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Abstract

Chinese spelling correction (CSC) models de-
tect and correct a typo in texts based on
the misspelled character and its context. Re-
cently, Bert-based models have dominated the
research of Chinese spelling correction (CSC).
These methods have two limitations: (1) they
have poor performance on multi-typo texts. In
such texts, the context of each typo contains
at least one misspelled character, which brings
noise information. Such noisy context leads
to the declining performance on multi-typo
texts. (2) they tend to overcorrect valid expres-
sions to more frequent expressions due to the
masked token recovering task of Bert. We at-
tempt to address these limitations in this paper.
To make our model robust to contextual noise
brought by typos, our approach first constructs
a noisy context for each training sample. Then
the correction model is forced to yield similar
outputs based on the noisy and original con-
texts. Moreover, to address the overcorrection
problem, copy mechanism is incorporated to
encourage our model to prefer to choose the
input character when the miscorrected and in-
put character are both valid according to the
given context. Experiments are conducted on
widely used benchmarks. Our model achieves
superior performance against state-of-the-art
methods by a remarkable gain. We release the
source code and pre-trained model for further
use by the community1.

1 Introduction

Chinese spelling correction (CSC) is a task to de-
tect and correct spelling errors in texts(Chen et al.,
2013; Yu and Li, 2014). It is a challenging yet
important task, which plays an important role in
various NLP applications such as optical charac-
ter recognition(Afli et al., 2016; Dong and Smith,
2018), automatic speech recognition(Sarma and
Palmer, 2004; Errattahi et al., 2018) and search
engine(Martins and Silva, 2004; Gao et al., 2010).

1https://github.com/liushulinle/CRASpell

ID Text Correction
E1 我是你得(de)学生。 的(de)

E2 他很少座(zuo)捷运粗(cu)去玩。 坐(zuo),出(chu)

Table 1: Examples of Chinese spelling errors, where
error characters are marked in red and their phonics are
given in brackets.

Corpus
Sentence-level Character-level

me te ratio me te ratio

S13 200 969 21% 450 1,219 37%

S14 155 535 29% 406 766 53%

S15 121 550 22% 284 704 40%

Table 2: The multi-typo statistics of SIGHAN13,
SIGHAN14 and SIGHAN15, where me denotes the
number of multi-typo sentences, te denotes the num-
ber of total misspelled sentences, ratio = me

te . The
character-level me denotes the amount of misspelled
characters in multi-typo sentences.

In Chinese, spelling error is mainly caused by the
misuse of phonologically and visually similar char-
acters(Liu et al., 2021). According to Liu et al.
(2010), about 83% of errors are related to phono-
logical similarity and 48% are related to visual
similarity. Table1 illustrates two examples.

In recent years, BERT(Devlin et al., 2019) based
models have dominated the research of Chinese
spelling correction(Cheng et al., 2020; Zhang et al.,
2020; Bao et al., 2020; Liu et al., 2021; Li and
Shi, 2021; Huang et al., 2021), which follow the
paradigm of non-autoregressive generation. Typi-
cally, these models generate corrected characters
for all input characters in parallel, where the gener-
ated characters can be the same as the input charac-
ters. Thanks to the success of BERT, these models
significantly improved the results of CSC bench-
marks. However, they have two limitations.

First, multi-typo texts are very common in
CSC datasets, which is defined as texts con-
taining more than one typos. Table 2 presents
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Model
Whole Set Multi-typo Set

P R F P R F

BERT 97.0 79.3 87.3 96.4 67.4 79.3

Zhang et al. (2020) 96.9 82.9 89.4 91.2 73.8 81.6

Cheng et al. (2020) 96.7 81.4 88.4 95.9 69.9 80.9

Liu et al. (2021) 97.2 85.0 90.7 94.0 75.9 84.0

Table 3: The correction performance of various CSC
models on the whole and multi-typo evaluation set.

the multi-typo statistics of SIGHAN13(Wu
et al., 2013), SIGHAN14(Yu et al., 2014) and
SIGHAN15(Tseng et al., 2015). However, we find
the performance of existing CSC models declines
sharply on multi-typo texts. Table 3 illustrates the
results of the latest CSC models on SIGHAN15
and a multi-typo subset extracted from it. We ob-
serve that all models in this table perform worse
on multi-typo set than on the whole set. Generally,
CSC models detect and correct a typo based on
the misspelled character and its context. In multi-
typo texts, the context of each character contains at
least one typo, which results in noisy information.
Take E2 in Table 1 as an example, the context of
“座" contains the typo “粗" and vice versa. Such
noisy context leads to the declining performance on
multi-typo texts. We call this problem Contextual
Typo Disturbance.

Second, Bert is a masked language model(Devlin
et al., 2019). It learned how to recover a masked to-
ken based on its context from large corpus. When
there are multiple valid characters for a masked
position, the model prefers to recover it with the
most frequent one in the training corpus. As a con-
sequence, Bert-based models tend to overcorrect
an infrequent but valid expression to a more fre-
quent expression. For instance, both BERT(Cheng
et al., 2020; Liu et al., 2021) and PLOME(Liu et al.,
2021) wrongly correct “这并非非非是说..." to “这并
不不不是说...". We call this problem Overcorrection.

In this paper, we attempt to address the afore-
mentioned problems by proposing a new model
called CRASpell, which is short for Contextual
typo Robust Approach for Chinese spelling cor-
rection. Figure 1 illustrates the framework. The
Contextual Typo Disturbance problem is caused
by the noise of contextual typos, therefore we try
to make our model robust to such noise. To this
end, our approach first generates a noisy context
for each training instance, and then forces the cor-
rection model to yield similar outputs based on

the original and noisy context. Moreover, to ad-
dress the Overcorrection problem, we incorporate
the copy mechanism(Gu et al., 2016; Zeng et al.,
2018) in our model. Finally, the output for each
position in a given text is the sum of generative
distribution and copy distribution. Thus, our model
has more chances to keep the input character un-
changed when the miscorrected and input charac-
ters are both valid according to the given context.

We conduct experiments on the widely used
benchmark dataset SIGHAN(Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015). The experimental
results show that our model outperforms all the
compared approaches. Furthermore, we extract
samples containing multiple typos from SIGHAN
to construct a multi-typo evaluation set. Exper-
imental results show that our approach achieves
2.6% absolute improvement in detection and 2.7%
absolute improvement in correction on the multi-
typo set, which demonstrates the effectiveness of
our approach for multi-typo texts.

We summarize our contributions as follows. (1)
we point out two limitations of existing CSC ap-
proaches, which are called the Contextual Typo
Disturbance problem and the Overcorrection prob-
lem; (2) we propose an effective model to address
these limitations; (3) our model outperforms state-
of-the-art methods with remarkable gains.

2 Related Work

Chinese spelling correction is a challenging task
in natural language processing, which plays im-
portant roles in many applications, such as search
engine (Martins and Silva, 2004; Gao et al., 2010),
automatic essay scoring (Burstein and Chodorow,
1999; Lonsdale and Strong-Krause, 2003), and op-
tical character recognition (Afli et al., 2016; Wang
et al., 2018). It has been an active topic, and vari-
ous approaches have been proposed in recent years
(Yu and Li, 2014; Wang et al., 2018, 2019; Zhang
et al., 2020; Cheng et al., 2020; Liu et al., 2021; Li
and Shi, 2021; Huang et al., 2021).

Early work on CSC followed the pipeline of
error identification, candidate generation and selec-
tion. Some researchers focused on unsupervised
approaches, which typically adopted a confusion
set to find correct candidates and employed lan-
guage model to select the correct one (Chang, 1995;
Huang et al., 2000; Chen et al., 2013; Yu and Li,
2014; Tseng et al., 2015). However, these meth-
ods failed to condition the correction on the input
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Figure 1: Framework of the proposed CRASpell. Left: This component presents the correction module, which
illustrates how our model makes prediction for the red character “做". Right: This component presents the noise
modeling module, which forces the model to yield similar distribution for “做" separately based on the original
and noisy contexts. This module is only active in the training process.

sentence. In order to model the input context, dis-
criminative sequence tagging methods (Wang et al.,
2018) and sequence-to-sequence generative models
(Chollampatt et al., 2016; Ji et al., 2017; Ge et al.,
2018; Wang et al., 2019) were employed.

BERT (Devlin et al., 2019) is a bidirectional
language model based on Transformer encoder
(Vaswani et al., 2017). It has been demonstrated
effective in a wide range of applications, such
as question answering (Yang et al., 2019), infor-
mation extraction (Lin et al., 2019), and seman-
tic matching (Reimers and Gurevych, 2019). Re-
cently, it has dominated the researches on CSC
(Hong et al., 2019; Zhang et al., 2020; Cheng
et al., 2020; Liu et al., 2021; Li and Shi, 2021;
Huang et al., 2021). Hong et al. (2019) adopted the
DAE-Decoder paradigm with BERT as encoder.
Zhang et al. (2020) introduced a detection net-
work to generate the masking vector for the BERT-
based correction network. Cheng et al. (2020) em-
ployed graph convolution network (GCN) (Kipf
and Welling, 2016) combined with BERT to model
character inter-dependence. In our previous work
(Liu et al., 2021), we proposed a task-specific
pretrained model for Chinese spelling correction,
which masked tokens by similar characters accord-
ing to confusion set. Li and Shi (2021) proposed to
decode with the CRF module. Huang et al. (2021)
proposed to incorporate phonological and visual

features via a multi-modal module. Although these
models achieved some success on benchmarks, all
of them suffer from the typo disturbance problem
and overcorrection problem.

3 Approach

In this section, we describe the proposed approach
and its detailed implementation. Figure 1 illustrates
the framework of our model, which is composed of
correction module and noise modeling module.

3.1 Task Formulation

Chinese spelling correction aims to detect and cor-
rect spelling errors in texts. Recent BERT-based
approaches(Cheng et al., 2020; Zhang et al., 2020;
Liu et al., 2021; Li and Shi, 2021; Huang et al.,
2021) modeled it as a non-autoregressive gener-
ation task. Formally, given a character sequence
X = {x1, x2, ..., xn} consisting of n characters,
the model is expected to generate a target sequence
Y = {y1, y2, ..., yn} with the same length as that
of X, where typos in X are corrected in Y.

3.2 Correction Module

As illustrated in Figure 1(left part), the input of
this module is the sequence of embeddings E =
{e1, e2, ..., en}, where ei denotes the embedding
of character xi in a given text X = {x1, x2, ..., xn},
which is the sum of word embedding, position em-
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bedding and segment embedding of the character.
Then, E is fed into the transformer encoder, which
has the same architecture and configuration as that
of Bertbase(Devlin et al., 2019). The transformer
encoder generates hidden representation matrix
H = {h1,h2, ...,hn} for X, where hi ∈ R768

is the representation of xi. The final output of this
module is the weighted sum of generative distribu-
tion and copy distribution, where the weight is the
copy probability learned by the model.

Generative Distribution The generative distri-
bution, pg ∈ Rnv , is computed by the generative
block in Figure 1, which is an one-layer feed for-
ward network with softmax normalization. The
following equation describes how this block works:

pg = softmax(Wghi + bg) (1)

where Wg ∈ Rnv×768 and bg ∈ R768 are genera-
tive parameters, nv is the size of vocabulary.

Copy Distribution Denote the index of xi in the
vocabulary as idx(xi), then the copy distribution
of xi, pc ∈ {0, 1}nv , is a one-hot vector satisfying:

pc[k] =

{
0 k 6= idx(xi)
1 k = idx(xi)

(2)

Copy Probability The copy probability, ω ∈
R, is computed by the copy block in Figure 1,
which is a two-layer feed forward network with
layer normalization. The following equations show
how this block works:

hc = Wchfln(hi) + bch

h
′
c = fln(fact(hc))

ω = Sigmoid(Wch
′
c)

(3)

where hi is the hidden representation of xi
generated by the transformer block, Wch ∈
R768×dc ,bch ∈ Rdc ,Wc ∈ Rdc×1 are model pa-
rameters, fact is the activation function, fln is the
layer normalization function.

The final output distribution, p, is computed by
the following equation:

p = ω × pc + (1− ω)× pg (4)

In previous CSC models(Cheng et al., 2020;
Zhang et al., 2020; Liu et al., 2021), the generative
distribution pg is the final output. These meth-
ods suffer the overcorrection problem due to the
masked token recovering task of BERT. On con-
trast, our model incorporates the copy distribution
pc in the final output, which enables our model to
have more chances to choose the input character
when it is valid but not the best for BERT.

Figure 2: The illustration of valid replaced positions
when dt = 5, where the red character is a typo.

3.3 Noise Modeling Module

The noise modeling module is designed to solve
the contextual typo disturbance problem by encour-
aging the correction model to yield similar distri-
butions for the original and noisy contexts. As
illustrated in Figure 1 (right part), this module first
generates a noisy context based on the input sam-
ple, then takes the noisy context as input and yields
a generative distribution. At last, the generative
distribution is forced to be similar with that gener-
ated by the correction module. Note that the noise
modeling module is only active in training process.

Noisy Block This component generates noisy
contexts by replacing characters of the original
training samples. There are two factors affect the
quality of the generated noisy context, which can
be represented by the following questions.

• Which positions should be replaced?
Table 3 shows that contextual typo signifi-
cantly declines the recall score on multi-typo
set. We believe this phenomenon occurs be-
cause the noise around typos affects CSC mod-
els’ correction of typos. Therefore, we sam-
ple from typo-around positions for replacing,
which is defined as positions less than dt to-
kens away from the nearest typo. Figure 2
illustrates the valid replaced positions when
dt = 5. If a text does not contain any typo, the
noisy block will directly output the original
text without replacing any positions.

In our work, we replace at most one position
for each typo. If there already exists a typo in
the valid positions, we will not replace any po-
sition. Our preliminary experiments show that
more replaced positions declines the perfor-
mance. We believe the reason is that too many
replaced positions results in too much noise in
the context, which declines the performance
on non multi-typo texts.

• What characters should be replaced with?
Following our previous work (Liu et al., 2021),
to simulate true contextual typos, we replace
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each chosen position by a similar character
according to a publicly available confusion
set(Wu et al., 2013). Specifically, we replace
a chosen position with (i) a random phonolog-
ically similar character 70% of the time (ii) a
random visually similar character 15% of the
time (iii) a random token in the vocabulary
15% of the time.

Generative Distribution Given a training sam-
ple X, the noise modeling module first constructs a
noisy instance X̃ via the noisy block, then yields a
generative distribution, p̃g, according to Equation
1 based on X̃. Both the transformer encoder and
generative block in this module share parameters
with that in the correction module.

KL-diverence Loss We force the correction
module and noise modeling module to yield similar
outputs by minimizing the bidirectional Kullback-
Leibler divergence between the generative distribu-
tions (see Equation 5).

LKL =
1

2
(DKL(pg||p̃g) +DKL(p̃g||pg)) (5)

3.4 Learning
Given a training sample (X, Y), the correction loss
of the i-th token is defined as:

Lic = − logp(Yi|X) (6)

where X is a character sequence, Y is the corrected
sequence of X, p is the output distribution defined
in Equation 4. The learning process is driven by
optimizing two objectives:

Li = (1− αi)Lic + αiLiKL (7)

αi =

{
α, X̃i = Xi

0, otherwise
(8)

where α is a trade-off factor for Lc and LKL. Note
that the constructed noise itself will not be involved
in the training process but only active as context
(see Equation 8). This strategy is designed to en-
sure that the constructed noise will not change the
ratio of positive and negative samples in the train-
ing corpus.

4 Experiments

4.1 Datasets
Following previous work(Cheng et al., 2020; Liu
et al., 2021; Li and Shi, 2021), the training data

Dataset TotalSen TypoSen TypoChar

SIGHAN15 1100 550 704

MultiTypo 242 121 284

Table 4: The statistics of evaluation datasets, where
TotalSen is the amount of texts, TypoSen is the amount
of texts containing typos, TypoChar is the amount
of misspelled characters. MultiTypo is a subset of
SIGHAN15.

is composed of 10K manually annotated samples
from SIGHAN(Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015), and 271K automatically gen-
erated samples from Wang et al. (2018). To eval-
uate the performance of the proposed method, we
use the test set from the latest SIGHAN bench-
mark(Tseng et al., 2015) as in (Zhang et al., 2020;
Li and Shi, 2021; Liu et al., 2021). This set contains
550 positive samples and 550 negative samples
with 461 types of errors, where negative samples
denote texts without any typos.

Besides, we also construct a multi-typo test set
by extracting all the samples containing multiple
typos from SIGHAN. To make the ratio of positive
and negative samples equal to that of SIGHAN,
negative samples are also randomly sampled. Table
4 illustrates the statistics of SIGHAN and multi-
typo test set.

4.2 Evaluation Metrics

The most widely used metrics in previous work are
precision, recall and F1 scores. However, these met-
rics were calculated via different methods, which
could be grouped into three groups: character-level
scores(Wang et al., 2018, 2019; Cheng et al., 2020;
Liu et al., 2021), sentence-level scores evaluated
based the method from (Hong et al., 2019)2(Hong
et al., 2019; Cheng et al., 2020; Liu et al., 2021) and
sentence-level scores based on the method from
SighanHan Tools3(Li and Shi, 2021; Huang et al.,
2021).

In this work we choose the character-level scores
for the following reasons. (1) Character is the min-
imum evaluation unit of CSC, thus character-level
metrics can reflect the ability of a model in finer
gained. (2) The CSC test corpus only contains
about 1,000 sentences, but contains tens of thou-
sands of characters. Therefore the results on char-
acter level are statistically more confident.

2https://github.com/iqiyi/FASPell
3http://nlp.ee.ncu.edu.tw/resource/csc.html
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4.3 Hyper Parameter Settings
Following previous work(Cheng et al., 2020; Liu
et al., 2021), we set the maximum sentence length
to 180, batch size to 32 and the learning rate to 5e-5.
The hidden size dc in the copy block is set to 384.
The window size dt for sampling replaced posi-
tions is set to 5. The trade-off factor α in Equation
7 is set to 0.05. We initialize the transformer en-
coder by cBERT released in our previous work (Liu
et al., 2021)4, which has the same architecture with
Bertbase(Devlin et al., 2019) but is pretrained with
misspelled knowledge. Following (Cheng et al.,
2020; Liu et al., 2021), all experiments are con-
ducted for 4 runs with different seeds and the aver-
aged metrics are reported.

4.4 Baseline Models
Recent researches have demonstrated that Bert-
based models(Zhang et al., 2020; Cheng et al.,
2020; Liu et al., 2021; Li and Shi, 2021; Huang
et al., 2021) significantly outperform other models
including LM-based models(Huang et al., 2000;
Chen et al., 2013; Yu and Li, 2014) and non-Bert
neural models(Wang et al., 2018, 2019). Therefore,
we only compare with recent Bert-based methods.
However, it is challenging to compare to all of them
since they employed different evaluation methods
as mentioned in Section 4.2. We compare with
methods who either reported character-level results
or released source codes.

• SoftMask(Zhang et al., 2020) introduced the
soft-masking strategy in Bert to improve the
performance of error detection.

• SpellGCN(Cheng et al., 2020) combined GCN
network with BERT to model the relationship
between characters.

• Tail2Tail(Li and Shi, 2021) applied the CRF
decoder based on BERT.

• cBERT is a task-specific pretrained model for
CSC proposed in our previous work (Liu et al.,
2021), which has the same architecture with
Bert but is pretrained with misspelled knowl-
edge. Our model is initialized by cBERT.

• PLOME(Liu et al., 2021) is similar with
cBERT but incorporates phonological and vi-
sual features based on the sequences of phon-
ics and strokes.

4https://github.com/liushulinle/PLOME

As illustrated in Table 5, we also present the per-
formances of these methods on multi-typo subset.
All the results are obtained by running publicly
available codes, which are SoftMaskBert5, Spell-
GCN6, Tail2Tail7 and PLOME8. Besides, we also
implement two baselines:

• cBERTCopy employs the copy mechanism
(see Section 3.2) based on cBERT.

• cBERTNoise employs the noise modeling
module (see Section 3.3) based on cBERT.

Moreover, our noise modeling loss is similar with
that in Rdrop(Liang et al., 2021), which fed each
sentence into the model twice with drop out oper-
ation and encouraged the model to yield similar
outputs. To make comparison with Rdrop, we im-
plement it based on cBERT, which is denoted by
cBERTRdrop.

4.5 Main Results
Table 5 illustrates the performance of the proposed
method and baseline models. From the table we
observe that:

1) With the incorporation of copy mechanism,
cBERTCopy achieves consistent improvements
against cBERT on the precision of all evaluations.
This result demonstrates that the copy mechanism
can alleviate the overcorrection problem.

2) With the incorporation of noise modeling
module, cBERTNoise outperforms cBERT on all
metrics. Especially, cBERTNoise significantly im-
proves the detection and correction score by 1.6%
and 2.0% on the multi-typo dataset. This result
demonstrates that the noise modeling module is
very effective for multi-typo texts.

3) cBERTRdrop does not replace any positions in
the noisy block. We observe that it fails to achieve
improvements on the multi-typo set. This result
indicates that noisy contexts are necessary to train
an effective model for multi-typo texts.

4) The proposed CRASpell jointly incorporates
the copy mechanism and noise modeling module.
It achieves the best performance, indicating that the
copy mechanism and noise modeling module are
complementary to each other. Moreover, the pro-
posed model outperforms all previous work on both
datasets, especially with remarkable gains on the

5https://github.com/hiyoung123/SoftMaskedBert
6https://github.com/ACL2020SpellGCN/SpellGCN
7https://github.com/lipiji/TtT
8https://github.com/liushulinle/PLOME
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Method

Whole Set (1,100 sentences) Multi-typo Subset (242 sentences)

Detection-level Correction-level Detection-level Correction-level

P R F P R F P R F P R F

SoftMask(Zhang et al., 2020) 75.5∗ 84.1∗ 79.6∗ 96.7∗ 81.4∗ 88.4∗ 86.0 72.9 78.9 95.9 69.9 80.9

SpellGCN(Cheng et al., 2020) 77.7 85.6 81.4 96.9 82.9 89.4 88.8 77.0 82.5 91.2 73.8 81.6

Tail2Tail(Li and Shi, 2021) 75.6∗ 82.4∗ 78.9∗ 96.6∗ 79.6∗ 87.3∗ 86.3 72.0 78.5 94.7 70.8 81.0

PLOME(Liu et al., 2021) 85.2 86.8 86.0 97.2 85.0 90.7 90.2 80.7 85.2 94.0 75.9 84.0

cBERT(Liu et al., 2021) 83.0 87.8 85.3 96.0 83.9 89.5 90.0 80.3 84.8 94.2 75.6 83.9

cBERTCopy (ours) 84.0 87.7 85.6 96.8 84.8 90.4 90.7 80.2 85.1 95.0 76.1 84.5

cBERTNoise (ours) 83.2 89.3 86.1 96.4 86.1 90.9 90.2 83.0 86.4 94.4 78.9 85.9

cBERTRdrop (ours) 83.9 87.8 85.8 96.3 84.6 90.1 91.1 80.6 85.6 93.8 75.6 83.7

CRASpell (ours) 83.5 89.2 86.3 97.1 86.6 91.5 91.7 83.5 87.4 95.2 79.4 86.6

Table 5: The performance of our approach and baseline models on SIGHAN15. Following (Cheng et al., 2020;
Liu et al., 2021), we run the experiments 4 times and report the average metrics. All the results on multi-typo
subset and results with ‘*’ are obtained by our evaluations.

multi-typo subset. This result further demonstrates
that our model is effective to solve the contextual
typo disturbance problem.

To make more comprehensive comparisons,
we also evaluate the proposed model on
SIGHAN14(Yu et al., 2014). Similar with
SIGHAN15, we construct a multi-typo test set
by extracting a subset from SIGHAN14. Table
6 illustrates the result, from which we observe
that CRASpell consistently achieves remarkable
improvements.

4.6 Effects of Different Replaced Positions

In the noisy block (see Section 3.3), we sample
typo-around positions for replacing. In this subsec-
tion, we implement a new sampling strategy called
Random for comparison, which randomly samples
positions from the whole text for replacing. Table 7
presents the result. We observe that both replacing
strategies improve the performance, which demon-
strates the effectiveness of the proposed noise mod-
eling module. Furthermore, Typo-around strategy
outperforms Random strategy, verifying our hy-
pothesis in Section 3.3 that previous CSC models
performed poorly on multi-typo texts because of
the noise around typos.

Moreover, we also investigate the effects of con-
textual typos with different distances to target ty-
pos. To this end, we construct different test sets by
adding a contextual typo via randomly replacing
a character with different distances to each typo
in the SIGHAN15 test set. Then we run cBERT
on these test sets. Figure 3 illustrates the results,
from which we observe that closer contextual ty-

Figure 3: The effects of the contextual typo with dif-
ferent distance to target typos.

pos cause more decrease. Furthermore, when the
distance is more than 5, contextual typos nearly
have no effects to the CSC model. Therefore, in
our experiments we set dt to 5.

4.7 Effects of Different Replaced Characters

In the noisy block, each chosen position is replaced
by characters based on confusion set. In this subsec-
tion, we implement a new replacing strategy called
Random for comparison, which replaces each cho-
sen position by a random character from the vocab-
ulary. Table 8 presents the results. We observe that
the Random strategy failed to achieve obvious im-
provements on the multi-typo set. The main reason
is that contextual typos constructed by this strategy
is significantly different from true contextual typos.
On contrast, the ConfusionSet strategy achieves
improvements with remarkable gains.

4.8 Effects of the Copy Block

Bert(Devlin et al., 2019) is a masked language
model and learned lots of common expressions
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Method

Whole Set (1,062 sentences) Multi-typo Subset (310 sentences)

Detection-level Correction-level Detection-level Correction-level

P R F P R F P R F P R F

PLOME(Liu et al., 2021) 77.4 79.6 78.5 98.8 78.8 87.7 83.9 72.9 78.0 99.4 72.3 83.7

cBERT(Liu et al., 2021) 77.1 79.5 78.3 98.8 78.5 87.5 83.5 73.1 77.9 99.3 72.6 83.9

CRASpell(ours) 78.2 82.1 80.1 98.4 80.8 88.7 85.8 76.8 81.1 98.4 75.6 85.5

Table 6: The results of our model and baseline models on SIGHAN14. Liu et al. (2021) reported their results on
positive samples. The results in this table is obtained by running their code on the whole test set.

Model
Replacing

Positions

Whole Set Multi-typo Set

D-F C-F D-F C-F

cBERT - 85.3 89.5 84.8 83.9

cBERTNoise
Random 85.9 89.9 85.3 85.0

Typo-around 86.1 90.9 86.4 85.9

Table 7: The results of different strategies of sampling
positions for replacing, where ‘D-*’ denotes the F score
of detection and ‘C-*’ denotes the F score of correction.

Model
Replacing

Strategy

Whole Set Multi-typo Set

D-F C-F D-F C-F

cBERT - 85.3 89.5 84.8 83.9

cBERTNoise
Random 85.9 89.6 85.1 84.1

ConfusionSet 86.1 90.9 86.4 85.9

Table 8: The results of different replacing strategies,
where ‘D-*’ denotes the F score of detection and ‘C-*’
denotes the F score of correction.

during pre-training on large corpus. As a conse-
quence, Bert-based models tend to overcorrect an
infrequent but valid expression to a more frequent
expression. To solve this problem, we propose
to incorporate the copy mechanism in our correc-
tion model. Besides cBERT, we also investigate
the effects of the copy block on BERT to further
demonstrate its effectiveness. Table 9 illustrates
the results. We observe that with the incorporation
of copy block, both BERTCopy and cBERTCopy
achieve better performances. Moreover, cBERT-
Copy achieves less improvements than BERTCopy.
This phenomenon occurs because cBERT(Liu et al.,
2021) is pre-trained for CSC, thus the overcorrec-
tion problem is not as serious as that in BERT.

4.9 Comparison of Different Methods for
Multi-typo Texts

In this subsection, we implement another two meth-
ods for multi-typo texts. (1) MultiRound is based
on cBERT but repeatedly corrects a given text in
multiple rounds until no error could be detected. (2)

Model
Detection Score Correction Score

P R F P R F

BERT 75.8 85.5 80.4 94.7 80.9 87.3

BERTCopy 78.1 85.8 81.8 95.7 82.1 88.4

cBERT 83.0 87.8 85.3 96.0 83.9 89.5

cBERTCopy 84.0 87.7 85.6 96.8 84.8 90.4

Table 9: The performances of incorporating the copy
block on BERT and cBERT.

Model
Whole Set(%) Multi-typo Set(%)

D-F C-F D-F C-F

cBERT 85.3 89.5 84.8 83.9

MultiRound 85.0 90.2 86.1 85.1

NoseTrain 85.2 89.7 85.4 84.5

cBERTNoise 86.1 90.9 86.4 85.9

Table 10: Results of different methods for multi-typo
texts on SIGHAN15.

NoiseTrain is also based on cBERT, but is trained
with the noisy texts generated by the noisy block.
Table 10 presents the results. We observe that
all these methods could achieve improvements on
the multi-typo dataset. However, MultiRound and
NoiseTrain fail to achieve improvements on the
whole set, which indicates that these methods have
negative effects on single-typo or zero-typo texts.
On contrast, cBERTNoise achieves significant im-
provements on both test set. This result demon-
strates the effectiveness of the proposed framework
for multi-typo texts.

In NoiseTrain, the constructed noise itself is in-
volved in the correction loss during training, which
changes the ratio of positive and negative samples
in the training corpus. Moreover, the quality of
the constructed noise also will affect the correc-
tion model significantly. However, in the proposed
approach cBERTNoise, the constructed noise only
serves as a context (see Equation 8). Therefore, the
aforementioned two problems no longer exist. We
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believe this is the most important factor that enables
our model to achieve much better performance.

5 Conclusions

In this work, we first point out two limitations of
previous CSC models, which are called Contex-
tual Typo Disturbance problem and Overcorrec-
tion problem. To solve the first problem, we pro-
pose the noise modeling module to generate noisy
context in training process. Experimental results
show that this module is effective on multi-typo
texts. To solve the Overcorrection problem, we
incorporate a copy block in the correction model,
which encourages our model to prefer to keep the
input character when the miscorrected and input
characters are both valid in the given context. Ex-
perimental results demonstrate its effectiveness on
both BERT and cBERT. Moreover, the proposed
model CRASpell outperforms all compared models
and achieve new state-of-the-art performances on
SIGHAN dataset.
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