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Abstract

Aligning parallel sentences in multilingual cor-
pora is essential to curating data for down-
stream applications such as Machine Transla-
tion. In this work, we present OneAligner, an
alignment model specially designed for sen-
tence retrieval tasks. This model is able to
train on only one language pair and transfers,
in a cross-lingual fashion, to low-resource lan-
guage pairs with negligible degradation in per-
formance. When trained with all language pairs
of a large-scale parallel multilingual corpus
(OPUS-100), this model achieves the state-of-
the-art result on the Tateoba dataset, outper-
forming an equally-sized previous model by
8.0 points in accuracy while using less than
0.6% of their parallel data. When finetuned
on a single rich-resource language pair, be it
English-centered or not, our model is able to
match the performance of the ones finetuned
on all language pairs under the same data bud-
get with less than 2.0 points decrease in accu-
racy. Furthermore, with the same setup, scal-
ing up the number of rich-resource language
pairs monotonically improves the performance,
reaching a minimum of 0.4 points discrepancy
in accuracy, making it less mandatory to collect
any low-resource parallel data. Finally, we con-
clude through empirical results and analyses
that the performance of the sentence alignment
task depends mostly on the monolingual and
parallel data size, up to a certain size threshold,
rather than on what language pairs are used for
training or evaluation.

1 Introduction

Cross-lingual sentence retrieval aims at aligning
parallel sentence pairs that are translations of
each other from unlabeled multilingual documents.
Such mined data can be used in multiple down-
stream applications such as Machine Translation
and cross-lingual Word Sense Disambiguation (Fan
et al., 2020; Tran et al., 2020; Schwenk et al.,
2021a,b). Even under a half-automated setting with

human-in-the-loop, a faithful aligner can help nar-
row down the candidate pool so that humans do not
need to deal with an enormous search space such as
cross-lingual web-document pairs (El-Kishky et al.,
2020) or the entire internet. A retrieval model has
also been used to filter existing parallel corpora to
improve their quality (Schwenk, 2018) or to per-
form Quality Estimation (Fomicheva et al., 2020)
where the reference translations are not available.

For sentence retrieval tasks, a majority of re-
cent work is either completely unsupervised (Hu
et al., 2020; Tran et al., 2020; Lewis et al., 2020)
or leverages all parallel data available (Artetxe and
Schwenk, 2019; Ouyang et al., 2021), sometimes to
the extent of 879 language pairs (Luo et al., 2021).
The unsupervised approach has the benefit of not
collecting any parallel data; yet it usually achieves
relatively low accuracies on standard benchmark
datasets such as Tatoeba (Artetxe and Schwenk,
2019), which evaluates on 36 language pairs in-
cluding multiple low-resource ones. The super-
vised approach, on the other hand, assumes data
access to a plethora of low-resource language pairs,
which by definition is difficult to acquire and to
ensure their quality. This all-or-nothing choice be-
tween the unsupervised and supervised approaches
leaves a significant gap on whether zero-shot cross-
lingual transfer works for such tasks. Our work
aims to shed light on a recipe of how to distribute
the efforts for cross-lingual parallel data collec-
tion: (1) How much monolingual data is enough for
each language? (2) How many finetuning language
pairs are enough? (3) Is it necessary to collect
low-resource language pairs? (4) To what extent
does the amount of parallel data matter? (5) Should
these language pairs be centered around English?

To have a strong enough model to perform anal-
yses that address the above questions, we propose
OneAligner,1 a classifier that is able to align cross-
lingual sentences by training on parallel examples

1We will make our code publicly available.

2869



of only one language pair. OneAligner is built on
top of XLM-RoBERTa (XLM-R) (Conneau et al.,
2020a) with its architecture tailored to the align-
ment task: the model leverages a supervised ver-
sion of BERT-score (Zhang et al., 2020) to com-
pute semantic similarity and builds a normaliza-
tion layer into its architecture to counteract the
popular sentence effect, where some sentences in
the source language tend to have a high similar-
ity score with any sentence in the target language.
Though not our main contribution, these additions
lead to the state-of-the-art accuracy 94.92 on the
Tatoeba dataset when trained on all language pairs
from OPUS-100 (Tiedemann, 2012), outperform-
ing models that are trained with 180 times more
parallel examples (Luo et al., 2021) by 8.0 points.
When trained on any single rich-resource language
pair, this model is able to match the performance
of a model (within a 2.0 gap in accuracy) trained
on all language pairs under the same data budget.

To further close the already-narrow gap between
using one language pair and all pairs while adher-
ing to the rich-resource-only constraint, we scale
up the number of language pairs with the top-k
rich-resource ones, reaching a 94.0 accuracy on
Tatoeba, only 0.4 off as compared to training on all
language pairs under the same data budget.

We also explore either training or evaluating on
language pairs that are not centered around En-
glish. We find that whether to train on an English-
centered language pair and whether the training
pair overlaps with the evaluation pair do not influ-
ence model performance – the model will perform
similarly as long as two conditions are met: (1)
the amount of parallel data size crosses a certain
threshold; and (2) the pretraining monolingual data
that corresponds to the evaluation languages also
surpasses a size threshold.

2 Model

2.1 Base Model
To align sentences in different languages, it is bene-
ficial to start with a model that has already learned
cross-lingual representations to some extent. Our
OneAligner thus builds on top of XLM-R (Conneau
et al., 2020a), a Transformer-based model (Vaswani
et al., 2017) pre-trained on the monolingual CC-
100 dataset (Wenzek et al., 2020) covering 100 lan-
guages. This model obtained state-of-the-art per-

2Throughout the paper we will omit the “%” for accuracy.
Hence 94.9 means 94.9% in accuracy.

formance on cross-lingual classification, sequence
labeling, and question answering.

2.2 Calculation of Semantic Similarity

Cross-lingual BERT-score The de facto way of
calculating semantic similarity adopts a Siamese
architecture, which separately encodes the source
and target sentences with the same encoder to ob-
tain two outputs. These outputs go through a mean
pooling layer along the sequence length dimen-
sion, and the similarity is obtained by computing
the cosine distance between the two pooled vec-
tors (Reimers and Gurevych, 2019). This approach
is fast and agnostic to the order of source and target
sentences but lacks cross-attention which is crucial
for alignment tasks. On the other hand, encoding
both sequences with a [sep] token in-between im-
plies full cross-attention, which runs slow due to
the extra computation. Such a method is only suit-
able for filtering existing parallel corpora for better
data quality (Schwenk, 2018). Besides, due to posi-
tional encoding, this method is not agnostic to the
order of the two sentences such that during infer-
ence, one needs to pay special attention to which
sentence comes first.

Our similarity calculation marries the strengths
of both methods and builds on top of BERT-
score (Zhang et al., 2020), an unsupervised au-
tomatic evaluation metric originally designed
to compute the similarity between two sen-
tences of the same language. We re-purpose
this metric to compute cross-lingual seman-
tic similarity. More specifically, let s =
{s1, s2, ..., sM} and t = {t1, t2, ..., tN} be two
sequences, each consisting of a list of tokens
in the source and target language, respectively.
BERT-score computes the pairwise token-level
cosine distance between s and t as follows:

P =
1

|t|
∑
tj∈t

max
si∈s

sTi tj

R =
1

|s|
∑
si∈s

max
tj∈t

sTi tj

F = 2
PR

P +R

We use F as the similarity. From the equations
we can see that because BERT-score is only ap-
plied after the last encoding layer of the Trans-
former model, this metric serves as a shallow cross-
attention layer that is much faster than full cross-
attention. The resulting model also remains agnos-
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tic to the order of the input sentences.

In-Batch Normalization In bitext alignment,
we observe that some sentences in one language
tend to have a high similarity score with any sen-
tence in the other language. This phenomenon,
which we name the “popular sentence effect”,3

causes the ranking of candidates in the target
language to be inaccurate. To offset this bias,
we subtract a scaled average of similarity scores
between each sentence in one language and all
sentences in the other. More specifically, let
S = {S1, S2, ..., SM} and T = {T1, T2, ..., TN}
be a batch of sequences in the source and tar-
get language, respectively. We compute the pair-
wise similarity between Si and Tj as follows:

Sij = f(Si, Tj) − α

 1

|T |

∑
Tn∈T

f(Si, Tn) +
1

|S|

∑
Sm∈S

f(Sm, Tj)



where f stands for the function that computes se-
mantic similarity (BERT-score in our case) and α is
a hyperparameter that determines the normalization
strength. We tuned this parameter on the OPUS-
100 development set and found that α = 0.75 on
average gives the best results.4 Note that this nor-
malization step is built into the model architecture
rather than serving only as a post hoc manipula-
tion during inference. In practice, the number of
sentences M and N could be quite large during
inference, significantly slowing down the normal-
ization step, not to mention that the evaluation data
is not guaranteed be served in an offline fashion.
Hence we instead perform in-batch normalization
for each similarity score so that M and N only
depend on the batch size during inference. In our
early experiments (not presented in the paper), we
found that this in-batch normalization incurs no per-
formance loss as long as we maintain a reasonable
evaluation batch size.

2.3 Justification of Model Design

We perform an ablation study on how similarity is
calculated and on whether to include a normaliza-
tion step. We conduct the comparison with three
model variances (without finetuning on any par-

3We hypothesize that this effect is not restricted to natural
language, but also for data of other modes such as image and
voice. Hence we encourage future work to experiment with
normalization steps similar to our formulation.

4In practice, we also add back a term (2α −
1) 1

MN

∑
Sm∈S,Tn∈T f(Sm, Tn) to keep Sij around 0. This

extra term does not affect evaluation, but makes a difference
during training.

allel data), namely mBERT (Devlin et al., 2019),
XLM-R-base, and XLM-R-large (Conneau et al.,
2020a). Following Hu et al. (2020), who find that
certain early layers of Transform perform better
on cross-lingual tasks than the last layer,5 we use
the 8th layer for mBERT and XLM-R-base, and
17th layer for XLM-R-large.6 Table 1 shows that
the combination of BERT-score and normalization
step leads to consistently and significantly higher
performance, indicating that these modifications
build a beneficial inductive bias into the model.

2.4 Classification with In-Batch Negatives
One challenge in training an aligner with only pos-
itive parallel data is that there are no carefully-
designed negative examples. To address this chal-
lenge, our aligner adopts a contrastive learning ap-
proach and trains on a classification task with in-
batch negatives (Chen et al., 2020). The intuition
behind this approach is that a pair of sentences that
are translations of each other can be interpreted
as two “views” of the same underlying semantics.
More specifically, let S = {S1, S2, ..., SN} and
T = {T1, T2, ..., TN} be a batch of sentences in
the source and target language, respectively, where
Si is aligned with Ti for each i. We compute the
pairwise BERT-score between S and T and apply
the in-batch normalization (as introduced in Sec-
tion 2.2) to obtain N2 similarity scores, including
N scores for the positive alignments and N2 −N
for the negative ones. During training, we treat
these scores as logits and pair each positive logit
with all negative logits. We use these logits to
compute the cross-entropy loss. Note that standard
contrastive learning employs one-dimensional in-
batch negatives where each positive logit is paired
with N − 1 negative logits (Chen et al., 2020) (i.e.,
only the ones that are relevant to the positive exam-
ple). However, we found that by adopting global
in-batch negatives, which include all N2 −N neg-
ative logits for each positive logit, it is much easier
for the model to establish a global score threshold
to align cross-lingual sentences. This is especially

5Jawahar et al. (2019) and Zhang et al. (2020) find similar
phenomena for English.

6By investigating performance comparisons among differ-
ent layers in Jawahar et al. (2019); Zhang et al. (2020), we
provide a rule-of-thumb: usually the best layer is between
1 below and above 2/3 of the total number of layers. For
example, for a 12-layer Transformer, the fastest way is to try
layers 7, 8, and 9. Thanks to each new language model trying
to follow its previous work on hyperparameter settings, all
models with which we experiment have the number of layers
divisible by 3.

2871



mBERT XLM-R-base XLM-R-large
Avg. Pooling BERT-score Avg. Pooling BERT-score Avg. Pooling BERT-score

w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm.
Avg. Acc. 37.1 45.1 42.9 55.1 54.7 62.9 48.6 70.2 47.0 42.6 57.5 72.1

Table 1: Unsupervised performance on Tatoeba-36 with three different language models. “norm” stands for
normalization which addresses the popular sentence effect, while “w/o norm” stands for no normalization. The best
average accuracy for each model is boldfaced.

important for alignment tasks where a sentence in
one language is not guaranteed to have a translation
in the other language (e.g., the BUCC 2018 dataset
to be introduced in Section 3.1).

3 Experimental Setup

3.1 Data

Training Data We experiment with both English-
centered and non-English-centered training cor-
pora. For English-centered data we use OPUS-100,
a multilingual corpus covering 100 languages. This
corpus was randomly sampled from the OPUS col-
lection (Tiedemann, 2012),7, which is comprised
of diverse corpora ranging from movie subtitles
to GNOME documentation. OPUS-100 contains
approximately 55M sentence pairs. Of the 99 lan-
guage pairs, 44 have 1M sentence pairs of train-
ing data, 73 have at least 100k, and 95 have at
least 10k. For non-English-centered data, we em-
ploy the v2021-08-07 version of the Tatoeba Chal-
lenge (Tiedemann, 2020),8 which we refer to as the
New-Tatoeba (since it is new). This is a challenge
set that contains 29G translation units in 3, 708
bitexts covering 557 languages. The package in-
cludes a release of 631 test sets that cover 134
languages. Note that for training purposes, we only
keep language pairs where both the source and the
target language are present in CC-100 (Wenzek
et al., 2020),9 the corpus used to pretrain XLM-
R. This is because the tokenization of XLM-R is
accustomed to these languages by design.

Following OPUS-100, all experiments are per-
formed under a fixed 1M examples budget (unless
otherwise specified), regardless of how many lan-
guage pairs are used. This constant data size cap
makes it easier to compare among different set-
tings. To remove noisy and uninformative data, we
also aggressively remove any examples that contain
less than 5 tokens in either the source or the target

7https://opus.nlpl.eu/opus-100.php
8https://github.com/Helsinki-NLP/

Tatoeba-Challenge
9http://data.statmt.org/cc-100/

language. Note that this step is done after we sam-
ple the 1M examples, since when the number of
language pairs piles up, it becomes too expensive
to tokenize the entire corpus to count how many
tokens there are in each sentence.10

Evaluation Data We evaluate on three datasets.
The first one is the Tatoeba dataset from the
XTREME benchmark (Hu et al., 2020), which we
refer to as Tatoeba-36 since it contains 36 language
pairs, including multiple low-resource ones such
as sv-en and jv-en. We keep this historical version
to make it easier to compare with previous work.

The second dataset is the combination of devel-
opment and test sets in New-Tatoeba. We only keep
language pairs that have ≥ 1K examples in the
development and test sets combined, because the
smaller the evaluation set is, the easier it is to rank
among candidates. When we have a collection of
evaluation data that do not share roughly the same
difficulty, averaging their accuracies makes less
sense. Following Tatoeba-36, where most language
pairs have 1K test examples, we randomly sample
1K for each language pair from New-Tatoeba.11

The resulting evaluation set covers 223 language
pairs, including 49 pairs that are English-centered,
174 pairs that are not, and 58 pairs considered low-
resource by the Tatoeba Challenge. To our best
knowledge, we are the first to evaluate sentence
alignment models on this dataset.

The third dataset is BUCC 2018 (Zweigenbaum
et al., 2018) in the XTREME benchmark (Hu
et al., 2020). This is a cross-lingual bitext mining
task. We include this task because the two Tatoeba
datasets are both ranking tasks, while BUCC re-
quires a universal similarity score to serve as a de-
cision boundary to either accept or reject an align-
ment of sentences. This is a more realistic scenario
for web mining because a sentence in the source
language does not necessarily have a translation

10Resorting to counting the number of spaces will not work
because quite a few languages do not have spaces between
words.

11We will release the test example indices with respect to
the original dataset along with the code.
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Model VECO ERNIE-M
OneAligner

1M Budget No Budget
# Parameters 550M 550M 550M 550M
# Languages 50 96 100 100

Mono. Data Size 1.36TB 1.56TB 2.34TB 2.34TB
Parallel Data Size 1TB 68.8GB 145MB 4.9GB

Table 2: Comparison of model and data sizes between
OneAligner and previous models.

in the target language. Hence this dataset contains
way more distraction sentences than the ones that
actually align with some other sentences in the
other language. That said, the drawback of BUCC
is that it only involves 4 language pairs, all of which
are highly rich-resource. Since our work focuses
more on low-resource languages, this dataset only
serves as a sanity check for our models.

Note that since both training corpora were cre-
ated without Tatoeba-36 and BUCC evaluation data
in mind, we remove any examples from the training
set where either the source or the target is in any of
the test sets. This process gets rid of less than 2.5k
examples from each training set.

3.2 Hyperparameters
We perform all experiments with a single A100
GPU. The number of training epochs is 3, the train-
ing batch size is 64, and the evaluation batch size
is 256. These are the largest number of examples
we can fit in a batch with A100. Not surprisingly,
having a smaller training batch size will lead to
lower performance not only because previous work
has found that large batch size benefit training due
to its more stable gradients (Devlin et al., 2019),
but also that a larger batch size enables a more
accurate estimation of the in-batch normalization
term and allows more in-batch negatives to pair
with each positive example, making the model con-
verge faster with additional contrastive learning
signals. We set the softmax temperature to 5.0
and the learning rate to 3e-6 for all experiments.12

The maximum sequence length for both source and
target languages is set to 100.

3.3 Dot Product vs. Cosine Similarity
When computing the semantic distance be-
tween sentences, Sentence-BERT (Reimers and
Gurevych, 2019) applies a Siamese encoding

12The temperature and the learning rate are tuned on the
OPUS-100 development set. Our early experiments showed
that having a larger learning rate, e.g., 3e-5, would make the
model converge faster (more data-efficient) but eventually
arrive at slightly lower performance.

scheme to each sentence followed by mean pooling
and computation of cosine distance between the
two pooled vectors. However, during training they
do not normalize the sentence vectors before tak-
ing the dot product, while during evaluation they
do. We also observed that this different handling
of training and evaluation phase led to better per-
formance. Hence when computing the BERT-score
during training, we also do not pre-normalize the
vectors before taking the dot product.

3.4 Baseline Models

We compare with VECO (Luo et al., 2021) and
ERNIE-M (Ouyang et al., 2021), the strongest mod-
els at the time of submission on the XTREME
benchmark leaderboard (Hu et al., 2020) sen-
tence retrieval tasks.13 Like OneAligner, ERNIE-
M is built on top of XLM-R and is trained on
96 languages. The monolingual corpus is ex-
tracted from CC-100 (Wenzek et al., 2020), while
the bilingual corpora include MultiUN (Ziemski
et al., 2016), IIT Bombay (Kunchukuttan et al.,
2018), OPUS (Tiedemann, 2012), and WikiMa-
trix (Schwenk et al., 2021a). VECO shares the
same model size as ours14 and is trained on 50 lan-
guages (possibly to avoid capacity dilution). The
monolingual data is extracted from CC-100, while
the bilingual data is collected from the OPUS web-
site.15 There are 6.4G parallel examples covering
879 language pairs. We summarize the basic statis-
tics of each model in Table 2.

4 Results and Analysis

4.1 All Language Pair Performance

To justify our model design and obtain a perfor-
mance upper bound with which single-pair models
can compare, we first train OneAligner on the en-
tire OPUS-100 dataset, either with or without the
1M budget. Table 3 shows that both models achieve
state-of-the-art results on the Tatoeba-36 dataset.
Because there is only a 0.5 difference in accuracy
between the two settings, it is reasonable to apply

13The leaderboard can be visited at https://sites.
research.google/xtreme. We ignore submissions
that do not link to any paper or code.

14There are two versions of VECO, namely VECOout and
VECOin. VECOout is of the same size as our model while
VECOin is 20% larger in size. Hence throughout the paper,
whenever we mention VECO, we are referring to the more
comparable VECOout version. As a side note, our best model
is able to outperform VECOin on Tatoeba-36 by 3.8 points in
accuracy.

15https://opus.nlpl.eu/
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Language af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
VECO 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8 35.1

ERNIE-M 92.6 94.3 96.6 89.2 99.7 96.8 98.8 92.5 87.4 96.0 97.1 96.5 90.1 97.9 95.5 95.7 95.2 96.9 65.2
OneAligner 96.3 93.0 95.2 90.7 99.6 96.8 98.9 96.2 92.7 96.4 98.2 96.3 93.2 97.9 97.2 95.9 95.4 98.1 78.0

OneAligner (All) 97.4 94.7 95.3 92.2 99.6 97.3 99.0 98.6 95.7 96.9 98.2 96.5 94.1 98.3 98.1 96.7 96.6 98.5 78.5
ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Average

VECO 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9 86.9
ERNIE-M 94.9 88.0 94.1 98.5 90.8 98.1 94.5 95.7 68.4 91.8 97.9 98.4 86.0 98.3 94.9 98.1 96.7 93.3

OneAligner 95.6 89.7 94.0 98.4 92.7 97.7 95.6 95.5 65.6 93.2 97.0 97.4 89.9 98.3 94.8 98.4 97.2 94.4
OneAligner (All) 95.6 91.3 95.3 98.8 93.6 98.3 96.0 95.8 63.6 93.2 96.6 97.8 88.3 98.9 95.6 98.5 97.3 94.9

Table 3: Comparison of Tatoeba-36 results (accuracy) between OneAligner and the strongest models so far, namely
VECO and ERNIE-M. “All” stands for unlimited data budget, which uses the entire OPUS-100 corpus. Best results
for each language and the average are boldfaced.

Language es fr de pt it nl ru pl
Avg. Acc. 92.4 92.7 92.5 92.3 92.3 92.4 92.6 91.9

cs sv el ro da zh no ar
92.0 91.8 92.8 92.2 92.0 92.7 91.9 92.9

Table 4: Tatoeba-36 performance for models trained on
the OPUS-100 top-16 rich-resource language pairs (in
descending order) centered around English.

the fixed budget to save computational cost. When
we put Table 2 and 3 side-by-side, we can also see
that OneAligner is more data-efficient as compared
to the other two models.

4.2 Single Language Pair Performance

English-centered Language Pairs Table 4
shows Tatoeba-36 performance for models trained
on the OPUS-100 dataset for each of the top-16
rich-resource language pairs in the intersection
of OPUS-100 and CC-100 languages.16 We can
see that the performance is consistent across lan-
guage pairs, which translates to the suggestion that
one can finetune OneAligner with almost any rich-
resource language pair at hand and arrive at a sim-
ilar performance. Figure 1 presents a scatter plot
of Table 4 against the data availability of each lan-
guage pair. We observe that after reaching a certain
data size threshold (somewhere between 10k and
20k), all language pairs perform similarly. This is
partially expected because our model design does
not introduce any new parameters to XLM-R, ob-
viating the need to train any randomly initialized
layers.

Language Pairs Not Centered around English
English is with no doubt the most widely adopted
language. However, in a real-world scenario, we
cannot always assume that the parallel data con-
tains English. Similar to Table 4, we present in Ta-

16Results of all language pairs are presented in Appendix A.

Figure 1: Scatter plot of single-pair Tatoeba-36 per-
formance against English-centered single-pair parallel
data size (as measured in the number of training exam-
ples) for each language pair in the OPUS-100 dataset.

Language fr-es pt-es de-fr fr-pt it-es fr-it de-es it-pt
Avg. Acc. 92.0 91.5 92.2 92.0 92.0 92.1 92.2 92.1

ca-es de-it de-pt de-nl nl-es pl-pt fr-nl ru-es
90.9 92.3 92.3 92.2 92.6 92.3 92.3 92.0

Table 5: Tatoeba-36 performance for models trained on
the New-Tatoeba top-16 rich-resource language pairs (in
descending order) that are not centered around English.

ble 5 the accuracies of OneAligner trained on each
of the Top-16 rich-resource non-English-centered
pairs from the New-Tatoeba dataset. We can see
that the performance is again consistent across lan-
guage pairs, indicating that we can train on a non-
English language pair and still obtain similar per-
formance on an evaluation set centered around En-
glish. This raises a natural follow-up question: is
the reverse true? In other words, does a model
trained on English-centered data perform just as
well on non-English evaluation data?

Table 6 addresses this question and we make two
observations from it. When comparing column-
wise, OneAligner performs similarly regardless of
whether it is trained on an English-centered lan-
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Model Tatoeba-36
New Tatoeba
Eng ¬ Eng

Top1 (Eng) 92.4 91.6 89.3
Top1 (¬ Eng) 92.0 91.5 89.2

Table 6: English-centered and Non-English-centered
Top1 model accuracies under three evaluation settings
on the two Tatoeba datasets.

Figure 2: Scatter plot of Top1-Eng New-Tatoeba perfor-
mance against monolingual data size (as measured in
GB) for each language in the CC-100 dataset.

guage pair or whether there is an overlap between
finetuning and evaluation languages. When com-
paring each model evaluated on either English-
centered or non-English-centered language pairs,
we can see that both models perform better on
English-centered language pairs.17 We hypothesize
that this is because English dominates the monolin-
gual data during the pretraining of XLM-R.

Before diving into an analysis that verifies this
hypothesis, we need to “expand our vocabulary”:
rather than dividing in a bipolar fashion between
“English-centered” and “non-English-centered”,
we describe the setting with a spectrum and ex-
plore X-centered, where X could be any language.
We define the accuracy for language X as the aver-
age of accuracies of all language pairs that involve
X. Figure 2 shows the scatter plot of Top-1-Eng
New-Tatoeba performance against monolingual
data size for each language in the CC-100 dataset.
Similar to Figure 1, the New-Tatoeba performance
is positively correlated with the monolingual data
size up to a certain data threshold.

4.3 Scaling up the Number of Language Pairs
The single-pair Tatoeba results are already promis-
ing. However, what if we aim for even better perfor-

17Interested readers can refer to Table 10 in the Appendix
for a comprehensive list of accuracies for each language pair
in the New-Tatoeba test set.

Language Top1 Top2 Top4 Top8 Top16 Top32 All
Avg. Acc. 92.4 92.5 92.9 93.2 93.4 94.0 94.4

Table 7: Tatoeba-36 performance when the model is
trained on Top-k rich-resource, English-centered lan-
guage pairs. “All” stands for all language pairs com-
bined. All results are under a fixed 1M data budget.

mance without violating the rich-resource-only as-
sumption? We find that adding other rich-resource
pairs can help. Unfortunately, OPUS-100 does not
provide us with a ranking on the data availability
of language pairs.18 Hence we resort to the New-
Tatoeba dataset and rank based on the availability
of each English-centered pair.19 In Table 7 we
present performance of combined top-1 through
top-32 rich-resource language pairs on Tatoeba-
36.20 We can see that the performance monotoni-
cally increases as we include more language pairs,
until reaching an accuracy of 94.0 – only 0.4 point
off of the best performance when training with all
language pairs under the 1M data budget. Note that
the least rich-resource language uk in the top-32 list
is still in the “highest”-resource range as defined in
the Tateoba Challenge21 and contains around 34M
training examples, so we are still far from violating
the rich-resource restrictions. Hence at least given
the sentence alignment task and the current models,
the marginal cost of improving for that 0.4 point
in accuracy does not seem to justify the effort of
extensively collecting more parallel data for the
low-resource language pairs. This observation mo-
tivates future work to develop new approaches that
leverage low-resource data more effectively.

4.4 BUCC Results
As a sanity check, we report BUCC F1 scores of
the two top-1 models as compared to previous work
in Table 8. We can see that both models outper-
form VECO by 1.2 points. Recall that the two
models are trained on en-es and fr-es, respectively.
In other words, neither model has seen a single par-
allel example between en and each of the BUCC

18The size of each language pair in OPUS-100 is capped at
1M, and the original paper did not include the data statistics
before sampling.

19The training data size for each language pair is listed in
the table at https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/data.

20The top-32 languages are es, fr, de, pt, it, nl, ru, pl, cs, sv,
sh, el, ro, da, zh, no, ar, ms, hu, bg, tr, fi, sl, vi, he, ja, et, lt, lv,
fa, ko, uk, in the order of descending data availability.

21https://github.com/Helsinki-NLP/
Tatoeba-Challenge/blob/master/data/
subsets/highest.md

2875

https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/subsets/highest.md
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/subsets/highest.md
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/subsets/highest.md


Model de fr ru zh Avg.
XLM-R-large 67.5 66.5 73.5 56.7 66.1

VECO 93.0 88.7 89.9 85.7 89.3
Top1 (Eng) 91.7 90.0 89.5 90.9 90.5

Top1 (¬ Eng) 93.0 89.8 88.7 90.6 90.5

Table 8: BUCC F1 Results. Best scores in each column
are boldfaced. Below the dashed line are our model re-
sults, where “¬ Eng” stands for “non-English-centered”.
Note that ERNIE-M did not evaluate on BUCC, hence
not included in this table.

target languages {de, fr, ru, zh}, while VECO is
trained extensively on each of the language pairs.
This result is consistent with the observation that
OneAligner is able to perform cross-lingual trans-
fer with performance on par with in-language mod-
els regardless of whether the finetuning language
pair is English-centered.

5 Related work

5.1 Multilingual Representation Learning
There have been extensive effort in learning mas-
sive cross-lingual representations. Such models
are pretrained with a large amount of unlabeled
data from multiple languages with the intention
to benefit low-resource languages with the rich-
resource languages through shared vocabulary, ge-
netic relatedness (Nguyen and Chiang, 2017) or
contact relatedness (Goyal et al., 2020). Some
of the widely adopted models are mBERT (De-
vlin et al., 2019), XLM (Conneau and Lample,
2019), mBART (Liu et al., 2020), MARGE (Lewis
et al., 2020), XLM-R (Conneau et al., 2020a), and
mT5 (Xue et al., 2021). Other models also leverage
cross-lingual signals (large-scale parallel data) with
a translation language model objective, including
LASER (Artetxe and Schwenk, 2019), VECO (Luo
et al., 2021) and ERNIE-M (Ouyang et al., 2021).

5.2 Parallel Corpus Mining
A major downstream application of a massively
multilingual model is parallel corpus mining. There
have been efforts to mine parallel sentences from
the entire web (Bañón et al., 2020; Wenzek et al.,
2020; Tran et al., 2020). Such approaches are in-
advertently forced to handle an enormous search
space. Consequently, some models adopt the
mean pooling followed by the cosine distance
approach and leverage approximation algorithms
like FAISS (Johnson et al., 2019) to compute co-
sine distance faster. There have also been efforts
such as WikiMatrix (Schwenk et al., 2021a) and

CCAligned (El-Kishky et al., 2019) that divide the
mining process into two steps. The first step is
to align text on the document level, which signifi-
cantly reduces the search space, while the second
step is to deploy a sentence retrieval model as usual.

Apart from aligning text at the document and
sentence level, there has also been models that fo-
cus on a higher level of granularity and target word
alignment (Dou and Neubig, 2021). Such work can
be used for downstream tasks such as automatically
building preliminary bilingual dictionaries.

5.3 Zero-Shot Cross-lingual Transfer

The standard zero-shot cross-lingual transfer as-
sumes no in-language data and consists of two
steps: (1) finetune a multi-lingual pretrained model
on task-specific data in the source language; and (2)
evaluate it on the test data in the target language.

Another alternative to the implicit transfer re-
quires a Machine Translation system (Hu et al.,
2020; Luo et al., 2021), which itself demands par-
allel data to train in the first place. There are two
settings: (1) translate-train: machine translate the
task-specific training data from the source to the
target language and train on that noisy data; and
(2) translate-test: train on task-specific data in the
source language and evaluate on data translated
from the target to the source language.

Several benchmark datasets have been released
to test cross-lingual transfer capability, including
XGLUE (Liang et al., 2020), XTREME (Hu et al.,
2020), and XTREME-R (Ruder et al., 2021). They
include diverse tasks such as Natural Language In-
ference, Relation Extraction, Named Entity Recog-
nition, Part of Speech Tagging, Question Answer-
ing, and Sentence Retrieval.

There has been extensive work devoted to ana-
lyzing the mechanism behind cross-lingual trans-
fer (K et al., 2020; Muller et al., 2021). For exam-
ple, Pires et al. (2019) and Wu and Dredze (2020)
show that the amount of shared vocabulary between
the source and target language plays an important
role in the transfer. However, some other works
suggest the opposite. For instance, Conneau et al.
(2020b) show that the transfer happens even if there
is no shared vocabulary while the training and eval-
uation data can also come from distinct domains.

6 Conclusion

We present OneAligner, an alignment model tai-
lored to sentence retrieval tasks. We show that
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this model transfers well under a cross-lingual
setting even when trained on a single language
pair. Through experiments and analyses, our work
helps uncover what factors influence sentence align-
ment performance and identifies monolingual data
size, parallel data size, and the number of rich-
resource language pairs as the top priorities to
which one should distribute their data collection
efforts. Though having covered a broad range of
languages and settings, this work still leaves many
unexplored territories: (1) How do we deal with
languages not present in the pretraining phase given
that the vocabulary is not constructed toward them?
(2) Why is the cross-lingual transfer successful in
the first place? What has the model learned dur-
ing finetuning? (3) Does OneAligner generalize to
other retrieval tasks other than cross-lingual sen-
tence alignment? We leave these as future work.
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A Tatoeba-36 Results in Detail

Table 9 shows Tatoeba-36 performance for models
trained on the OPUS-100 dataset for each language
pair in the intersection of OPUS-100 and CC-100
languages.

B New-Tatoeba Results in Detail

Table 10 shows the detailed performance on each
language pair in the New-Tatoeba dataset.
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Language af am ar as az be bg bn br bs ca cs cy da de el eo es et eu fa
Avg. Acc. 92.2 90.9 92.9 90.8 92.3 89.8 92.6 92.7 91.3 91.1 92.0 92.0 91.4 92.0 92.5 92.8 91.7 92.4 92.1 92.6 92.5

fi fr fy ga gd gl gu ha he hi hr hu hy id is it ja ka kk km kn
92.3 92.7 88.2 91.5 53.2 92.1 90.9 90.6 92.7 92.3 90.9 92.4 29.8 92.5 91.8 92.3 92.6 90.0 90.5 91.2 55.4
ko ku ky lt lv mg mk ml mn mr ms my ne nl no or pa pl ps pt ro

92.4 90.6 26.0 91.9 92.3 92.3 92.6 92.7 20.6 90.4 92.6 85.0 91.1 92.4 91.9 26.2 90.1 91.9 85.8 92.3 92.2
ru si sk sl sq sr sv ta te th tr ug uk ur uz vi xh yi zh

92.6 92.7 91.8 91.2 92.4 91.1 91.8 92.3 91.2 92.3 92.3 91.5 92.4 91.7 91.0 92.8 90.5 22.5 92.7

Table 9: Tatoeba-36 performance for models trained on the OPUS-100 dataset for each language pair (the intersection
between OPUS-100 and CC-100 languages) centered around English.
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Lang de-hu ar-es eo-vi fr-hu en-ga hu-pl de-el de-en be-ru en-it hu-ja en-uk de-pl nl-uk eo-lt fr-ja
Top-1 (Eng) 94.9 89.0 91.1 90.0 62.8 91.4 91.9 98.9 98.0 97.1 95.4 97.4 98.0 93.5 85.2 96.0

Top-1 (¬ Eng) 95.1 89.4 91.6 90.4 63.4 91.9 90.6 98.8 98.1 98.0 95.3 97.1 97.5 92.5 85.7 95.7
All (Eng) 98.1 91.8 96.9 94.0 78.6 95.2 93.8 99.2 98.2 99.3 97.2 98.3 98.6 95.9 96.1 97.2

ar-ja eo-yi en-ur ar-de en-lv en-sq cs-es de-no es-tr ca-es it-tr nl-pl fr-nl fi-no fr-zh de-it
80.2 64.5 82.8 89.2 92.8 85.9 91.7 94.7 95.3 96.6 69.2 93.3 93.8 63.7 95.7 96.2
79.3 65.8 81.2 89.5 91.7 85.8 91.4 94.4 95.4 98.1 68.4 93.2 94.8 62.0 95.2 96.9
81.8 71.4 83.9 91.9 96.1 93.6 93.1 95.4 99.0 98.8 78.1 96.2 95.8 66.4 96.4 98.0
da-fr az-en ar-he fi-sv pl-sv be-en fi-ru de-fa de-uk en-tr bg-it cs-eo en-mk en-sv cs-en el-ru
91.4 92.5 75.6 91.6 96.7 94.9 92.2 97.5 96.5 98.0 86.0 90.8 95.2 98.0 98.6 96.6
91.0 92.2 76.3 90.8 96.4 93.9 91.4 96.6 96.0 97.7 87.8 90.4 95.4 97.4 98.4 96.9
91.7 96.4 78.5 94.4 97.3 95.2 94.4 98.0 97.4 99.2 89.3 96.8 99.0 98.2 99.3 98.1
gl-es fr-tr ja-ru he-pl en-es en-vi lt-ru it-ro en-ro ro-es fr-es it-ru eo-ja es-uk fi-hu ru-sv
95.3 93.8 97.6 96.5 98.5 96.8 92.2 75.8 95.9 88.3 97.4 96.5 88.7 93.8 81.0 88.5
97.1 93.3 96.7 95.9 98.7 96.6 93.0 75.1 95.7 90.3 99.2 97.5 90.1 95.2 80.7 86.7
98.1 96.3 98.3 97.2 99.3 97.1 96.9 77.9 96.6 91.7 99.3 98.7 96.3 96.4 86.1 89.1
eo-fi en-nl en-no ar-ru en-hi eo-fa en-zh da-nl el-fr fr-it de-ko eo-ro fi-tr en-lt fr-vi af-nl
74.1 97.8 97.3 94.9 95.3 89.4 98.0 91.6 89.0 92.7 88.8 84.2 91.9 90.0 95.4 88.7
75.0 97.7 97.2 95.0 95.1 90.0 97.1 91.2 89.9 95.6 87.4 85.1 92.2 90.3 96.0 89.9
85.5 99.0 98.0 97.1 95.3 96.0 98.1 92.8 91.8 96.8 90.5 91.2 96.3 95.3 96.1 91.8
de-es el-tr en-ru nl-es pl-es de-fr eu-es sv-zh eo-sv nl-tr fr-sv en-eu nl-ru eo-it kk-ru pl-zh
98.0 88.6 99.3 97.1 94.6 98.6 72.2 80.9 79.9 88.8 94.8 78.9 94.7 84.9 91.0 93.6
99.1 88.2 99.2 97.8 95.7 98.9 73.2 79.7 80.2 88.8 95.2 78.8 94.0 87.4 91.8 93.0
99.2 93.1 99.0 98.3 95.9 99.3 93.6 81.0 88.3 95.2 95.9 95.2 95.7 94.9 94.6 94.9
da-en de-sv ug-zh fr-uk eo-he af-de bg-en hu-es he-es lt-tr ja-no da-de hu-ru cs-ru ar-fr en-fr
98.1 95.0 86.3 97.1 87.9 89.4 97.0 93.5 90.7 80.5 92.5 98.0 93.8 95.8 79.2 98.4
97.8 94.4 85.3 97.0 88.5 92.0 96.1 93.4 89.3 79.4 91.1 97.7 92.7 95.5 78.5 98.3
98.8 95.3 91.1 98.0 94.8 94.6 97.2 96.6 91.0 88.6 93.6 98.2 95.8 97.0 81.4 99.1
af-en eo-fr he-it eo-tr pl-ru he-tr de-he fi-fr de-lt en-sl ja-vi de-eo fr-he en-ka it-nl ja-nl
92.1 91.4 80.8 86.2 97.9 69.6 90.5 77.2 84.9 92.1 87.8 93.4 90.8 82.6 92.7 92.5
93.0 92.2 81.8 87.0 97.8 68.8 90.0 78.0 84.6 90.9 86.3 93.1 90.8 80.7 93.7 92.0
95.8 98.4 82.7 97.1 98.2 74.5 90.8 79.7 89.1 94.4 87.8 98.4 91.4 84.0 95.0 95.1
el-en en-ug bn-en en-fi en-yi eo-ru az-tr en-hy he-ru it-ja ca-en en-he uk-zh ar-en tr-uk eo-zh
95.4 83.6 84.1 94.6 75.1 88.9 86.0 59.0 92.6 94.1 87.8 98.1 85.3 94.4 90.4 85.7
95.6 81.2 82.4 94.2 76.9 91.3 86.4 57.9 92.4 93.1 90.4 96.5 83.9 93.1 89.4 87.3
95.7 87.6 86.9 98.1 81.7 97.6 90.7 62.1 93.5 94.7 92.2 98.5 86.4 96.0 94.5 95.6
de-yi bg-ru fi-es ru-zh da-fi tr-ug en-eo ja-zh da-ru fr-ru en-fa el-es fr-pl es-sv el-nl de-fi
63.1 90.0 93.7 93.7 67.0 91.0 92.3 94.5 94.3 98.2 95.9 85.7 96.0 87.9 90.1 91.7
64.4 89.2 94.5 92.7 66.7 91.4 91.9 93.8 93.3 98.0 95.5 87.3 96.1 88.6 90.3 91.4
65.3 91.2 96.4 94.2 69.8 93.7 99.3 95.1 93.5 98.8 96.3 89.9 96.5 89.8 90.6 93.4
da-sv en-ja de-zh hu-tr de-is ru-tr km-es eo-nl en-is br-fr pl-uk eo-uk eo-no cs-de da-no de-tr
94.0 97.7 95.1 81.1 81.5 93.5 66.2 88.7 93.6 22.7 95.9 88.3 90.3 95.8 95.6 94.9
93.6 97.8 94.8 79.5 81.8 93.3 65.9 89.0 93.2 22.2 95.4 87.6 91.3 95.9 95.5 94.8
94.2 98.4 95.8 86.7 85.5 96.4 69.8 98.1 96.2 48.3 96.6 95.2 96.4 96.4 95.9 97.3
eo-es it-uk eo-hu en-mr hu-nl ar-tr it-es be-uk en-hu da-eo en-th eo-pl bg-uk he-yi no-ru de-ro
92.6 91.3 88.6 96.1 86.3 88.9 97.1 94.9 94.2 88.7 91.0 89.1 81.2 55.9 93.0 88.6
94.4 91.6 88.7 96.7 84.9 87.8 97.8 94.8 94.3 90.6 90.5 90.2 80.7 57.6 92.0 88.6
98.9 94.1 97.4 97.9 90.2 92.9 98.2 95.3 98.1 96.6 91.9 96.3 83.3 59.9 92.5 90.1
ru-uk en-gl de-nl cs-it en-et fi-ja fr-ro es-zh tr-zh cs-uk sl-uk de-ru af-eo he-nl fi-it it-zh
99.3 84.6 97.1 90.5 82.7 87.1 88.2 95.1 81.4 90.4 70.8 98.3 74.4 97.2 79.9 83.7
99.2 85.7 96.7 90.6 82.2 85.1 88.5 94.8 80.7 89.2 70.3 98.3 75.3 96.8 81.1 83.8
99.4 86.9 98.3 92.2 94.5 91.0 91.0 95.7 86.8 91.7 75.6 99.2 84.5 98.5 84.5 86.8
nl-zh lt-pl it-pl ru-es en-pl da-es de-ja nl-ro ro-tr en-ko ja-es cs-hu ja-pl hu-it hu-sv Avg.
95.3 92.4 93.6 98.5 98.8 96.2 97.8 88.4 92.3 93.6 95.7 87.9 97.7 90.0 88.0 89.8
95.2 92.2 93.9 98.4 98.3 96.4 97.4 89.2 92.8 93.0 97.0 88.3 96.9 90.9 87.5 89.7
96.1 97.4 95.3 98.7 99.3 97.4 98.1 92.1 96.8 94.6 98.5 92.5 98.5 94.8 92.0 92.9

Table 10: Performance on all language pairs in the New-Tatoeba dataset whose devtest size is greater or equal than
1K (we randomly sample 1K examples for the “greater” case).
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