus on the fact that the neighbourhood
size of base edges can vary. First we sum the er-
ror of an base edge e with the average error of its
neighbours e′ (as in Equation 5). Afterwards, we
average this sum over all e in E (Equation 6).

Figure 5: Example batch for the strategy EDGE-II

J ′ = J (ŷe, ye) +
1

|E′(e)|

E′(e)∑
e′

J (ŷe′ , ye′) (5)

L =
−1
|E|

E∑
e

J ′(e) (6)

Batch Composition Due to the nature of the de-
scribed strategies, a single training instance can be
contained in multiple batches. For NODE, every
edge (i.e. training instance) is used twice as both
contained nodes are sampled individually. In the
case of EDGE-I and EDGE-II, the occurrence of
one instance depends on how many times it is sam-
pled as context edge and is affected by the AGs
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density. The chances to sample an edge as a con-
text edge are higher in a more dense area. Thus, the
effective number of instances processed within a
batch can vary. Note, when we speak of batch size,
we refer instead to the number of initially sampled
nodes or edges, not the effective one.

3 Data and Training Setup

3.1 Datasets

We evaluate our approach on 14 heterogeneous pair-
wise classification tasks in two scenarios.3 Table 1
shows an overview of the tasks including the label
type, the degree (µk, σk), and evaluation metrics.

The first scenario aims at evaluating our general
idea using standard natural language understand-
ing tasks, e.g. GLUE (Wang et al., 2018). In the
second scenario, we use tasks for the challenging
cross-topic evaluation, where train, development,
and test set covers different topics to measure the
generalizability. For this scenario, we rely on Argu-
ment Mining tasks, which include sentence-level
arguments assigned to a specific topic (Stab and
Gurevych, 2017; Reimers and Gurevych, 2019a).

In-Domain Scenario The first scenario consists
of five tasks (RTE, MNLI, QNLI, QQP) from the
GLUE benchmark (Wang et al., 2018) and the
SICK dataset (Marelli et al., 2014) that provides
annotations for relatedness (SICK-REL) and natu-
ral language inference (SICK-NLI). As in Devlin
et al. (2019), we exclude the WNLI dataset because
of the problematic data structure.4 The average de-
gree of all tasks of these scenarios ranges from 1.1
to 3.2 (as in Table 1).

Cross-Topic Scenario We use two argument
similarity datasets, UKP-A (Reimers et al., 2019)
and BWS (Thakur et al., 2021). For UKP-A, we
binarize the labels into similar and not-similar as
suggested by the authors. Next, we use the evi-
dence dataset from Gleize et al. (2019) that anno-
tates topic, stance, and convincingness for a set
of evidence pairs. Apart from the evidence con-
vincingness task (Evi-Conv), we compose a stance
prediction task (Evi-St) given evidence and a topic.
Further, we use the stance annotations in Gretz
et al. (2020) for a second stance prediction task
(ArgQ-St) and the dataset provided by Bar-Haim
et al. (2020) matching arguments with keypoints

3We provide additional details and examples for each task
in the Appendix § A.1.

4See https://gluebenchmark.com/faq

(Arg-KP). Finally, we use the argument convincing-
ness dataset (Arg-Conv) by Habernal and Gurevych
(2016). All cross-topic tasks are evaluated using
multiple folds. We sample these folds on our own
except for UKP-A and ArgQ-St - where the authors
provide the folds. For all these tasks, we see a more
diverse average degree (1.6 to 22.2).

3.2 Training Setup

We fine-tune BERT (Devlin et al., 2019) for the pro-
posed batching strategies and the baseline BASE

with random batch sampling. As we earlier de-
scribed, single training instances can occur in sev-
eral batches, depending on the batching strategy,
Considering NODE every instance occur twice as
well as approximately twice for EDGE-I and EDGE-
II. In the case of BASE, we saw no sustainable
difference of showing training instances once or
twice per epoch in preliminary experiments. Even-
though, we want to ensure a fair and comparable
setting and thereby include every instance twice for
BASE. This is equal as for the NODE strategy and
an approximation for EDGE-I and EDGE-II.

Due to computational expenses, we fine-tune
the language models for large tasks (QNLI, MNLI-
m, MNLI-mm, QQP) over three epochs and the
remaining ones for five epochs. For all experi-
ments we use four NVIDIA A4000 GPUs using
PyTorch v1.8.1, Huggingface v4.9.1 (Wolf et al.,
2019), and Sentence-Transformer v2.0.0 (Reimers
and Gurevych, 2019a).

Model Architecture We use for our experiments
both bi- and cross-encoder model architecture. Bi-
encoders showed their computational efficiency
for pairwise tasks (Reimers and Gurevych, 2019a)
because they encode every distinct sentence sep-
arately and use efficient operations (like cosine
similarity) to find a prediction. In comparison,
cross-encoders increase the complexity by encod-
ing every sentence pairs together. To select the
pre-trained language model, we distinguish be-
tween NLI tasks (SICK-NLI, RTE, QNLI, MNLI)
and others. For NLI tasks, we use the standard
pretrained weights (i.e. bert-base-uncased) since
SBERT (Reimers and Gurevych, 2019a) models
were trained on NLI data.

The detailed architecture of the models looks
as follows. For cross-encoders, we use the stan-
dard text pair separators following Devlin et al.
(2019). In the case of bi-encoders, we use the
cosine similarity of the text pair embeddings fol-
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lowed by the sigmoid function for regression tasks
(BWS, SICK-REL). For binary classification (UKP-
A, Evi-St, Arg-KP, QQP) tasks, we determine an
optimal threshold towards the development set as
done by Reimers et al. (2019). For all multi-class
tasks (RTE, QNLI, MNLI, SICK-NLI), we use soft-
max to aggregate both sentence embeddings and
their difference as done by Reimers and Gurevych
(2019a) and for capturing the annotation direction
for tasks with a directed AG (Arg-Conv, Evi-Conv).

Hyperparameters We optimise the batch size
for all experiments, strategies, and tasks with zero
as random seed and keep the rest of the hyperpa-
rameters fixed following previous work (Mosbach
et al., 2021; Dodge et al., 2020) (see Appendix
§ A.2 for details). To compare the different batch
sizes, we take the best performing epoch consider-
ing the development set. For MNLI, we average the
performance of the two development sets (MNLI-m
& MNLI-mm). When having multiple folds, we se-
lect the optimal batch size according to the average
performance overall folds, rather than optimising it
separately for each fold.

Figure 6: Comparison of the cumulative distribution
functions (CDF) of BASE with NODE, EDGE-I, and
EDGE-II for the QQP task. It shows for a given ob-
servation x the probability of observing x or a smaller
value in the CDF.

Evaluation Setting We fine-tune every language
model with the optimised batch size using ten ran-
dom seeds, find the final results from the epoch
with the highest development score, and report av-
erage and std. dev. on the test set. These metrics
approximate the underlying results due to the non-
gaussian distributed results and an expected perfor-
mance variance (Dodge et al., 2020). Thus, we test
whether an approach outperforms a baseline and
vice-versa - i.e. in Figure 6. One option is using the
Mann-Whitney U-test (Mann and Whitney, 1947) -
also known as Wilcoxon Rank-Sum test (Wilcoxon,
1945; McKnight and Najab, 2010) - which checks

whether our approach (i.e. NODE) is stochastic
larger than the baseline BASE (Lehmann, 1955).
To match this criterion, the cumulative distribution
function (CDF) of the superior approach needs to
be consistently below the other one - shown on the
left of Figure 6. In Dror et al. (2019), the authors
show the sensitivity of the U-test towards minor
violations of this requirement. Thus, they proposed
Almost Stochastic Order (ASO) Dror et al. (2019)
that better adapts to results of neural networks by
slightly allowing some violation ε. Such a situa-
tion is shown in the middle of Figure 6, where we
observe EDGE-I outperforming NODE but its CDF
is not constantly under the other one. Here, the
U-test fails (p < 0.05) to make a decision due to
the minor marked violation while ASO can confirm
our observation. In contrast, on the right, we see
our approach is underperforming the baseline (con-
sistently above the blue line). Using ASO we can
confirm this observation while the U-test can not
gives us a decision (p < 0.05).

Since this desired softening of ASO increases the
risk of type-I errors (i.e., we observe a significant
improvement when there is none), we apply a strict
test setting compared to other work (Dodge et al.,
2020; Zhang et al., 2021). We use a p-value of
0.01 and adapt it with the Bonferroni correction
(Bonferroni, 1936) (we provide additional details in
the Appendix § B.1). For reference, we also apply
the U-test and bootstrap-test (Efron and Tibshirani,
1994) - both with p < 0.05 - to test significant
improvements and deteriorates apart of ASO.

4 Experiments

4.1 In-Domain and Cross-Topic Evaluation
In the first experiment, we evaluate the general
effect of using our approach by fine-tuning a BERT
bi-encoder. We report the task’s mean, standard
deviation, and significance with a publicly available
test set (Table 2). As the test sets for datasets from
the GLUE benchmark are not publicly accessible,
we report results based on the development set and
the ensemble performance (majority vote) on the
test set (set Appendix § B.2 for the test results).5

Overall, the results show that NODE signifi-
cantly improves the baseline BASE on nine tasks
and is never outperformed statistically signifi-
cant. For EDGE-I and EDGE-II, we see a sta-
tistically significant improvement in eleven and
five tasks while being outperformed in zero and

5Evaluated with (https://gluebenchmark.com/)
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four cases, respectively. Considering cross-topic
results, we see that EDGE-I performs with a im-
provement/deterioration ratio of 5/0 better than
NODE (4/0) and EDGE-II (2/1). Similar, EDGE-1
performs slightly better than NODE on in-domain
tasks (6/0 vs. 5/0) and outperforms EDGE-II (2/3).

4.2 Low-Resource Scenario
In the second experiment, we examine the effect of
our approach for the low-resource scenario. There-
fore, we iterative select 25, 50, 75, and 100 in-
stances from SICK-NLI, SICK-REL, BWS, and
Evi-Conv in a way that these subsets match the
average and std. dev. degree of the full dataset.
In addition, we randomly sample for each subset a
control subset (RANDOM) to verify the added value
of having structural information within the training
samples. These control subsets are trained in the
same setting as BASE. We sample four folds for
every subset and control subset of the four tasks to
get more robust results.

Figure 7 shows the results for all the subsets
on the four selected datasets where we see the
proposed strategies underperforming BASE on the
most subsets. Exceptions are EDGE-II for SICK-
REL and NODE for Arg-KP with a ratio of 4/0, as
well as the subsets with 25 instances. For them,
we observe nine significant improvements and no
deteriorations of our strategies in 12 cases, where
NODE brings a significant improvement in overall
tasks. Considering the control subsets RANDOM,
we see that they perform significantly worse than
BASE in 12 out of 16 cases.

4.3 Model Agnostic
Next, we want to check whether the success of
batching strategy depends on the model type in use.
We choose UKP-A, BWS, Evi-St, SICK-NLI, and
SICK-REL to cover both scenarios and the overall
performance spectrum reported in § 4.1. We com-
pare the bi-encoder (BERT-bi) and cross-encoder
(BERT-cross) architecture using BERT. Further, we
examine the effect of having more parameters by
evaluating BERT-Large in the bi-encoder setting.
Finally, we investigate the influence of the model
family by comparing BERT with ALBERT (Lan
et al., 2020), and RoBERTa (Liu et al., 2019).

Table 3 shows the aggregated results of this ex-
periment. It lists the improvements/deteriorations
ratio of all language models and strategies. These
results show that EDGE-I outperforms NODE for
BERT (1/0 vs. 4/0) while performing on par for

BERT-cross (2/0 both). EDGE-II achieves a ratio of
2/1. Looking at BERT-large, we see that NODE and
EDGE-I have the same performance (1/2), while
EDGE-II underperforms both (0/2). Considering
the model family (BERT, ALBERT, RoBERTa), we
see for EDGE-I (4/0, 3/2, 3/1) slightly better ratios
that for NODE (1/0, 3/1, 3/1), while EDGE-II (2/1,
2/2, 3/2) perform worse. In general, we observe
a better improvement/deterioration ratio on BERT
(7/1) than on BERT-cross (6/1), RoBERTa (9/4),
ALBERT (8/5), and BERT-large (2/6). Considering
the strategies, we see an overall ratio of 10/4 for
EDGE-I, 13/5 for NODE and 8/8 for EDGE-II.

4.4 Summary

Summarising the experiments shows our ap-
proach’s significant effect on the performance of
different tasks and language models. In detail,
we see EDGE-I and NODE significantly improve
the performance for a majority of the tasks while
EDGE-II causes fewer improvements and all the
significant deteriorations. Further, we see slightly
better performance on the in-domain tasks than the
cross-topics ones. One reason is that finding an
optimal batch size is challenging for cross-topics
due to the additional regularization coming from
having multiple diverse folds. This fact could have
a bigger effect on the batching strategies because
the batch size has more influence than for BASE.

Considering the low-resource setting, we see the
success of our strategies for the extreme case of 25
instances but can not find a clear trend for all the
subsets. We see one reason in the face that BASE

works similar to our proposed strategies when hav-
ing a small instance number. In this case, the prob-
ability of selecting two instances with a common
sentence is higher even with the standard batch sam-
pling procedure. Further, we note that including
structural information can provide an added value
for the low-resource setting since we see RANDOM

constantly underperforming BASE.

Overall, the EDGE-I strategy seems to be slightly
superior over NODE, for bi-encoders. We note its
significant performance gain on datasets with dif-
ferent task types and its’ model agnostic capabili-
ties. For cross-encoder, we see EDGE-I performing
similar to NODE but on general with a larger mar-
gin. We can imagine that cross-encoders are more
sensible when a distinct sentence appears multiple
times.
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SICK-NLI SICK-REL RTE QNLI MNLI-m MNLI-mm QQP
BASE 80.3±1.1 88.9±0.2 62.8±2.0 79.8±0.2 73.6±0.2 74.0±0.3 87.8±0.2
NODE 80.6±1.1 89.1±0.1(1,3,5) 62.6±1.5 80.4±0.1(1,3,5) 74.2±0.4(1,3,5) 74.4±0.2(1,3,5) 88.0±0.1(1,3,5)

EDGE-I 81.2±0.7(1,5) 89.1±0.1(1,3,5) 62.4±1.6 80.5±0.2(1,3,5) 74.0±0.2(1,3,5) 74.3±0.3(1,3,5) 87.9±0.2(1,3,5)

EDGE-II 79.2±1.5(2,6) 89.0±0.1(1,5) 63.4±0.8 80.2±0.3(1,3,5) 73.8±0.5 73.8±0.4(2) 87.6±0.5(2)

UKP-A BWS Arg-Conv Evi-Conv Evi-St Arg-KP ArgQ-St
BASE 71.4±1.3 59.5±0.9 81.8±0.3 71.9±0.7 83.8±1.0 72.2±0.9 89.1±0.4
NODE 71.3±0.9 59.8±1.0 82.1±0.3(1,3,5) 72.7±0.6(1,3,5) 83.7±1.2 72.8±0.8(1) 89.2±0.3(1)

EDGE-I 71.4±1.0 60.0±0.6(1) 82.0±0.2(1) 72.5±0.6(1,3,5) 85.2±1.1(1,3,5) 72.4±0.5 89.6±0.4(1,3,5)

EDGE-II 71.1±0.7(4) 59.7±0.4 81.8±0.4 72.0±0.6 84.9±1.5(1,5) 70.1±0.6(2,4,6) 89.6±0.4(1,3,5)

Table 2: Results of BERT bi-encoder using different batching strategies on 14 heterogeneous tasks. Tasks in
the upper table are evaluated in-domain, results in the lower part in a cross-topic scenario. We report Pearson
Correlation (SICK-REL, RTE), micro-F1 (QQP), and macro-F1 (UKP-A, Evi-St, Arg-KP) as evaluation measures,
for all others we report accuracy scores. The best performance for each task is marked in bold and statistically
significant improvements (ASO(1), U-test(3), bootstrap(5)) and deteriorations (ASO(2), U-test(4), bootstrap(6)) are
indicated. We find in 17 cases a significant improvement and one deterioration based on all tests. Further, in four
and in two cases an improvement or deterioration only based on ASO.

Figure 7: Performance of all strategies, the baseline, and the random sampled control sets SICK-REL, SICK-NLI,
BWS, and Arg-KP for 25, 50, 75, and 100 instances (see § B.3 for raw results and details of the subsets). Circles
indicates significant improvements and squares deteriorations (using ASO with p < 0.01).

Improvement / Deterioration
Model NODE EDGE-I EDGE-II
BERT-bi 1/0 4/0 2/1
BERT-cross 2/0 2/0 2/1
BERT-large 1/2 1/2 0/2
ALBERT 3/1 3/2 2/2
RoBERTa 3/1 3/1 3/2

Table 3: Overview of statistically significant improve-
ments and deteriorations - using ASO - based on § B.4.

5 Further Analysis

Based on the previously shown experiments, we
further analyse the influence of the graph structure
and the stability & computational complexity of
our approach.

5.1 Influence of Graph Structure
We observe for NODE a moderate correlation (0.5)
of the selected batch size with the CV. We see one
reason for this coherence in the fact that having
a high CV means that there are rare nodes with a
high degree. Thus, when one of them are sampled

in one batch, they can dominate it. Therefore, in-
creasing the batch size can reduce this dominance.
For EDGE-I, and EDGE-II we can not observe a
notable correlation.

When considering previously showed patterns
(Table 1) G1 and G2, we observe a slightly better
ratio of EDGE-I (7/0 and 2/0) than for NODE (5/0
and 2/0). In case of the third group G3, we observe
similar performance of both (2/0) while EDGE-I
outperforms NODE in absolute terms. Compared
to NODE, we see EDGE-I better gaining from sit-
uations where the degree of a few nodes grows
extremely (k > 400) like in ArgQ-St or Evi-St.

To summarise, we see that the structural pat-
terns influence the training and performance of the
different strategies. Thus, we can derive that the
batch size of NODE should grow with the CV, or
that EDGE-I is better suited for tasks where a few
nodes have a large degree.

5.2 Stability

Previously work (Dodge et al., 2020; Zhou et al.,
2020) identify the training instances’ order as a
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reason for instabilities. Since we adopt this order
for our approach, we verify whether the proposed
batching strategies lead to additional instabilities.
For this purpose, we verify the results of all ex-
periments for a significant difference in the perfor-
mance variance for every batching strategy com-
pared to the baseline. Using the Brown-Forsyth
test (Brown and Forsythe, 1974), we find in 15
out of 165 cases of all experiments a significant
(p < 0.01) difference in the performance variance,
where ten reduced and five raised the variance com-
pared to the baseline. Thus, we conclude that our
approach does not introduce new instabilities.

5.3 Computation Complexity

We keep the model size and structure unchanged
and thereby do not add any new complexities dur-
ing inference. For training, the complexity for
NODE and BASE isO(2n) since both process every
training instance twice. For EDGE-I and EDGE-II,
the complexity depends on the AGs’ density. In
extreme cases without structure, it is equal to O(n)
because no context edges are sampled, and only
base edges are processed. For the other extreme,
when every node has at least three connected edges,
the complexity is O(n+ 4n) since we sample for
every training instance at most four context edges -
two for both starting points. In the average case the
complexity is approx. O(n + 2n(µk − 1)), since
we sample for both starting point of every base
edge on average (µk - 1) context edges - where µk
is the average degree of all nodes. Note that we
subtract one because we already consider, with the
based edge, one of the connected edges for both
starting points. Thus, NODE and the baseline has a
higher complexity than EDGE-I and EDGE-II until
µk exceeds 1.5.

6 Related Work

While not directly comparable, our work is re-
lated to (supervised) contrastive learning in natural
language processing (Rethmeier and Augenstein,
2021). Most approaches in this domain (Pagliar-
dini et al., 2018; Logeswaran and Lee, 2018; Giorgi
et al., 2021; Gao et al., 2021) aim to learn text
representations where related samples (positive
pairs) are aligned while unrelated samples (nega-
tive pairs) are separated. This self-supervised learn-
ing uses training objectives like text reconstruc-
tion (Logeswaran and Lee, 2018) or using supervi-
sion signals (Conneau et al., 2017; Cer et al., 2018;

Reimers and Gurevych, 2019b) from labelled data
like Natural Language Inference (NLI) (Bowman
et al., 2015; Williams et al., 2018b). In their setup
with NLI data, Gao et al. (2021) adapt training
batches such that entailment relations are treated
as positive examples but contradiction relations
and all other in-batch instances as negative exam-
ples. Compared to these approaches, our setup
focus on the supervised learning setting for these
downstream tasks, rather than learning text repre-
sentations which can be used latter on for these
tasks.

In general, our approach adapts the training in-
stance order that a model processes. This idea
is also at the core of Curriculum Learning (Ben-
gio et al., 2009) where training instances are re-
ordered according to their estimated difficulty. This
has been shown to be beneficial for model perfor-
mance (Tay et al., 2019; Xu et al., 2020) and faster
convergence (Platanios et al., 2019). While Cur-
riculum Learning approaches make use of heuris-
tics to adapt the sample order in one epoch, our
approach only relies on the dataset structure to con-
trol the composition of training batches.

Dodge et al. (2020) identified that the order of
the training samples is a random factor that in-
fluences the non-deterministic learning process of
neural networks. Further, Zhou et al. (2020) found
that inter-instance correlations lead to instabilities
during training. We acknowledge these effects and
investigate if inter-instance relations can be lever-
aged in the batch composition to improve the task
performance for pairwise text classification.

7 Conclusions

We presented three strategies that adapt the com-
position of batches to encode structural dataset in-
formation. We evaluated these batching strategies
on 14 heterogeneous tasks from different domains.
Our results confirm the usefulness of this structural
information during model training. EDGE-I show
the best overall results, including different model
types (e.g. ALBERT or RoBERTa) and model ar-
chitectures (bi- or cross-encoder). Further, we see
its success on tasks with extreme characteristics
(high degree) and in situations where annotated
data is extremely scarce (25 instances). We inter-
pret our results as a promising step to integrate
structural dataset information besides instance-
level annotations. Further, we encourage future
annotation studies to consciously consider includ-
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ing pairs that share common text instances for two
reasons. First, to exhaust all possibilities later and
second, we showed that even baseline approaches
can gain from such structures.

This work covered a broad set of pairwise clas-
sification datasets that provide a structure of anno-
tation pairs that share text instances. We plan to
employ our method on datasets that do not meet
this requirement by inducing inter-instance rela-
tions using similarity metrics for future work.
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A Training Setup

We present additional information on the training
setup, including details of the used datasets and
hyperparameters.

A.1 Used Datasets
We outline additional detail of the used dataset com-
plementary to § 3.1. Table 9 introduce examples
for all used datasets, and Table 10 show additional
details for all of them, like the average degree or
the number of topics.

A.2 Hyperparameters
The Table 4 and Table 5 shows the evaluated hy-
perparameters for the different strategies and the
used pre-trained language model for the different
experiments. This information complements § 3.2

Parameter Values

Batch Size
{8, 16, 32} (BASE)
{8, 10, 12, 14} (NODE)
{8, 16, 24, 32} (EDGE-I &
EDGE-II)

Learning Rate 2e−5

Optimizer AdamW
Optimizer
Function

Cross-Entropy

Warmup 10% (linear)

Table 4: Overview of the different used hyperparame-
ters.
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Table 5: Overview of the used Huggingface model tags
for fine-tuning during the different experiments. (1) re-
fer to the first experiment In-Domain and Cross-Topic
Evaluation, (2) to Dataset Size, and (3) to Model Ag-
nostic .

B Additional Results of the Experiments

In this section, we show the additional details of
the three Experiments (§ 4.1, § 4.2,§ 4.3).

B.1 Significance Testing Correction

Following the defined significance testing setting
(see § 3.2) we use a corrected p-value (p = 0.01)
for the different experiments. Thus, we divide it
by 14 for the first experiment, 8 for the second one,
and 6 and 4 for the cross- and in-domain tasks in
the third one.

B.2 Experiment: In-Domain and Cross-Topic
evaluation

The Table 6 shows the results for a significant im-
provement ε or deterioration ε′, complementary to
§ 4.1.

Looking at the GLUE test results (Table 7), we
see improvements in absolute numbers for RTE (all
strategies), MNLI-m (EDGE-I & II), MNLI-mm
(EDGE-II), and QQP (NODE).

B.3 Experiment: Low-Resource Scenario

We show in Table 11 the raw results for all subsets
and control subsets (RANDOM) of the SICK-REL,
SICK-NLI, BWS, and Evi-St task that we use to
compose Figure 7 in § 4.2. The last four columns
include results of testing for a significant improve-
ment ε or deterioration ε′.

B.4 Experiment: Model Agnostic

Table 12 shows the result of the model agnostic
experiments in detail. In addition, it lists the re-

Significance (ε / ε′)
NODE EDGE-I EDGE-II

SICK-NLI

in
-d

om
ai

n

1.0/1.0 0.0/1.0 1.0/0.01
SICK-REL 0.0/1.0 0.0/1.0 0.04/1.0
RTE 1.0/1.0 1.0/1.0 1.0/1.0
QNLI 0.0/1.0 0.0/1.0 0.0/1.0
MNLI-m 0.0/1.0 0.0/1.0 1.0/1.0
MNLI-mm 0.0/1.0 0.0/1.0 1.0/0.09
QQP 0.0/1.0 0.0/1.0 1.0/0.04
UKP-A

cr
os

s-
to

pi
c

1.0/1.0 1.0/1.0 1.0/1.0
BWS 0.82/1 0.09/1.0 1.0/1.0
Arg-Conv 0.0/1.0 0.23/1.0 1.0/1.0
Evi-Conv 0.0/1.0 0.0/1.0 1.0/1.0
Evi-St 1.0/1.0 0.0/1.0 0.05/1.0
Arg-KP 0.38/1.0 1.0/1.0 1.0/0.0
ArgQ-St 0.19/1.0 0.0/1.0 0.0/1.0

Table 6: Results the significance testing of in- and
cross-topic tasks computed with ASO with p < 0.01.

BASE NODE EDGE-I EDGE-II
RTE 59.2 59.2 60.7 60.2
QNLI 80.7 80.2 80.6 80.1
MNLI-m 33.6 33.7 34.0 33.8
MNLI-mm 75.9 76.2 75.3 76.0
QQP 67.0 67.7 67.0 66.8

Table 7: Test results on the GLUE tasks. Best results
per dataset are marked in bold.

Size Degree Random

B
W

S

25 1.49± 0.09 1.03± 0.04
50 1.54± 0.03 1.05± 0.02
75 1.56± 0.04 1.10± 0.04
100 1.54± 0.02 1.12± 0.04

SI
C

K
-N

L
I 25 1.88± 0.08 1± 0

50 1.77± 0.04 1± 0
75 1.78± 0.04 1± 0
100 1.78± 0.06 1± 0

SI
C

K
-R

E
L 25 1.88± 0.08 1± 0

50 1.77± 0.04 1± 0
75 1.78± 0.04 1± 0
100 1.78± 0.06 1± 0

A
rg

-K
P 25 4.01± 0.20 1.65± 0.11

50 4.34± 0.11 1.93± 0.06
75 4.79± 0.11 2.06± 0.09
100 5.03± 0.09 2.15± 0.08

Table 8: Overview of the average and std. dev. of the
degree for all subsets with 25, 50, 75, and 75 samples.
Column Degree lists the details for the specific sampled
subsets, and Random the ones for the random sample
for the control subsets.
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Dataset Sentence A Sentence B Label
BWS We shouldn’t penalize someone for life. Abortions cause psychological damage. 0.41
UKP-A Cleaner, Greener, Safer, Smarter. The efficiency advantage of electric motors

means excellent on-road "fuel" economy.
Similar

Arg-Conv Spam and adware seems to be so much more
compatible with IE.

If the Firefox is the best then why everybody
tries to have IE compatible sites?

1

Evi-Conv The recently independent country of Southern
Sudan also recognizes polygamy.

A 2011 opinion poll showed that most
Malaysians and Indonesians youth opposed
polygamy.

2

Evi-St A 2011 opinion poll showed that most
Malaysians and Indonesians youth opposed
polygamy.

We should legalize polygamy CON

Arg-KP anyone who contributes to ending a life should
be punished

Assisted suicide is akin to killing someone Matching

ArgQ-St A majority of americans identify with a reli-
gion.

We should adopt atheism. CON

RTE Edward VIII became King in January of 1936
and abdicated in December.

KKing Edward VIII abdicated in December
1936.

Entailment

QNLI What portion of Berlin’s population spoke
French by 1700?

By 1700, one-fifth of the city’s population was
French speaking.

Entailment

MNLI Sorry but that’s how it is. This is how things are and there are no apolo-
gies about it.

contra-
diction

QQP What was the deadliest battle in history? What was the bloodiest battle in history? Duplicated
SICK-
REL

Three kids are sitting in the leaves Three kids are jumping in the leaves 3.8

SICK-NLI Three kids are sitting in the leaves Three kids are jumping in the leaves Neutral

Table 9: Examples of the different tasks annotated with the corresponding labels.

sults for the five selected datasets on five language
models. The results of testing for a significant im-
provement ε or deterioration ε′ are shown in the last
three columns. These insights complements the ag-
gregated results of Table 3 in the third experiment
(§ 4.3).
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Dataset Label Pairs Topics Degree Folds Split Metric

In
-D

om
ai

n

SICK-NLI* 3-Class 9.954 - 3.2±2.1 (1) 1 4553-495-4906 acc
SICK-REL Score (1-5) 9.954 - 3.2±2.1 (1) 1 4553-495-4906 ρ
RTE* 3-Class 4.866 - 1.1±0.6 (1) 1 2.490-277-2.099 acc
QNLI* Binary 115k - 1.9±0.8 (1) 1 104k-5463-5463 acc
MNLI-m* 3-Class 413k - 1.5±0.9 (1) 1 391k-9.714-9796 acc
MNLI-mm* 3-Class 413k - 1.5±0.9 (1) 1 391k-9832-9847 acc
QQP Binary 751k - 1.6±2.2 (1) 1 363k-40k-390k F1

C
ro

ss
-T

op
ic

UKP-A Binary 3.595 28 3.5±3 (1) 4 17-4-7 F1 macro
BWS Score (0-1) 3.400 8 1.6±1.5 (1) 4 5-1-2 ρ
Arg-Conv Binary 11.650 32 22.2±4.6 (2) 4 19-5-8 acc
Evi-Conv Binary 5.697 69 6.2±4.4 (2) 4 46-7-16 acc
Evi-St Binary 11.394 69 1.9±5.8 (3) 4 46-7-16 F1 macro
Arg-KP Binary 24.093 28 7.1±18.1 (3) 4 17-4-7 F1 macro
ArgQ-St 3-Class 30.497 71 2±20.7 (3) 1 49-7-15 acc

Table 10: Summary of the number of folds and the used splits for all used tasks. NLI task are marked with *. The
degree is grouped into three pattern-groups: (1) the coefficient of variation (CV) is around one, (2) the CV is below
one, and (3) the CV is clearly above one.

Scores (Bi) Significance (ε / ε′)
Size BASE RANDOM NODE EDGE-I EDGE-II RANDOM NODE EDGE-I EDGE-II

B
W

S

25 51.6±1.1 52.0±0.8 53.1±0.8(1,3) 52.3±0.3(1) 52.7±0.2(1,3) 0.65/1.0 0.0/1.0 0.27/1.0 0.02/1.0
50 54.7±1.1 52.6±0.8(2,4) 53.6±1.2(2,4) 51.7±0.7(2,4) 52.1±0.7(2,4) 1.0/0.0 1.0/0.04 1.0/0.0 1.0/0.0
75 55.4±1.0 53.8±1.3(2,4) 54.7±1.1(2) 55.1±0.8 53.9±0.8(2,4) 1.0/0.0 1.0/0.12 1.0/0.72 1.0/0.0
100 56.4±0.8 54.5±0.8(2,4) 55.8±0.8(2) 53.6±1.1(2,4) 54.4±0.8(2,4) 1.0/0.0 1.0/0.23 1.0/0.0 1.0/0.0

SI
C

K
-N

L
I 25 56.8±0.2 56.7±0.5(2) 57.0±0.2(1) 57.1±0.1(1,3) 56.9±0.3 1.0/0.43 0.04/1.0 0.01/1.0 1.0/1.0

50 56.9±0.1 56.4±0.8(2,4) 56.9±0.2 56.7±0.4(2) 56.8±0.2(2) 1.0/0.03 1.0/1.0 1.0/0.06 1.0/0.05
75 58.2±0.4 56.8±0.4(2,4) 57.7±0.4(2,4) 57.4±0.5(2,4) 57.3±0.4(2,4) 1.0/0.0 1.0/0.0 1.0/0.0 1.0/0.0
100 58.3±0.8 57.4±0.4 58.5±0.6 58.0±0.5 57.7±0.5(2,4) 1.0/1.0 1.0/1.0 1.0/0.79 1.0/0.0

SI
C

K
-R

E
L 25 80.3±0.7 82.6±0.1 80.6±0.2(1,3) 81.5±0.1(1,3) 82.0±0.2(1) 1.0/1.0 0.38/1.0 0.0/1.0 0.0/1.0

50 81.4±0.4 82.0±0.1(1,3) 80.9±0.5(2,4) 81.5±0.3 82.5±0.1(1,3) 0.0/1.0 1.0/0.0 0.9/1 0.0/1.0
75 81.9±0.3 81.4±0.3(2,4) 80.9±0.6(2,4) 81.8±0.3 83.1±0.2(1,3) 1.0/0.0 1.0/0.0 1.0/1.0 0.0/1.0
100 82.3±0.3 81.7±0.4(2,4) 81.6±0.4(2,4) 82.2±0.3(2) 83.2±0.2(1,3) 1.0/0.0 1.0/0.0 1.0/0.32 0.0/1.0

A
rg

-K
P 25 63.3±0.5 63.5±0.9 63.5±0.4(1) 63.5±0.7 63.2±0.4 1.0/1.0 0.29/1.0 0.78/1 1.0/0.86

50 64.6±0.4 64.0±0.7(2,4) 64.8±0.4(1) 64.5±0.6 64.8±0.5(1) 1.0/0.0 0.24/1.0 1.0/1.0 0.13/1.0
75 64.8±0.5 62.4±0.5(2,4) 65.7±0.4(1,3) 65.4±0.6 65.4±0.5 1.0/0.0 0.0/1.0 1.0/1.0 1.0/1.0
100 65.6±1.1 62.7±0.4(2,4) 66.1±0.5(1) 66.1±0.5(1) 66.0±0.4 1.0/0.0 0.25/0.0 0.21/1.0 0.5/1.0

Table 11: Results of the evaluation concerning different dataset sizes for Arg-KP, SICK-REL, and SICK-NLI. The
column size indicates for SICK-REL, and SICK-NLI how many training instances are used and for Arg-KP how
many topics. For the first four rows pick just a portion of one topic. Statistically significant improvements (ASO(1),
U-test(3)) and deteriorations (ASO(2), U-test(4)) are indicated. The best performance for each task is bold marked.
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Strategy Significance (ε / ε′)
Task BASE NODE EDGE-I EDGE-II NODE EDGE-I EDGE-II

B
E

R
T-

bi

UKP-A 71.4±1.3 71.3±0.9 71.4±1.0 71.1±0.7(4) 1.0/1.0 1.0/1.0 1.0/1.0
BWS 59.5±0.9 59.8±1.0 60.0±0.6(1) 59.7±0.4 0.77/1.0 0.09/1.0 1.0/1.0
Evi-St 83.8±1.0 83.7±1.2 85.2±1.1(1,3) 84.9±1.5(1) 1.0/1.0 0.0/1.0 0.05/1.0
SICK-NLI 80.3±1.1 80.6±1.1 81.2±0.7(1) 79.2±1.5(2) 1.0/1.0 0.0/1.0 1.0/0.01
SICK-REL 88.9±0.2 89.1±0.1(1,3) 89.1±0.1(1,3) 89.0±0.1(1) 0.0/1.0 0.0/1.0 0.04/1.0

B
E

R
T-

cr
os

s UKP-A 76.0±0.5 76.1±0.8 76.5±0.7(1) 76.5±0.5(1) 1.0/1.0 0.02/1.0 0.0/1.0
BWS 63.6±1.1 64.5±0.5(1,3) 63.4±1.8 63.9±1.7(4) 0.0/1.0 1.0/1.0 1.0/1.0
Evi-St 72.5±6.3 72.1±8.1 76.4±6.9(1) 65.9±7.8(2) 1.0/1.0 0.0/1.0 1.0/0.0
SICK-NLI 86.0±0.7 86.5±0.9(1) 86.0±0.6 86.3±0.5 0.2/1.0 1.0/1.0 1.0/1.0
SICK-REL 89.6±0.5 89.5±0.4 89.8±0.5 89.8±0.5(1) 1.0/1.0 0.57/1.0 0.1/1.0

B
E

R
T-

L
ar

ge UKP-A 72.4±0.6 72.6±0.8 72.1±1.0(2) 71.6±1.3(2) 0.79/1.0 1.0/0.39 1.0/0.07
BWS 58.6±0.7 57.3±4.9(2) 58.0±4.9(2) 56.0±5.9(2) 1.0/0.03 1.0/0.19 1.0/0.01
Evi-St 87.6±1.2 85.7±3.3 86.1±2.5 86.9±1.6 1.0/1.0 1.0/1.0 1.0/1.0
SICK-NLI 79.3±0.7 80.7±1.3(1,3) 80.5±1.5(1,3) 79.6±1.4 0.0/1.0 0.03/1.0 1.0/1.0
SICK-REL 89.0±0.3 88.8±0.3(2) 89.0±0.1 88.9±0.2 1.0/0.19 0.82/1.0 1.0/1.0

A
L

B
E

B
R

T UKP-A 69.9±0.9 69.5±1.2 69.3±0.9(2) 68.5±0.8(2,4) 1.0/0.55 1.0/0.11 1.0/0.0
BWS 57.8±0.2 58.1±0.3(1,3) 58.2±0.4(1,3) 58.2±0.3(1,3) 0.0/1.0 0.0/1.0 0.0/1.0
Evi-St 80.3±2.1 79.3±3.0(2) 79.5±2.4(2) 79.4±2.2(2) 1.0/0.21 1.0/0.26 1.0/0.29
SICK-NLI 81.7±2.4 82.6±0.6(1) 82.3±0.7(1) 82.6±0.7(1) 0.01/1.0 0.08/1.0 0.01/1.0
SICK-REL 89.2±0.2 89.5±0.1(1,3) 89.5±0.1(1,3) 89.3±0.2 0.0/1.0 0.0/1.0 0.84/1.0

R
oB

E
R

Ta

UKP-A 72.4±0.9 73.2±0.5(1,3) 73.2±0.7(1,3) 73.5±1.0(1,3) 0.0/1.0 0.01/1.0 0.0/1.0
BWS 63.7±0.3 62.8±0.6(2,4) 63.0±0.3(2,4) 62.4±0.6(2,4) 1.0/0.0 1.0/0.0 1.0/0.0
Evi-St 88.0±1.6 88.7±2.0 88.6±0.8 89.4±1.3(1,3) 1.0/1.0 1.0/1.0 0.0/1.0
SICK-NLI 82.2±0.8 83.3±0.7(1,3) 82.7±0.5(1,3) 82.7±1.0(1) 0.0/1.0 0.0/1.0 0.21/1.0
SICK-REL 89.3±0.1 89.5±0.1(1,3) 89.6±0.2(1,3) 89.3±0.1(2) 0.0/1.0 0.09/1.0 1.0/0.12

Table 12: Results of the model agnostic evaluation concerning BERT, BERT-Cross, BERT-Large, ALBEBRT, and
RoBERTa on SICK-REL, SICK-NLI, UKP-A, BWS, and Evi-St. Statistically significant improvements (ASO(1),
U-test(3)) and deteriorations (ASO(2), U-test(4)) are indicated. The best performance for each task is bold marked.
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