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Abstract

Large pretrained models enable transfer learn-
ing to low-resource domains for language gen-
eration tasks. However, previous end-to-end
approaches do not account for the fact that
some generation sub-tasks, specifically aggre-
gation and lexicalisation, can benefit from
transfer learning to different extents. To ex-
ploit these varying potentials for transfer learn-
ing, we propose a new hierarchical approach
for few-shot and zero-shot generation. Our
approach consists of a three-moduled jointly
trained architecture: the first module indepen-
dently lexicalises the distinct units of infor-
mation in the input as sentence sub-units (e.g.
phrases), the second module recurrently aggre-
gates these sub-units to generate a unified in-
termediate output, while the third module sub-
sequently post-edits it to generate a coherent
and fluent final text. We perform extensive
empirical analysis and ablation studies on few-
shot and zero-shot settings across 4 datasets.
Automatic and human evaluation shows that
the proposed hierarchical approach is consis-
tently capable of achieving state-of-the-art re-
sults when compared to previous work.1

1 Introduction

The recent development of large pretrained lan-
guage models (PLMs; i.e. BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), T5 (Raffel
et al., 2020)) has caused a shift of interest in the
research community towards domain adaptation
and transfer learning. For the task of concept-to-
text natural language generation (NLG), wherein
the aim is to generate a natural language text that
describes the semantic content of an abstract struc-
tured machine-readable input (Meaning Represen-
tation; MR), transfer learning from PLMs has be-
come a popular and high performing approach with
13 out of the 15 participating teams in the latest

1Code and scripts are available at https://github.
com/huawei-noah/noah-research/NLP/
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Figure 1: Structure of Hierarchical Recurrent Aggrega-
tive Generation (HRAG). The lexicalisation PLM gen-
erates one sub-phrase per attribute-value pair. The ag-
gregation PLM recurrently combines sub-phrases and
the post-edit PLM rephrases them into a fluent output.

WebNLG+ Shared Task (Ferreira et al., 2020) em-
ploying a fine-tuned pretrained model as their main
submitted system. Specifically, T5-based systems
achieved a human evaluation ranking on par with
the ground truth in terms of fluency and adequacy.
Transfer learning from PLMs also enables training
on few-shot and zero-shot settings, i.e. when suf-
ficient in-domain data are unavailable. Prominent
and relevant examples include machine translation
(Zoph et al., 2016; Brown et al., 2020) and NLG
for task-oriented dialogues (Peng et al., 2020).

This paper focuses on concept-to-text NLG,
where recent machine learning and in extension
transfer learning approaches adopt an end-to-end
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OFFER ( stylist name = Atelier Salon Willow Glen ) OFFER ( city = San Jose ) INFORM ( count = 10 )

I found 10 salons you may likeLocated in San JoseIt is called Atelier Salon Willow Glen

There is a nice salon called Atelier Salon Willow Glen in San Jose

There is a nice salon called Atelier Salon Willow Glen . San Jose has 10 salons you may like and

I found 10 salons you may like . There is a nice salon in San Jose called Atelier Salon Willow Glen .

Figure 2: Example of lexicalisation (in blue), recurrent aggregation (in orange), and post-editing (in red) stages.

architecture (Peng et al., 2020) that inputs the full
meaning representation and produces the full out-
put text. In such end-to-end models, the traditional
sub-tasks (Reiter and Dale, 2000) involved in lan-
guage generation (i.e. planning, lexicalisation, ag-
gregation, referring expression generation, and sur-
face realisation) are performed implicitly. However,
we posit that some of these sub-tasks, specifically
lexicalisation (i.e. choice of vocabulary) and aggre-
gation (i.e. process of combining simpler sentence
structures to form complex ones), exhibit varying
potential for exploiting transfer learning as the for-
mer is more domain-specific than the latter. For
example, it is more difficult to exploit transfer learn-
ing for lexicalisation since if certain words are not
already associated with a particular MR input, few-
shot learning may not be able to create a strong
association through the limited data. This is further
exacerbated in zero-shot learning. On the other
hand, the knowledge required to form complicated
sentence structures and apply aggregation strate-
gies is more commonly shared between domains
and would benefit more from transfer learning.

We aim to exploit these differing potentials for
transfer learning in few-shot and zero-shot gener-
ation, via a new hierarchical approach to concept-
to-text NLG. Specifically, we propose Hierarchi-
cal Recurrent Aggregative Generation (HRAG), a
three-moduled architecture where the first module
is in charge of independently lexicalising each unit
of information in the input as a sub-phrase (e.g. a
phrase expressing that unit of information alone),
the second module is responsible for recurrently
aggregating these sub-units to generate a unified
text, and the third module rephrases it to produce
a coherent and fluent output; see Figure 1. These
are jointly trained via a loss that combines their dis-
crete objectives. Concept-to-text is ideal for HRAG

as MRs can be split into attribute-value pairs that
vaguely correspond to output sub-phrases.

In this paper, we (i) present Hierarchical Re-
current Aggregative Generation and experimen-
tally demonstrate the benefits of separately apply-
ing transfer learning to language generation sub-
tasks; (ii) facilitate the model’s training by infer-
ring module-specific training signal from the avail-
able output targets; (iii) provide extensive empiri-
cal analysis and ablation studies on few-shot and
zero-shot settings across 4 datasets, one of which
we adapt ourselves for few-shot learning; (iv) per-
form human evaluation comparing our proposed
approach to previous work on few-shot generation.
Our automatic and human evaluation results show
that our hierarchical approach achieves state-of-the-
art results when compared against previous work.

2 Method

Figure 1 shows the overall structure of the proposed
hierarchical model HRAG. Its three modules are
in charge of lexicalisation, aggregation and post-
edit, and are inspired by traditional NLG stages
and their specific potential for transfer learning in
a few-shot setting. Figure 2 shows an example of
how the outputs of each stage are formed.

2.1 Input segmentation
In a pre-processing step, the input MR is divided
into individual attribute value pairs sxvx each cor-
responding to one distinct fact (i.e. unit of infor-
mation). Concept-to-text generation is particularly
fitted to our approach as the input MR is usually
straightforwardly divisible into distinct facts. To
elaborate, a typical input MR consists of one or
more predicates that denote the communicative
goal of the sentence, followed by a set of attribute-
value pairs that correspond to the information that
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should be expressed in the final text.
For example, in Figure 2 the input MR describes

that the text should offer/suggest to the user a stylist
named “Atelier Salon Willow Glen” that is in the
city of “San Jose’, and also inform them that it
has found “10” salons that match their criteria. We
assume that each attribute-value pair corresponds to
one distinct fact which is expressed as a sub-phrase
of the final output, e.g. CITY = SAN JOSE loosely
corresponds to the sub-phrase “in San Jose”.

2.2 Lexicalisation

The next stage is lexicalisation, i.e. the process
of selecting the required vocabulary to express the
input. HRAG’s respective module achieves this by
independently generating a corresponding phrase
wx
1 . . . w

x
len_x for each input fact sxvx, e.g. “lo-

cated in San Jose” should be generated from input
CITY = SAN JOSE in Figure 2. We opt to gen-
erate from single facts, disconnected from their
MR context, as it makes it easier for the model
to associate them with their relevant vocabulary.
This might lead to the loss of informative context,
but HRAG reintroduces context in a later stage.
Additionally, having a single fact input facilitates
transfer learning in the few-shot setting since any
previous context may be irrelevant to new domains.
A final benefit is that such input is more robust to
unseen facts, as any unknown attributes will only
affect the corresponding sub-phrase and will not
interfere with the generation from other facts.

In contrast, due to considering the whole input
at once, previous end-to-end models need to be
exposed to a lot of different combinations and or-
derings of attribute-value slots, to sufficiently asso-
ciate complex input MRs with the output text. In
few-shot settings, this becomes an issue as avail-
able MR combinations during training are limited.

2.3 Recurrent aggregation

In this stage, the generated sub-phrases of the lex-
icalisation module are ordered based on the in-
put’s original order, and input into the aggregation
layer one at a time in a recurrent fashion. At the
first step, the first two sub-phrases w1

1 . . . w
1
len_1

and w2
1 . . . w

2
len_2, and the correspondent attribute-

value pairs s1v1 s2v2, are input into the aggre-
gation layer to produce the combined sub-phrase
w

[1,2]
1 . . . w

[1,2]
len_[1,2] (see Figure 1). For example, the

sub-phrases “it is called Atelier Salon Willow Glen”
and “located in San Jose” are combined to form

“there is a nice salon called Atelier Salon Willow
Glen located in San Jose” as shown in Figure 2.

At each subsequent step r the input of the
aggregation module consists of the concatena-
tion of the previously aggregated sub-phrases
w

[1,r−1]
1 . . . w

[1,r−1]
len_[1,r−1], the current sub-phrase

wr
1 . . . w

r
len_r, and the correspondent attribute-

value pairs s1v1 s2v2 . . . srvr, to produce the com-
bined sub-phrase w

[1,r−1]
1 . . . w

[1,r]
len_[1,r]. The aggre-

gation module is called recurrently until all the sub-
phrases generated by the lexicalisation module are
combined into a single output w[1,n]

1 . . . w
[1,n]
len_[1,n].

Each distinct aggregation layer has the advan-
tage of being able to disassociate (to some extent)
from the specific semantics of the input and direct
its attention on how to combine (and copy over)
the sub-phrases of the lexicalisation module. This
is further enhanced by the recurrent structure of
the proposed aggregation layer which permits the
model to focus on a limited amount of operations
at a time, converging into a final unified output.

2.4 Post-editing
The aggregation layer models are trained to com-
bine sub-phrases into larger sub-phrases and do
not necessarily produce a fluent and coherent text
complete with appropriate punctuation and devoid
of errors. In order to rewrite the aggregated sub-
phrases, fix any errors and finalise the text, the
post-edit module takes the fully aggregated sub-
phrases w

[1,n]
1 . . . w

[1,n]
len_[1,n] and produces the out-

put w′1 . . . w
′
l, as seen in the top stage of Figure 2.

Being largely domain-agnostic, aggregation and
post-edit benefit the most from transfer learning.

2.5 Training, reranking and selection
Each module is built on top of a PLM; these PLMs
have separate shared weights per stage and are
specifically fine-tuned for that stage. For training,
the modules’ losses are combined as in Eq. 1:

Loss =
1

n

∑
n

Losslex+

1

n− 1

∑
n−1

Lossaggr + Losspe

(1)

where cross entropy is used for Losslex, Lossaggr
and Losspe , and n the number of units in the MR.

To mitigate any data sparsity issues, we employ
language agnostic delexicalisation (Zhou and Lam-
pouras, 2021) for the lexicalisation and aggregation
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Figure 3: Example of sub-phrase target inference for
training the lexicalisation module. The underlined val-
ues are matched with the input values.

modules, with relexicalisation performed before
post-edit. Briefly, any input value that is deter-
mined to occur in the text (via embedding similar-
ity) is delexicalized. In addition, to minimise the
error propagated between layers, each module gen-
erates multiple hypotheses per input and forward
the hypothesis with the least slot error rate to the
next iteration/module, where the slot error rate is
defined as the percentage of values in the input that
are missing, repeated or hallucinated in the output.

2.6 Inferring labels

Ideally, the PLMs that are used in HRAG’s different
modules would be fine-tuned on stage-specific par-
allel input and target data. However, while the post-
edit module can be trained against the dataset’s
final output target, such direct annotations for the
first two modules are not readily available. To over-
come this, we adopt a distant supervision approach
to automatically extract stage-appropriate training
signals from the existing data.

For the lexicalization stage, we extract sub-
phrase targets from the output target that weakly
correspond to the individual facts; this process is
depicted in Figure 3. Given an MR, we first deter-
mine occurrences of its values in the output target
via language agnostic delexicalisation. If the value
is not matched, we repeat the process using the
attribute instead; this is useful for some boolean
attributes (e.g. “accepts credit cards = yes”). If a
match is still not found, we assume that the fact is
not present in the output target, and we ignore that
attribute-value pair from the input during training.

For each fact sxvx, the corresponding target sub-
phrase is set to include the matched value of vx and
all words preceding and following it until either
a punctuation mark or another matched value is

reached. This will cause some overlap between the
inferred sub-phrase targets but ensures that all the
relevant vocabulary is included in each fact’s target.
While using this noisy training signal may encour-
age some hallucinations of irrelevant input, in pre-
liminary experiments this strategy worked better
than alternatives; the aggregation layer proved ro-
bust enough to ignore irrelevant or repeated words
that were output from the lexicalisation layer.

Using the aforementioned value matching, we
can similarly infer targets for the aggregation lay-
ers. However, to facilitate the process, the order
in which lexicalisation sub-phrases are aggregated
(see Section 2.3) needs to be fixed to the appear-
ance order of the corresponding matched values in
the output target. Given the example of Figure 3,
the order would be INFORM (COUNT = 10) > OF-
FER (CITY = SAN JOSE) > OFFER (STYLIST NAME

= ATELIER SALON WILLOW GLEN).
The aggregation targets are then inferred as such:

for every aggregation group s1v1 s2v2 . . . srvr, the
target consists of a subphrase of the output target,
from its beginning, including the words of the last
matched value vr, and until either a punctuation or
another matched value is reached after that point.
Again following the example of Figure 3, the aggre-
gation target for INFORM (COUNT = 10) + OFFER

(CITY = SAN JOSE) will be “I found 10 salons you
may like. There is a nice salon in San Jose called”.

We note that this order of lexicalisation sub-
phrases is only imposed during training since we
are limited by the output target. During testing, as
we mentioned in Section 2.5, the generated sub-
phrases of the lexicalisation module follow the
original input’s order. This results in a significant
discrepancy between the order of sub-phrases that
HARG is exposed to during training and inference,
but we leave its exploration for future work.

3 Experimental Setup

3.1 Datasets

We perform experiments on four datasets: Schema-
Guided Dialogue (Rastogi et al., 2020, SGD) with
the few-shot splits provided by (Kale and Ras-
togi, 2020, FewShotSGD), MultiWoZ 2.2 (Zang
et al., 2020), FewShotWoZ (Peng et al., 2020) and
WebNLG 3.0 (Ferreira et al., 2020). The first three
are task-oriented dialogue datasets, that have been
adapted to different extents for few-shot learning by
previous work. For our experiments, dialogue MRs
are linearised as lists of “INTENT ( ATTRIBUTE =
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# Triples Few-shot data Full data

1-triple 346 7686
2-triple 619 6948
3-triple 813 7610
4-triple 898 7061
5-triple 704 5084
6-triple 191 536
7-triple 168 501

Table 1: WebNLG 3.0 few-shot splits.

VALUE)”, similar to what is depicted in Figure 2,
while utterances are tokenised and lower-cased.

In contrast to the other datasets, WebNLG 3.0
(Ferreira et al., 2020) does not contain dialogues
but describes entities from a variety of domains,
and consists of sets of RDF triples and correspond-
ing texts in English and Russian; here we use only
the English portion. The dataset is organised in
subsets based on the number of RDF triples in the
input, ranging from 1 to 7. To create appropriate
splits for few-shot learning, for each length-specific
subset, we identified all unique combinations of
RDF properties in the input and limited the dataset
to a single (where available) instance per combina-
tion. In other words, we kept only 1 instance per
property for the 1-triple subset, 1 instance per pair
of properties for the 2-triple subset, and so forth.
Our splits essentially constitute a 1-shot learning
dataset, which we will refer to as FewShotWeb
dataset. Table 1 details how many of the total data
were kept in our WebNLG 3.0 few-shot splits (Few-
ShotWeb); as the triple length grows, most property
combinations are unique which results in a bigger
portion of the data being included. Interestingly,
the 1-triple subset covers 346 out of 372 occurring
properties, which makes it particularly suited for
supervised learning of our lexicalisation module.
The preprocessing of the RDF triples and target text
was performed as in Zhou and Lampouras (2021).

3.2 Automatic metrics

Following related work, to estimate the fluency of
the output, we provide results for BLEU-4 (com-
puted with SacreBLEU) (Papineni et al., 2002; Post,
2018), and BLEURT (Sellam et al., 2020) (specif-
ically the bleurt-base-128 version). We calculate
the BLEU score over multiple references to miti-
gate the unreliability of single reference evaluation.

To estimate adequacy, we use Missing Slot Error

BLEU ↑ BLEURT ↑ MER ↓

Lexicalisation 46.29 -0.39 0.00
+ aggregation 46.60 -0.30 1.16
+ post-edit 53.00 -0.20 1.13
+ selection 53.04 -0.20 0.14

E2E T5 50.15 -0.23 0.84
+ delex 50.25 -0.27 0.81

Table 2: Results of ablation study on 5-Shot SGD.

(MER), computed as the macro-averaged percent-
age of values in the MR that are missing (i.e. do
not appear verbatim) from the output utterance.
We should note that MER is an imperfect approx-
imation compared to slot error rate, as it does not
account for hallucinations, boolean or no-value at-
tributes. These types of slot errors are difficult to
detect in non-delexicalized output, which all sys-
tems in our experiments produce. Evaluation is
performed consistently across all datasets.

3.3 Systems

We compare HRAG against a fine-tuned end-to-
end T5 model (E2E T5), equivalent to the “Naive"
model shown by Kale and Rastogi (2020), which
achieved state-of-the-art on the MultiWoZ dataset
as well as in the recent WebNLG Challenge 2020
(Castro Ferreira et al., 2020). We employ t5-small
for the underlying PLMs of both HRAG and E2E
T5, to be consistent with Kale and Rastogi (2020).

4 Results

4.1 Ablation Study

First, we present an ablation study of HRAG on the
5-shot SGD dataset aimed to analyse the impact of
its components; the results are presented in Table
2. To examine the output of the lexicalisation mod-
ule without aggregation, we simply concatenate
the independently generated sub-phrases to form a
unified text. As is to be expected, such a concate-
nation achieves low BLEU and BLEURT scores,
clearly indicating the need for more sophisticated
aggregation. Nevertheless, the lexicalisation mod-
ule achieves 0% missing slot error thanks to its
focus on individual units of information.

For the aggregation module, we examine the out-
put of its final iteration. Its performance is on par
with lexicalisation output, seemingly suggesting
that aggregation offers little improvement. How-
ever, based on output analysis, the low BLEU and
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BLEURT are misleading and do not reflect the
output quality. We attribute the lack of automatic
score improvements to the module’s tendency to
overgenerate at the end of the output in anticipation
of the next sub-phrase (as shown in the example
in Figure 2). Other errors emerge from no-value
attributes and due to sub-optimal training targets.
MER increases the most during aggregation, as its
recurrent nature is prone to error propagation. We
should also note that using a single aggregation
layer to aggregate all sub-phrases at the same time
had comparable BLEU and BLEURT performance
but underperformed by 8.18 points in MER.

The role of the post-edit module is to obviate
errors propagated from the lexicalisation and ag-
gregation modules, and it greatly improves perfor-
mance by 6.4 and 0.1 points in BLEU and BLEURT
respectively. Specifically, this stage fixes the lex-
icalisation of no-value attributes, removes over-
generated tokens, improves fluency, and adds or
removes values that have been missed or repeated.
Nonetheless, as this is an extra generation step,
it occasionally removes some required values, as
indicated by the almost constant slot error.

Due to these frequent imperfections in the post-
edit layer’s output, the final output of HRAG is
selected between the output of the last aggregation
iteration and the output of the post-edit module
according to which one has the lower MER. This
process leads to the highest BLEU and BLEURT
scores and an MER close to 0%.

Finally, we examine delexicalisation’s impact on
E2E T5, applying it similarly to how it is applied
to HRAG. While HRAG benefits from delexicali-
sation as it improves its generalisation ability and
helps reduce MER, we observe marginal improve-
ments (an MER decrease of 0.03%) when applied
over a strong end-to-end model like E2E T5.

4.2 Few-Shot Evaluation

Table 3 shows automatic evaluation results for E2E
T5 and HRAG systems trained on an increasing
amount of data on FewShotSGD, FewShotWeb and
MultiWoZ datasets. Overall the behaviour of the
two systems is consistent across the three datasets.

As discussed in Section 4.1, HRAG manages to
preserve the input MR values throughout the gen-
eration, and as such outperforms E2E T5 in MER
across all dataset splits by a significant margin, es-
pecially when trained on smaller splits. E2E T5
only overperforms on 0.1% MultiWoZ, but a closer

BLEU ↑ 5 10 20 40 80

E2E T5 50.15 55.75 60.37 62.53 63.62
HRAG 53.04 56.95 60.94 62.49 63.97

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.23 -0.15 -0.09 -0.06 -0.05
HRAG -0.20 -0.13 -0.09 -0.06 -0.04

MER ↓ 5 10 20 40 80

E2E T5 0.84 0.65 0.37 0.34 0.27
HRAG 0.14 0.05 0.03 0.07 0.01

(a) FewShotSGD

BLEU ↑ 1 2 3 4 5 6 7

E2E T5 21.46 37.47 41.17 45.31 45.09 45.42 46.40
HRAG 28.00 39.04 43.89 45.64 45.61 45.62 46.68

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.32 0.08 0.13 0.22 0.21 0.22 0.23
HRAG -0.20 0.11 0.19 0.24 0.23 0.23 0.25

MER ↓ 1 2 3 4 5 6 7

E2E T5 22.81 23.80 19.48 19.32 20.72 20.10 19.54
HRAG 8.21 5.58 1.75 0.98 0.52 0.24 0.35

(b) FewShotWeb

BLEU ↑ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 3.34 25.90 41.27 48.77 50.65 52.56
HRAG 14.13 31.69 40.39 48.72 49.71 50.34

BLEURT ↑ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 -1.29 -0.39 -0.16 -0.08 -0.07 0.00
HRAG -0.74 -0.33 -0.18 -0.12 -0.10 -0.09

MER ↓ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 4.85 5.79 5.76 2.86 2.44 2.10
HRAG 7.45 3.53 1.64 0.75 0.70 0.86

(c) Reduced MultiWoZ

Table 3: Automatic evaluation results.

examination of the outputs reveals that the 4.85%
MER is achieved at great expense to fluency as
the system simply copies all input MRs instead of
generating utterances. Although HRAG was not
completely unaffected by such behaviour, it was
still able to generate relevant outputs thanks to its
ability to independently lexicalise smaller and sim-
pler sub-phrases which lead to improvements of
10.79 BLEU and 0.55 BLEURT scores over E2E
T5 despite the higher MER on 0.1% MultiWoZ.

Results in Table 3 demonstrate the effectiveness
of HRAG in extremely low-resourced conditions
with differences in BLEU and BLEURT scores
of 2.89 and 0.3 for FewShotSGD and 6.54 and
0.12 for FewShotWeb on their respective smaller
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BLEU ↑ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 25.73 25.94 17.62 26.25 15.04 28.34 19.41 22.62
HRAG 25.55 22.95 18.55 24.70 19.31 29.96 14.44 22.21

BLEURT ↑ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 -0.08 0.03 -0.43 0.02 -0.32 -0.07 -0.44 -0.18
HRAG -0.12 -0.11 -0.40 -0.09 -0.34 -0.04 -0.47 -0.22

MER ↓ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 7.43 6.73 16.87 3.80 18.76 3.75 21.41 11.25
HRAG 4.21 2.58 7.23 4.15 13.47 1.39 9.20 6.03

Table 4: Automatic evaluation results on FewShotWoZ. AVG is the macro-average score across all domains.

splits. Improvements over the end-to-end systems
converge as the number of training examples in-
creases, but HRAG consistently performs best in
MER across all datasets and training pool sizes. In
terms of BLEU/BLEURT, HRAG is able to main-
tain an edge over E2E T5 on all FewShotSGD and
FewShotWeb splits, while on MultiWoZ, E2E T5
appears to be the best performing system, espe-
cially in terms of BLEURT score with a difference
up to 0.9. By looking at the system’s outputs, how-
ever, HRAG appears to perform comparably or
even outperform E2E T5 despite lower BLEURT
scores, as shown in the examples in Table 5. More
examples are presented in Appendix B.

Table 4 shows results on FewShotWoZ; models
are trained and tested separately on each domain.
Similarly to the results shown in Table 3, HRAG
excels in terms of MER, missing on average 5%
fewer values compared to E2E T5. In BLEU and
BLEURT scores, while on average E2E T5 outper-
forms HRAG, there is no consistently better system.
Unfortunately, only one reference per MR is pro-
vided making multi-reference scoring impossible
and in extension BLEU more unreliable. In Section
4.4, we perform human evaluation to better assess
systems performance on FewShotWoZ.

4.3 Zero-Shot Evaluation

We perform zero-shot analysis on SGD and
WebNLG testsets; Figure 4 shows the results of
the systems presented in Section 4.2 with reported
performances split into domains seen and unseen
during training according to the original datasets.2

In both datasets, HRAG achieves MER in unseen
cases lower than even E2E T5’s seen scores, fur-
ther validating the generalisation ability of HRAG
when little to no resources are available. Over-
all, HRAG achieves higher BLEU and BLUERT

2Full results tables are shown in Appendix C.

scores than E2E T5 as well, with the exception
of BLEURT scores for FewShotSGD. However,
similarly to what has been found in Section 4.2,
HRAG’s outputs do not appear to necessarily be
more disfluent than E2E T5 outputs.

Interestingly, HRAG’s MER for unseen Few-
ShotWeb is lower than the corresponding seen one.
We observe that HRAG tends to avoid generating
complex sentence structures when dealing with
unseen inputs, and simply concatenates the lexi-
calisation sub-phrases (e.g. “liselotte grschebina,
born in the german empire, attended the school of
applied arts in stuttgart, israel.”). This strategy ben-
efits FewShotWeb as HRAG focuses on copying
elements from the input and effectively avoids in-
troducing noise. Such behaviour is not observed
for FewShotSGD, but seen/unseen MER are still
comparable and in close proximity to 0%.

4.4 Human Evaluation

To account for the shortcomings of automatic eval-
uation, we employed the human evaluation frame-
work Direct Assessment (Graham et al., 2017)
to set up tasks on the Amazon Mechanical Turk
(AMT) platform and assess the fluency and ade-
quacy of various models’ outputs. We created sepa-
rate tasks to assess the fluency and adequacy of the
texts on two distinct subsets, in order to minimise
correlation between the criteria. Specifically, we
sampled 750 MRs from each test set of 5-shot SGD
and FewShotSGD, and collected the corresponding
outputs of HRAG, E2E T5, and the ground truth
(GOLD); we include the latter to provide context to
the evaluation. We picked the 5-shot subset of SGD
to observe how the systems behave when exposed
to the least amount of in-domain data. The pool
of crowd-workers was limited to those residing in
English-speaking countries, and who had a high
acceptance rate; every text was evaluated by at least
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MR: hotel [ inform (stars = 4) ] BLEURT ↑

E2E T5: it has a 4 star rating . 0.21
HRAG: it ’s a 4 star hotel . -0.79

MR: attraction [ request (name) , inform (area = city centre ; choice-1 = many)] BLEURT ↑

E2E T5:
there are many attractions in the city centre . what is the name of the attraction
you are looking for ?

0.01

HRAG: there are many attractions in the city centre . do you have a name ? -0.37

MR:
train [ offerbook (none) , inform (leave = 05:59 ; arrive-1 = 07:27 ; depart = cambridge ;
dest-1 = london ; dest-2 = liverpool street ; day = saturday ; id-1 = tr2895) ]

BLEURT ↑

E2E T5:
tr2895 leaves cambridge at 05:59 and arrives in london at 07:27 on saturday .
would you like me to book you a ticket ?

0.05

HRAG:
i have tr2895 that leaves at 05:59 and arrives at 07:27 from cambridge to liverpool street
london on saturday . would you like me to book it for you ?

-0.20

Table 5: Output examples from E2E T5 and HRAG trained on 20% MultiWoZ.
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Figure 4: Zero-shot automatic evaluation results.

3 crowd-workers on a 1 to 100 Likert scale. After
consulting the crowd-workers’ reliability based on
the Direct Assessment platform analysis, we had
to filter out 39.5% of the participants.

Table 6 gathers the raw and mean standardised
z-scores of the evaluation. Both models of course
are considered worse than the ground truth, but
HRAG performs better than E2E T5 in both flu-
ency and adequacy, with the exception of fluency in

Fluency Adequacy
raw z-score raw z-score

5S
-S

G
D GOLD 80.502 0.103 78.690 0.044

E2E T5 76.355 -0.033 76.864 -0.017
HRAG 77.245 -0.012 77.508 0.041

FS
-W

O
Z GOLD 76.936 0.018 80.210 0.066

E2E T5 75.845* 0.016* 78.609 0.042
HRAG 75.824* 0.014* 79.096 0.043

Table 6: Human Evaluation results; * denotes no statis-
tically significant difference between assessments.

FewShotWoZ where the systems exhibit no statisti-
cally significant difference (according to Wilcoxon
rank-sum tests). These results further support the
efficacy of HARG for few-shot settings.

5 Related work

Despite being an important research topic with
real-life applications, domain adaptation for low-
resource/few-shot concept-to-text NLG has not
been extensively researched. Wen et al. (2016)
leveraged the scarcity of target in-domain data by
augmenting it with synthetic data, Tran and Nguyen
(2018) used variational autoencoders in conjunc-
tion with text similarity and domain critics to bet-
ter guide the fine-tuning process, while Mi et al.
(2019) tackled the problem by defining domain
adaptation as an optimisation meta-learning task.
Most recently, Peng et al. (2020) and Kale and Ras-
togi (2020) have proposed the use of pretrained
language models to tackle few-shot and zero-shot
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learning in concept-to-text NLG, achieving signif-
icant gains over strong non-pretrained baselines.
Specifically, Peng et al. (2020) proposed SC-GPT,
a semantically conditioned GPT-2 model, wherein,
prior to few-shot learning, the GPT-2 model is fur-
ther fine-tuned on a number of task-oriented dia-
logue datasets in order to mitigate the problem of
representation bias. On the other hand, in Kale
and Rastogi (2020), a set of human-authored tem-
plates are used to generate high-quality sentences
corresponding to each unit of information in an
MR. These are then concatenated and given as in-
put to a T5 model (T2G2) to form a coherent sen-
tence. In this paper’s evaluation, we opt to compare
our approach against the naive T5 baseline intro-
duced by Kale and Rastogi (2020), as it is shown to
overly outperform SC-GPT by basically replacing
the underlying GPT-2 model for T5, and SC-GPT
was outperform all previous non-pretrained base-
lines. We do not compare against T2G2, as access
to human authored templates or other such manu-
ally annotated resources, which are by nature very
domain-specific and costly to create, are not nec-
essarily guaranteed in low-resource settings. We
note that T2G2 is equivalent to the naive T5 when
templates are not employed.

In our proposed system, the hierarchy emerges
from modelling the lexicalisation and aggregation
sub-tasks on separate layers. Previous attempts in
exploring hierarchical structures for text genera-
tion tasks instead focused on modelling different
aspects of the input or output. In concept-to-text
NLG for task-oriented dialogues, Su et al. (2018)
proposed a multi-layered decoding process where
each layer was responsible for generating words
associated with specific part-of-speech tags. Chen
et al. (2019) and Tseng et al. (2019) took advan-
tage of the intrinsically hierarchical structure of
dialogue acts to create better input representations
and ease domain adaptation. Our approach is also
related to coarse-to-fine approaches, which have
been explored in story (Fan et al., 2018), review (Li
et al., 2019) and keyphrase (Chen et al., 2020) gen-
eration tasks. However, in these tasks, the output is
not necessarily restricted to be an exact realisation
of the input, and can be initially loosely prompted
or drafted, and subsequently expanded.

6 Conclusion

We proposed Hierarchical Recurrent Aggregative
Generation, a three-moduled jointly trained archi-

tecture, designed to exploit the different extents
to which lexicalisation and aggregation can ben-
efit from transfer learning. Additionally, due to
the lack of explicit training signals for HRAG’s
modules, we show how module-specific targets can
be inferred from the available output targets. Ex-
tensive automatic metric experiments and analysis
across 4 datasets, as well as accompanying human
evaluation, demonstrates that HRAG outperforms
previous state-of-the-art approaches, especially in
regards to missing slot error and adequacy.
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A Configurations

Fine-tuning is performed with Adafactor (Shazeer
and Stern, 2018) as an optimiser, with learning rate
set to 1e−3 and Huggingface (Wolf et al., 2020)’s
default parameters; gradient accumulation is used
with a batch size of 256 for all the datasets except
FewShotWoZ where the batch size is set to 1 as in
(Peng et al., 2020); early-stopping is adopted with
patience set to 30 and a combined loss between
BLEU and slot error rate as the scoring function.

Reranking is performed as described in Sec-
tion 2.5, with 5 lexicalisation and aggregation hy-
potheses generated at each time step. However, at
training time, for computational reasons, only the
lexicalisation outputs are reranked. At inference
time, reranking is performed for both the baseline
and HRAG’s post-edit module, with 10 hypotheses
generated and reranked. Each system is fine-tuned

with 5 different seeds. Section 4 reports the average
performance of each system.

B Examples

Table 7 shows examples from FewShotWoZ where
E2E T5 suffers from hallucinations.

C Full results

Tables 8 and 9 show the full results presented in
Section 4.3.

D Inferred training signal examples

Tables 10, 11, 12, and 13 show examples of inferred
training signals for the lexicalization and aggrega-
tion modules as discussed in Section 2.6. Note that
as described in the aforementioned section, during
training the input facts are ordered according to
their values’ appearance in the reference to facili-
tate the proper inference of the training signal for
aggregation. Also note that we show the values
intact in these examples for clarity, even though
throughout our experiments the signal is inferred
after a delexicalization pre-processing step.
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MR: inform count ( count = 11 ; near = nob hill ; type = restaurant )
E2E T5: there are 11 restaurants near nob hill in the north hill area . it is a nice restaurant
HRAG: there are 11 restaurants near nob hill area

MR: inform ( memory = 4 gb;; type = laptop ; name = satellite nereus 81 ; IsForBusiness = true )
E2E T5: the satellite nereus 81 laptop is not for business computing and has 4 gb memory and a 4 gb memory

HRAG:
the satellite nereus 81 laptop has 4 gb of memory with a good battery rating , and is
for business computing

MR: inform ( price = 10.10 gbp ; id = tr5433 ) , book ( none )
E2E T5: tr5433 will cost 10.10 gbp per ticket and leaves at tr5433 . can i book it for you ?
HRAG: tr5433 price is 10.10 gbp payable at the station . can i book it for you ?

Table 7: FewShotWoZ output examples.

BLEU ↑ 1 2 3 4 5 6 7

E2E T5 20.44 39.79 44.75 50.01 50.48 51.06 51.13
HRAG 27.29 41.63 47.68 50.16 50.17 50.40 51.14

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.32 0.14 0.21 0.29 0.29 0.31 0.31
HRAG -0.19 0.17 0.27 0.32 0.31 0.32 0.32

MER ↓ 1 2 3 4 5 6 7

E2E T5 25.54 24.52 19.78 19.86 19.95 20.21 19.65
HRAG 10.76 6.78 2.28 1.20 0.76 0.29 0.43

(a) Seen

BLEU ↑ 1 2 3 4 5 6 7

E2E T5 22.65 34.74 36.95 39.77 38.73 38.73 40.70
HRAG 28.84 35.99 39.40 40.31 40.23 40.23 41.41

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.33 0.00 0.03 0.13 0.11 0.12 0.14
HRAG -0.21 0.04 0.10 0.16 0.14 0.14 0.17

MER ↓ 1 2 3 4 5 6 7

E2E T5 18.83 22.77 19.04 18.53 21.85 19.95 19.39
HRAG 4.49 3.82 0.99 0.50 0.18 0.17 0.23

(b) Unseen

Table 8: Full automatic evaluation results for FewShot-
WoZ.

BLEU ↑ 5 10 20 40 80

E2E T5 52.37 57.78 63.26 65.01 65.94
HRAG 55.47 59.61 63.64 64.96 66.11

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.21 -0.12 -0.05 -0.05 -0.01
HRAG -0.16 -0.09 -0.05 -0.02 -0.01

MER ↓ 5 10 20 40 80

E2E T 5 0.69 0.64 0.39 0.24 0.23
HRAG 0.12 0.05 0.04 0.01 0.01

(a) Seen

BLEU ↑ 5 10 20 40 80

E2E T5 41.10 47.50 48.59 52.46 54.14
HRAG 43.13 46.11 49.91 52.70 55.20

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.35 -0.25 -0.23 -0.18 -0.20
HRAG -0.37 -0.30 -0.25 -0.23 -0.19

MER ↓ 5 10 20 40 80

E2E T5 1.55 0.68 0.29 0.84 0.45
HRAG 0.23 0.09 0.00 0.03 0.00

(b) Unseen

Table 9: Full automatic evaluation results for Few-
ShotSGD.
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MR: offer ( pickup location = santa fe depot ; pickup date = march 2nd ; type = standard ; car name = accord )
Reference: there is an accord , standard , at santa fe depot on march 2nd .

Fact Inferred sub-phrase target

1: offer ( car name = accord ) there is an accord
2: offer ( type = standard ) standard
3: offer ( pickup location = santa fe depot ) at santa fe depot on
4: offer ( pickup date = march 2nd ) on march 2nd

Facts to be combined Inferred aggregation target

1 + 2 there is an accord , standard
1 + 2 + 3 there is an accord , standard , at santa fe depot on
1 + 2 + 3 + 4 there is an accord , standard , at santa fe depot on march 2nd

Post-edit target

there is an accord , standard , at santa fe depot on march 2nd .

MR: confirm ( restaurant name = jo ’s sushi bar ; location = pleasant hill ; time = 11 am ; number of seats = 2 ; date = march 13th )
Reference: you want a table for 2 at jo ’s sushi bar in pleasant hill at 11 am on march 13th ?

Fact Inferred sub-phrase target

1: confirm ( number of seats = 2 ) you want a table for 2 at
2: confirm ( restaurant name = jo ’s sushi bar ) at jo ’s sushi bar in
3: confirm ( location = pleasant hill ) in pleasant hill at
4: confirm ( time = 11 am ) at 11 am on
5: confirm ( date = march 13th ) on march 13th

Facts to be combined Inferred aggregation target

1 + 2 you want a table for 2 at jo ’s sushi bar in
1 + 2 + 3 you want a table for 2 at jo ’s sushi bar in pleasant hill at
1 + 2 + 3 + 4 you want a table for 2 at jo ’s sushi bar in pleasant hill at 11 am on
1 + 2 + 3 + 4 + 5 you want a table for 2 at jo ’s sushi bar in pleasant hill at 11 am on march 13th

Post-edit target

you want a table for 2 at jo ’s sushi bar in pleasant hill at 11 am on march 13th ?

Table 10: Inferred training signal for the lexicalization and aggregation modules from FewShotSGD.
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MR: inform_no_match ( goodformeal = breakfast ; near = civic center )
Reference: unfortunately there are no restaurant -s near civic center that are good for breakfast

Fact Inferred sub-phrase target

1: inform_no_match ( near = civic center ) unfortunately there are no restaurant -s near civic center that are good for
2: inform_no_match ( goodformeal = breakfast ) that are good for breakfast

Facts to be combined Inferred aggregation target

1 + 2 unfortunately there are no restaurant -s near civic center that are good for breakfast

Post-edit target

unfortunately there are no restaurant -s near civic center that are good for breakfast

MR: inform ( choice = 91 ; destination = cambridge ; departure = leicaster ; leaveat = the specified time), select (leaveat = 11:09 ; day = friday )
Reference: there are 91 trains leaving leicaster to cambridge after the specified time . how does friday 11:09 sound ?

Fact Inferred sub-phrase target

1: inform ( choice = 91 ) there are 91 trains leaving
2: inform ( departure = leicaster ) trains leaving leicaster to
3: inform ( destination = cambridge ) to cambridge after
4: inform ( leaveat = the specified time ) after the specified time
5: select ( day = friday ) how does friday
6: select ( leaveat = 11:09 ) 11:09 sound

Facts to be combined Inferred aggregation target

1 + 2 there are 91 trains leaving leicaster to
1 + 2 + 3 there are 91 trains leaving leicaster to cambridge after
1 + 2 + 3 + 4 there are 91 trains leaving leicaster to cambridge after the specified time
1 + 2 + 3 + 4 + 5 there are 91 trains leaving leicaster to cambridge after the specified time . how does friday
1 + 2 + 3 + 4 + 5 + 6 there are 91 trains leaving leicaster to cambridge after the specified time . how does friday 11:09 sound

Post-edit target

there are 91 trains leaving leicaster to cambridge after the specified time . how does friday 11:09 sound ?

Table 11: Inferred training signal for the lexicalization and aggregation modules from FewShotWoZ.
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MR: hotel_request ( stars ; price ; area ), hotel_inform ( choice = 29 )
Reference: there are 29 hotels that meet your needs . can you narrow it down to area , price range and stars ?

Fact Inferred sub-phrase target

1: hotel_inform ( choice = 29 ) there are 29 hotels that meet your needs
2: hotel_request ( area ) can you narrow it down to area
3: hotel_request ( price ) price range and
4: hotel_request ( stars ) range and stars

Facts to be combined Inferred aggregation target

1 + 2 there are 29 hotels that meet your needs . can you narrow it down to area
1 + 2 + 3 there are 29 hotels that meet your needs . can you narrow it down to area , price range and
1 + 2 + 3 + 4 there are 29 hotels that meet your needs . can you narrow it down to area , price range and stars

Post-edit target

there are 29 hotels that meet your needs . can you narrow it down to area , price range and stars ?

MR: booking_nobook ( time = 10:00 ; day = saturday ), booking_request ( time )
Reference: i am sorry we could not book you for saturday at 10:00 . would you like to try another time ?

Fact Inferred sub-phrase target

1: booking_nobook ( day = saturday ) i am sorry we could not book you for saturday at
2: booking_nobook ( time = 10:00 ) at 10:00
3: booking_request ( time ) you like to try another time

Facts to be combined Inferred aggregation target

1 + 2 i am sorry we could not book you for saturday at 10:00
1 + 2 + 3 i am sorry we could not book you for saturday at 10:00 . would you like to try another time

Post-edit target

i am sorry we could not book you for saturday at 10:00 . would you like to try another time ?

Table 12: Inferred training signal for the lexicalization and aggregation modules from reduced MultiWoZ.

MR: <amdavad ni gufa, location, ahmedabad> , <amdavad ni gufa, country, india> , <india, leader, sumitra mahajan>
Reference: amdavad ni gufa is located in ahmedabad , india , where sumitra mahajan is a leader .

Fact Inferred sub-phrase target

1: <amdavad ni gufa, location, ahmedabad> amdavad ni gufa is located in ahmedabad
2: <amdavad ni gufa, country, india> india
3: <india, leader, sumitra mahajan> where sumitra mahajan is a leader

Facts to be combined Inferred aggregation target

1 + 2 amdavad ni gufa is located in ahmedabad , india
1 + 2 + 3 amdavad ni gufa is located in ahmedabad , india , where sumitra mahajan is a leader

Post-edit target

amdavad ni gufa is located in ahmedabad , india , where sumitra mahajan is a leader .

MR: <asterix ( comics character ), creator, rené goscinny> , <asterix ( comics character ), creator, albert uderzo>
Reference: the comic strip character asterix was created by albert uderzo and rene goscinny .

Fact Inferred sub-phrase target

1: <asterix ( comics character ), creator, albert uderzo> the comic strip character asterix was created by albert uderzo and
2: <asterix ( comics character ), creator, rené goscinny> and rene goscinny

Facts to be combined Inferred aggregation target

1 + 2 the comic strip character asterix was created by albert uderzo and rene goscinny

Post-edit target

the comic strip character asterix was created by albert uderzo and rene goscinny .

Table 13: Inferred training signal for the lexicalization and aggregation modules from FewShotWeb.
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