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Abstract

Entity retrieval—retrieving information about
entity mentions in a query—is a key step in
open-domain tasks, such as question answering
or fact checking. However, state-of-the-art
entity retrievers struggle to retrieve rare entities
for ambiguous mentions due to biases towards
popular entities. Incorporating knowledge
graph types during training could help over-
come popularity biases, but there are several
challenges: (1) existing type-based retrieval
methods require mention boundaries as input,
but open-domain tasks run on unstructured text,
(2) type-based methods should not compromise
overall performance, and (3) type-based meth-
ods should be robust to noisy and missing types.
In this work, we introduce TABi, a method to
jointly train bi-encoders on knowledge graph
types and unstructured text for entity retrieval
for open-domain tasks. TABi leverages a type-
enforced contrastive loss to encourage entities
and queries of similar types to be close in the
embedding space. TABi improves retrieval of
rare entities on the Ambiguous Entity Retrieval
(AmbER) sets, while maintaining strong
overall retrieval performance on open-domain
tasks in the KILT benchmark compared to
state-of-the-art retrievers. TABi is also robust
to incomplete type systems, improving rare
entity retrieval over baselines with only 5%
type coverage of the training dataset. We make
our code publicly available.1

1 Introduction

Entity retrieval (ER) is the process of finding
the most relevant entities in a knowledge base
for a natural language query.2 ER is crucial
for open-domain NLP tasks, where systems are
provided with a query without the information
needed to answer the query (Karpukhin et al., 2020).
For instance, to answer the query, “What team does

1https://github.com/HazyResearch/tabi
2We use entity retrieval to refer to the page-level document

retrieval setting, where entities correspond to Wikipedia pages.

George Washington play for?” an open-domain
system can use an entity retriever to find infor-
mation about George Washington in a knowledge
base. Retrieving the correct George Washington
in the query above—George Washington the
baseball player, rather than George Washington
the president—requires the retriever to recognize
that keywords “team” and “play” imply George
Washington is an athlete. However, recent work
has shown that state-of-the-art retrievers exhibit
popularity biases and struggle to resolve ambiguous
mentions of rare “tail" entities (Chen et al., 2021).

The goal of our work is to improve rare entity re-
trieval for open-domain NLP tasks. Rare entities are
challenging to retrieve when they share a name with
more popular entities. For instance, in a sample of
Wikipedia, mentions of George Washington refer to
the president 93% of the time, so a retriever can do
very well by learning a popularity bias and returning
the president whenever it sees “George Washington.”
This strategy performs poorly on rare entities like
George Washington the baseball player. To retrieve
a rare entity instead of a popular entity for an am-
biguous mention, the retriever needs to learn to lever-
age context cues to overcome the popularity bias.
However, existing state-of-the-art retrievers for
open-domain tasks (e.g., GENRE (Cao et al., 2021),
DPR (Karpukhin et al., 2020)) are only trained on
unstructured text, making it challenging for them
to learn to associate context cues (e.g. “team” and
“play”) with groups of entities (e.g., athletes).

A promising approach to overcome popularity
biases is to incorporate types (e.g., athlete or politi-
cian) from a knowledge graph into the retriever.
A key advantage of types is that contextual cues
learned over popular entities can generalize to rare
entities of the same types. However, there are sev-
eral challenges with using types for open-domain re-
trieval. First, existing methods that use types assume
mention boundaries are provided in the input (Gupta
et al., 2017; Onoe and Durrett, 2020; Orr et al.,
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Figure 1: TABi uses a query and entity encoder to embed queries and entities in the same space. To encourage
embeddings of the same type (e.g. athlete) to be close, TABi introduces a type-enforced contrastive loss that pulls
query embeddings of the same type together and pushes query embeddings of different types apart.

2021), but open-domain tasks run over unstructured
text. These methods can suffer significant quality
degradation without mention boundaries.3 Second,
while it is important to do well on tail entities, the
ideal retriever also needs to maintain strong perfor-
mance over popular entities, balancing learning pop-
ularity biases with learning contextual cues. Finally,
a retriever that incorporates types needs to be robust
to incorrect and missing types, as type labels can be
noisy and knowledge graphs can be incomplete.

In this work, we introduce TABi, a method
for training entity retrievers on knowledge graph
types and unstructured text. TABi builds on the
bi-encoder model for dense retrieval (e.g., Wu
et al., 2020; Karpukhin et al., 2020) (Figure 1).
Bi-encoders learn embeddings of queries and
entities contrastively: query embeddings are pulled
close to their ground truth entity embedding and
pushed away from other entity embeddings.

Our key insight is that type information should
also be learned contrastively, as opposed to more
straightforward approaches like adding the type as
textual input. TABi adds a type-enforced contrastive
loss term that pulls query embeddings of the same
type together and pushes query embeddings of
different types apart. As a result, TABi clusters em-
beddings by type more strongly than simply adding
the type as input or not using types at all (Figure 2),
and thus performs better on nearest neighbor type
classification and entity similarity tasks. Finally,
motivated by “universal” dense retrievers (Maillard
et al., 2021), TABi trains over multiple open-domain
tasks in addition to entity disambiguation to support
retrieval without mention boundaries.

3We find retrieval performance can drop 40% (relative) by
using mention detection v. gold mention boundaries.

Our experiments show that TABi addresses the
challenges of using types for open-domain retrieval.
First, we find that training a bi-encoder over
multiple open-domain tasks significantly improves
average top-1 tail retrieval by 29.1 points compared
to existing state-of-the-art baselines. Our type-
enforced loss further improves average top-1 tail
retrieval by nearly 6 points. Second, TABi maintains
strong overall retrieval performance on popular
entities, nearly matching or outperforming the
state-of-the-art multi-task model, GENRE, on the
eight open-domain KILT tasks (Petroni et al., 2021).
Third, TABi is robust to missing and incorrect types,
obtaining 79% of the lift from the type-enforced loss
even when only 5% of the training examples have
type annotations. Finally, we also explore a hybrid
model that combines TABi with a sparse retriever
and popularity statistics. We find the hybrid model
can lead to strong performance even when TABi is
trained without hard negative sampling, a standard
but computationally expensive training procedure.

To summarize, our contributions are as follows:
• We introduce TABi, a method to train bi-encoders

on knowledge graph types and unstructured text
through a new type-enforced contrastive loss for
open-domain entity retrieval.

• We demonstrate that TABi improves rare entity
retrieval performance, maintains strong overall
retrieval performance, and is robust to noisy and
missing types on AmbER and KILT.

• We validate that our approach can better capture
types in query and entity embeddings than base-
line dense entity retrievers through embedding
visualization, nearest neighbor type classification,
and an entity similarity task.
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2 Preliminaries

We review the problem setup, task, and bi-encoders.

Problem setup Let q ∈ Q be a query, e ∈ E be
an entity description, y ∈ Y be the entity label
from the knowledge base, and t ∈ T be the type
label.4 We assume as input a labeled dataset
D = {(qi,ei,yi,ti)}ni=1, where n is the number of
examples.

Entity retrieval task Given a query q as input,
the entity retrieval task is to return the top-K entity
candidates relevant to the query from Y . Since our
primary motivation is open-domain NLP tasks, we
focus on the page-level document retrieval setting,
where we assume that each document corresponds
to an entity (e.g., Wikipedia page) and that no
mention boundaries are provided as input.

Bi-encoders for entity retrieval The bi-encoder
model consists of a query encoder f :Q→Rd and
an entity encoder g : E → Rd. Most bi-encoders
(e.g., Gillick et al., 2019; Wu et al., 2020) are
trained with the InfoNCE loss (van den Oord et al.,
2018), in which “positive” pairs of examples are
pulled together and “negative” pairs of examples
are pushed apart. For a particular query q, let its
positive example e+ be the entity description for
the respective gold entity and its negative examples
Ne(q) be the set of all other entity descriptions in
the batch. For a batch with queries Q and entity
descriptionsE, the loss is defined as:

LNCE(Q,E)=
−1

|Q|
∑
q∈Q

log
ψ(q,e+)

ψ(q,e+)+
∑

e−∈Ne(q)

ψ(q,e−)
,

where ψ(v,w)=exp(f(v)⊤g(w)/τ) is the similar-
ity score between the embeddings v and w, and τ
is a temperature hyperparameter. LNCE pulls each
query embedding close to the entity embedding for
its gold entity and pushes it away from all other
entity embeddings in the batch. Batches are often
constructed with hard negative samples to improve
overall quality (e.g., Gillick et al., 2019).

3 Approach

TABi leverages knowledge graph types and un-
structured text to train bi-encoders for open-domain
entity retrieval. TABi takes as input queries

4To simplify notation, we define a single type label. In
experiments, we define the type label as a set of entity types and
type equivalence as 50% of types matching (see Appendix B.4).

and entity descriptions and uses a type-enforced
contrastive loss. At inference time, TABi uses
nearest neighbor search to retrieve entities.

Input The query q is represented as the Word-
Piece (Wu et al., 2016) tokens in the query, with
special tokens [Ms] and [Me] around the mention
if the mention boundaries are known (matching the
input of Wu et al. (2020) with mention boundaries
and Karpukhin et al. (2020) without). The entity de-
scription e is represented as the first 128 WordPiece
tokens of the entity’s title and a description (i.e.,
Wikipedia page), with each component separated
by an [Es] token, following Wu et al. (2020).
We fine-tune the standard BERT-base pretrained
model (Devlin et al., 2019) for both the query and
entity encoders and take the final hidden layer
representation corresponding to the [CLS] token
as the query and entity embeddings. Similar to
work in contrastive learning (Chen et al., 2020b),
we then apply L2 normalization to the embeddings.

Type-Enforced Contrastive Loss We propose a
contrastive loss that incorporates knowledge graph
types and builds on the supervised contrastive
loss from Khosla et al. (2020). Our goal is to
encode types in the embedding space, such that
the embeddings of queries and entities of the same
type are closer together than those of different
types. Types are often not sufficient to distinguish
an entity, so we also want to embed queries and
entities with similar names close together.

To achieve these two goals, our loss is a weighted
sum of two supervised contrastive loss terms,Ltype

and Lent. For a randomly-sampled batch from
dataset D with queries Q and entity descriptions
E, TABi’s lossLTABi is given by:

LTABi(Q,E)=

αLtype(Q)+(1−α)Lent(Q,E), (1)

where α∈ [0,1] (we use α=0.1 in our experiments).

Ltype(Q) uses type labels to form positive and
negative pairs over queries.5 Let Ptype(q) be the set
of all queries in a batch that share the same type t
as a query q andNtype(q) be the other queries in the

5We contrast queries in Ltype because we find it is more
difficult to learn the query type than the entity type.
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Figure 2: t-SNE visualizations of entity embeddings. (a) BLINK trained withLNCE without types. (b) TABi trained
withLent with types only as text in the input. (c) TABi trained with the type-enforced lossLTABi.

batch. ThenLtype(Q) is:

Ltype(Q)=
−1

|Q|
∑
q∈Q

1

|Ptype(q)|∑
q+∈Ptype(q)

log
ψ(q,q+)

ψ(q,q+)+
∑

q−∈Ntype(q)

ψ(q,q−)
. (2)

Lent(Q,E) uses entity labels to form positive and
negative pairs over queries and entity descriptions.6

Let x be a query or entity description, and Pent(x)
be the set of all queries and entity descriptions in
a batch that share the same gold entity y as x. Let
Nent(x) be the set of all other queries and entity
descriptions in the batch. ThenLent(Q,E) is:

Lent(Q,E)=
−1

|Q∪E|
∑

x∈Q∪E

1

|Pent(x)|∑
x+∈Pent(x)

log
ψ(x,x+)

ψ(x,x+)+
∑

x−∈Nent(x)

ψ(x,x−)
. (3)

We tie the weights of the query and entity
encoders such that f(·) ≡ g(·) so that ψ is well-
defined for all pairs of queries and entities.7 We
also normalize embeddings before computing
ψ. Following recent work (Gillick et al., 2019;
Karpukhin et al., 2020), we use hard negative
sampling to add the top nearest incorrect entities
for each query to the batch.8 We follow Botha
et al. (2020) to balance the hard negatives by fixing
the ratio of positive to negative examples allowed
for each entity, reducing the proportion of hard
negatives that are rare entities (see Appendix A.4).

6In contrast, LNCE only compares query-entity pairs. We
find that additionally comparing query-query and entity-entity
pairs for Lent helps in §4.2.

7Both encoders take a list of tokens as input.
8We train with three hard negatives for each query.

The key difference between Ltype and Lent is
the set of positive and negative pairs. Ltype forms
pairs by type, which clusters queries of the same
type in the embedding space. Lent forms pairs by
gold entity, which clusters queries and entities with
similar names in the embedding space. Figure 2
shows thatLTABi produces embeddings that cluster
better by types than those produced by LNCE

(BLINK (Wu et al., 2020)) or Lent with types
simply added as text to the entity encoder input.

Inference We precompute entity embeddings and
use nearest neighbor search to retrieve the top-K
most similar entity embeddings to a query embed-
ding. While our standard configuration does not use
a re-ranker, in Section 4.2 we also study the impact
of adding an inexpensive re-ranker which linearly
combines TABi’s scores with sparse retriever scores
and popularity statistics (see Appendix A.5). Prior
work has shown that a hybrid model that combines
sparse retrievers (e.g. TF-IDF) and dense retrievers
can improve performance (Karpukhin et al., 2020;
Luan et al., 2021) and that entity popularity can
help disambiguation (Ganea and Hofmann, 2017).

4 Retrieval Experiments

Our experiments find that TABi can improve rare
entity retrieval for open-domain NLP tasks while
maintaining strong overall retrieval performance.

4.1 Experimental setup

We describe the baselines, evaluation datasets,
knowledge base, and training data. We include
additional setup details in Appendix A.

Baselines We compare against text-only base-
lines, which do not use types, to evaluate to what
extent using types can improve performance over
existing methods. We also compare against type-
aware baselines, which use types and text, to better
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understand the challenges with incorporating types.

• Text-only baselines: Alias Table sorts candidates
by their prior probabilities with the mention in
the BLINK training dataset. TF-IDF uses sparse
embeddings of normalized word frequencies.
DPR (Karpukhin et al., 2020) is a dense passage
retriever that does not use mention boundaries.
BLINK (Bi-encoder) (Wu et al., 2020) is a
state-of-the-art dense entity retriever which uses
mention boundaries; we also compare against
BLINK with a cross-encoder to re-rank the top
10 candidates from the bi-encoder. ELQ (Li et al.,
2020) finetunes the BLINK bi-encoder jointly
with mention detection and entity disambiguation
tasks. GENRE (Cao et al., 2021) is an autoregres-
sive retriever that generates the full entity name
from the mention. We use pretrained models
for all text-only baselines, with the exception of
Alias Table and TF-IDF, which are non-learned.

• Type-aware baselines: Bootleg (Orr et al., 2021)
is a Transformer-based model that re-ranks
candidates from an alias table using types and
knowledge graph relations. We also introduce
two baselines for encoding types in open-domain
retrievers: GENRE-type and TABi-type-text.
GENRE-type includes the types as part of the en-
tity name, and thus must generate the entity name
along with its types. TABi-type-text adds the
types as textual input to the entity encoder instead
of the loss function and usesLent for training. We
use a pretrained model for Bootleg, fine-tune a pre-
trained model of GENRE to create GENRE-type,
and fine-tune TABi-type-text from a BERT-base
pretrained model (Devlin et al., 2019).

Evaluation datasets We use 14 datasets from
two benchmarks: Ambiguous Entity Retrieval (Am-
bER) (Chen et al., 2021) and Knowledge Intensive
Language Tasks (KILT) (Petroni et al., 2021). Am-
bER evaluates retrieval of ambiguous rare entities,
and KILT evaluates overall retrieval performance.

AmbER. AmbER (Chen et al., 2021) spans three
tasks in open-domain NLP—fact checking, slot
filling, and question answering—and is divided
into human and non-human subsets, for a total of
6 datasets. AmbER tests the ability to retrieve the
correct entity when at least two entities share a name
(i.e. are ambiguous). The queries are designed to
be resolvable, such that each query should contain
enough information to retrieve the correct entity.
AmbER also comes with "head" (i.e. popular) and

"tail" (i.e. rare) labels, using Wikipedia page views
for popularity. We split AmbER into dev and test
(5/95 split) and report on the test set.9

We create a variant of this dataset–AmbER
(GOLD)–with gold mention boundaries. While
we focus on open-domain tasks, where mention
boundaries are often unknown, AmbER (GOLD)
enables us to evaluate disambiguation in isolation.

Following Chen et al. (2021), we report accu-
racy@1 (i.e. top-1 retrieval accuracy), which is the
percentage of queries where the top-ranked entity
is the gold entity. As multiple entities share a name
with the query mention (by the dataset definition),
this metric captures how well a model can use
context to disambiguate.

KILT. We consider 8 evaluation datasets across
the four open-domain tasks in the KILT (Petroni
et al., 2021) benchmark (fact checking (FC),
question answering (QA), slot filling (SF), and
dialogue). All examples have been annotated with
the Wikipedia page(s) that help complete the task.

Following Petroni et al. (2021), we report
R-precision (Beitzel et al., 2009). Given R gold
entities, R-precision is equivalent to the proportion
of relevant entities in the top-R ranked entities. With
the exception of FEVER and HotPotQA, which may
require multiple entities, R-precision is equivalent
to accuracy@1. We compare against published and
leaderboard numbers for KILT and refer the reader
to Petroni et al. (2021) for baseline details.

Knowledge base We create a filtered version
of the KILT knowledge base (Petroni et al., 2021)
with 5.45M entities that correspond to English
Wikipedia pages. We remove Wikimedia internal
items (e.g., disambiguation pages, list articles) from
the KILT knowledge base, since they do not refer to
real-world entities. We refer to our knowledge base
as KILT-E (KILT-Entity) and use it for all models
at inference time for fair comparison.10

Training data We train two versions of TABi
to understand the performance with and without
mention boundaries in the input. For retrieval ex-
periments with mention boundaries and embedding
quality experiments, we train on the BLINK (Wu
et al., 2020) training data, which consists of 8.9M

9We use AmbER dev to select re-ranker hyperparameters
in Section 4.2.

10As an exception, we report existing numbers for baselines
with the full KILT knowledge base (5.9M entities) on the KILT
benchmark test sets due to a benchmark submission limit. See
Appendix B.2 for dev results with KILT-E knowledge base.
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Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TF-IDF 27.8 29.3 23.0 21.8 26.7 23.5 17.3 13.7 24.2 22.6 18.2 13.9 22.9 20.8
DPR 25.3 14.3 47.7 23.7 13.9 5.1 48.6 22.2 21.0 8.8 52.1 23.4 34.8 16.3
BLINK (Bi-encoder) 56.4 52.0 24.8 10.5 76.8 55.7 30.7 13.5 78.3 55.7 67.3 33.8 55.7 36.9
BLINK 55.8 45.8 7.4 3.9 74.7 30.3 32.1 16.1 83.8 43.8 71.3 44.5 54.2 30.7
ELQ 43.5 37.4 5.3 2.2 74.4 44.1 59.5 27.1 77.5 47.2 62.0 30.7 53.7 31.4
GENRE 59.9 30.7 32.6 19.9 67.1 52.6 72.9 59.5 62.9 28.4 61.1 32.4 59.4 37.2

Bootleg† 48.7 37.0 3.7 2.5 65.1 48.0 47.5 26.7 74.8 48.0 60.5 44.2 50.0 34.4
GENRE-type 32.2 50.6 55.7 34.9 34.9 68.0 75.4 69.6 41.6 55.8 72.1 47.6 52.0 54.4
TABi-type-text 76.7 60.4 39.0 36.8 71.6 86.3 82.5 85.2 69.6 66.1 82.3 57.0 70.3 65.3
TABi 83.5 73.3 40.7 41.7 75.1 89.4 85.6 88.0 78.0 74.3 83.0 66.1 74.3 72.1

TABi (α=0) 77.6 61.9 41.4 39.1 70.9 87.1 83.2 85.9 72.5 66.3 82.2 57.7 71.3 66.3
TABi (Ltype+LNCE) 80.5 64.7 42.0 42.2 69.1 87.7 83.9 87.3 72.2 67.7 81.3 61.8 71.5 68.6

Table 1: Retrieval accuracy@1 on AmbER (H for human, N for non-human subsets). (Top) text-only methods,
(middle) type-aware methods, and (bottom) ablations. †Models with an alias table. See Section 4.2 for training data
details. Best score bolded, second best underlined (excluding ablations).

Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

Alias Table† 45.9 6.6 45.8 7.9 45.9 6.5 45.7 7.8 45.7 6.5 45.3 7.9 45.7 7.2
TF-IDF 27.8 29.3 23.0 21.8 26.7 23.5 17.3 13.7 24.2 22.6 18.2 13.9 22.9 20.8
BLINK (Bi-encoder) 77.5 66.5 77.0 46.0 76.9 55.9 63.8 29.9 78.4 55.8 71.0 34.8 74.1 48.2
BLINK 81.8 61.0 81.6 58.5 75.4 30.5 64.8 35.7 83.8 43.9 74.9 45.7 77.1 45.9
GENRE 70.9 44.5 72.9 40.6 70.6 39.0 64.8 33.1 71.1 40.6 70.3 40.0 70.1 39.6

Bootleg† 83.0 70.7 82.1 56.6 84.9 58.8 76.1 54.7 86.3 51.2 79.2 56.5 82.0 58.1
GENRE-type 69.7 60.8 75.9 48.5 70.9 54.3 66.7 37.2 70.7 54.6 72.5 46.7 71.1 50.3
TABi-type-text 81.5 75.0 78.9 58.1 78.5 62.1 63.1 38.6 80.0 61.5 68.2 42.0 75.0 56.2
TABi 84.4 82.3 80.4 63.5 78.5 68.6 64.5 39.1 81.5 69.8 71.8 51.6 76.9 62.5

Table 2: Retrieval accuracy@1 on AmbER (GOLD) (with mention boundaries). (Top) text-only, (bottom) type-aware
methods. All models are trained on Wikipedia. †Models with an alias table. Best score bolded, second best underlined.

Wikipedia sentences.11 For retrieval experiments
without mention boundaries, we follow Cao et al.
(2021) and train on all KILT training data (which
includes open-domain tasks) and contains 11.7M
sentences (Petroni et al., 2021). For type labels,
we use the 113 types from the FIGER (Ling and
Weld, 2012) type set. To assign entity types, we use
a direct mapping of Wikidata entities to Freebase
entities to find the FIGER types associated with
each entity in Freebase. To assign query types, we
follow Ling and Weld (2012) and add the types
of the gold entity for each query as the query type
labels. While types can be incomplete and not
present in the query, we find that the type labels are
sufficient for improving the embedding quality (§5).

4.2 Results

Rare entities TABi improves retrieval of rare
entities for ambiguous mentions. On AmbER,

11We remove examples with gold entities not in KILT-E.

TABi improves average tail accuracy@1 by 34.9
points compared to existing text-only baselines
and 6.8 points compared to type-aware baselines
(Table 1). Note that GENRE, GENRE-type,
TABi-type-text, and TABi are trained on KILT
data (which includes open-domain tasks), while
BLINK, ELQ, and Bootleg are trained on Wikipedia
entity disambiguation data, and DPR is trained on
question answering data. See the ablations for a
discussion of the training data impact. On AmbER
(GOLD) where all models are trained on Wikipedia
entity disambiguation data and mention boundaries
are available (Table 2), TABi outperforms baselines
on average tail accuracy@1 by 4.4 points. BLINK
and Bootleg perform much better on AmbER
(GOLD) than on AmbER, suggesting that mention
detection introduces significant error.

Overall performance TABi maintains strong per-
formance overall. On AmbER, TABi outperforms
all retrievers for average accuracy@1 over the head
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Fact Check. Slot Filling Question Answering Dial.

FEV T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

TF-IDF* 50.9 44.7 60.8 28.1 34.1 46.4 13.7 49.0 41.0
DPR* 55.3 13.3 28.9 54.3 25.0 44.5 10.7 25.5 32.2
Multi-task DPR* 74.5 69.5 80.9 59.4 42.9 61.5 15.5 41.1 55.7
BLINK* 63.7 59.6 78.8 24.5 46.1 65.6 9.3 38.2 48.2
GENRE† 83.6 79.4 95.8 60.3 51.3 69.2 15.8 62.9 64.8
KGI** 75.6 74.4 98.5 63.7 - 60.5 - 55.4 -
Re2G** 88.9 80.7 - 70.8 - 72.7 - 60.1 -
TABi 84.4 81.9 96.2 62.6 53.1 70.4 18.3 59.1 65.8

Table 3: R-precision on KILT open-domain tasks (test data). *Numbers from Petroni et al. (2021). †Numbers from
Cao et al. (2021). **Numbers from KILT leaderboard. Best score bolded and second best underlined.
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Figure 3: Robustness of TABi to missing types (left) and incorrect types (middle) in the training dataset. Sensitivity
of TABi to the type weight α (right).

(Table 1). On AmbER (GOLD), TABi follows Boot-
leg, which leverages an alias table limiting the num-
ber of candidates, and BLINK, which uses an expen-
sive cross-encoder for re-ranking. On KILT, we find
that TABi outperforms GENRE, the best perform-
ing multi-task retriever12 overall by 1 point and sets
the state-of-the-art on three KILT tasks (Table 3).

Ablations Table 1 reports ablations. First, to
measure the impact of types, we remove the
type-enforced loss (Ltype) by setting α= 0. This
is equivalent to training TABi with justLent. Com-
pared to full TABi, the average accuracy@1 drops
by 5.8 and 3.0 points on the tail and head, demon-
strating the importance of the type-enforced loss,
particularly over the tail. Moreover, we observe
that TABi (α=0) still outperforms the BLINK bi-
encoder by 29.4 points over the tail. As the BLINK
bi-encoder is trained only on entity disambiguation,
this suggests that additionally training over open-
domain tasks leads to substantial improvements (see
Appendix B.1). Second, we evaluate the impact of
usingLent instead of the standardLNCE to compare
pairs of queries and entity descriptions based on
their gold entity (Section 3). Compared to full TABi
(which uses Ltype+Lent), TABi (Ltype+LNCE)
incurs an average accuracy@1 drop of 3.5 and 2.8
points over the tail and head, respectively.

12TABi and GENRE use a single model across all tasks,
whereas KGI (Glass et al., 2021) and Re2G (anonymous), train
a separate model for each task.

Robustness to noise We run two experiments
to simulate incomplete and noisy type annotations.
First, we randomly remove types from a proportion
of the training set. Figure 3 (left) shows TABi
achieves 79% of the lift on AmbER tail with just
5% type coverage. Second, we randomly flip the
types of a proportion of the training set to a type
that has no type overlap with the gold type. Figure 3
(middle) shows TABi can still achieve >2 points of
lift over no types even when 50% of the types are
incorrect. Surprisingly, even 100% incorrect types
does not hurt performance over using no types.

Type weight sensitivity Figure 3 (right) shows
TABi’s sensitivity to the type weight α on the Am-
bER tail and Natural Questions (NQ) (Kwiatkowski
et al., 2019), a task in KILT. We find there can be
a tradeoff on some datasets: too small of an α is not
sufficient to learn the type from the query context,
whereas too large of an α can start to reduce overall
performance. To balance this tradeoff, we set
α=0.1 in all experiments.

Re-ranking We evaluate (1) whether an inexpen-
sive re-ranker that combines TABi with sparse re-
trieval and popularity scores can further improve per-
formance, and (2) whether hard negative sampling
is necessary when we use a re-ranker. Table 4 shows
that re-ranking can improve accuracy@1 over by
1.5 and 0.6 points over the head and tail in AmbER,
respectively. Without hard negative sampling, the
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Model Avg. Head Avg. Tail

TABi 74.3 72.1
TABi (α=0) 71.3 66.3

TABi + RR 75.8 72.7
TABi + RR (no hard negatives) 70.4 70.7

Table 4: Average head/tail accuracy@1 on AmbER when
TABi is combined with an inexpensive re-ranker (RR).

Dataset Model Acc. Micro F1 Macro F1

FIGER BLINK 15.8 40.5 25.1
TABi 49.0 72.8 76.6

OntoNotes BLINK 21.5 34.2 42.3
TABi 38.6 57.3 63.3

Table 5: Mention type classification using a nearest
neighbor classifier over query embeddings.

performance of TABi decreases, especially over the
head. However, TABi with the re-ranker and no hard
negative sampling can still nearly match TABi (α=
0)—the strong bi-encoder baseline without types—
over the head and outperforms it over the tail, despite
TABi (α=0) using hard negative sampling. This
suggests that there may be alternatives to hard nega-
tive sampling, such as incorporating structured data,
for achieving strong performance on some tasks.

5 Embedding Quality Analysis

We evaluate how well TABi captures types through
embedding visualization, nearest neighbor type
classification, and an entity similarity task.

Embedding visualization We use t-SNE to
qualitatively evaluate how well bi-encoders cluster
entity embeddings by type. Figure 2 shows that
TABi forms tighter type clusters than BLINK for
five FIGER types.13 Types are not captured as well
when the type is only present in the input and not
the loss. This suggests that our type-based loss term
helps encode types in the embedding space.

Type classification To better understand how
well embeddings are clustered by type, we evaluate
query and entity embeddings using KNN classifi-
cation withK=10.14 We use strict accuracy, loose
micro F1, and loose macro F1 metrics for evalua-
tion (Zhang et al., 2019). TABi outperforms BLINK
on KNN classification over query embeddings on
FIGER and OntoNotes, confirming that our loss
encourages nearby query embeddings to share the

13We choose popular types with low overlap in entities.
14As a query or entity can have multiple types, we cast type

classification as a multi-label classification problem.

TransE ComplEx BLINK TABi

Spearman ρ 62.4 63.4 59.4 68.6

Table 6: Spearman rank correlation on our proposed
entity similarity task over pairs of Wikidata entities.

same type (Table 5). Appendix C.2 reports KNN
experiments on entity embeddings, where we find
TABi outperforms BLINK on KNN classification
of both coarse and fine types, confirming our loss
also helps the entity embeddings encode types.

Entity similarity ranking To understand
how well our method learns finer-grained type
hierarchies, we create a novel entity similarity task
inspired by word similarity tasks (Schnabel et al.,
2015). The goal is to rate the similarity of entity
pairs, where the pair has a high score if the two
entities share a fine type and a lower score otherwise.
We assign ground truth similarity scores to 500
entity pairs that share Wikidata types15 of varying
coarseness using a weighted Jaccard similarity
metric from the KGTK Semantic Similarity
toolkit (Ilievski et al., 2021)16(see Appendix C.3).

Table 6 compares the Spearman rank correlation
of the inner products of BLINK and TABi entity
embeddings with the ground truth similarity
scores, as well as two popular knowledge graph
embeddings, TransE (Bordes et al., 2013) and
ComplEx (Trouillon et al., 2016) (for which we use
cosine similarities between entity pairs provided by
KGTK). TABi outperforms BLINK and the knowl-
edge graph embeddings. This is surprising, since
the knowledge graph embeddings are trained on
triples which include Wikidata types, whereas TABi
is only trained with coarser-grained FIGER types.

6 Discussion

We discuss limitations of TABi. First, we assume a
relatively coarse type system is available. To pull to-
gether query embeddings of the same type, the type
system needs to be sufficiently coarse-grained and
the batch size large enough such that multiple exam-
ples in a randomly sampled batch have the same type.
Second, our method is designed for open-domain
tasks, which tend to have short queries and strong
type disambiguation signals. However, there are dis-
ambiguation signals that may be present in queries,

15We use the "instance of" (P31), "subclass of" (P279), and
"occupation" (P106) relations to extract types from Wikidata.

16https://github.com/usc-isi-i2/
kgtk-similarity
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such as the existence of a knowledge graph relation
between two entities, that TABi does not optimize
for learning. To address this, we are interested in in-
corporating other forms of structured data, including
different modalities, into our model as future work.

7 Related Work

Entity disambiguation with types Our work is
inspired by prior work that has used types for entity
disambiguation (Ling et al., 2015; Gupta et al.,
2017; Gillick et al., 2019; Onoe and Durrett, 2020;
Chen et al., 2020a; Orr et al., 2021). Most closely re-
lated are Gillick et al. (2019) and Gupta et al. (2017).
Gillick et al. (2019) train dense retrievers with
Wikipedia categories as input, but do not include
types in the loss function. On the other hand, Gupta
et al. (2017) incorporate types through multi-task
learning with type prediction, but rely on alias
tables. Generally, prior works that use types assume
mention boundaries are given as input. Similar to
our work, Gupta et al. (2017), Onoe and Durrett
(2020), and Orr et al. (2021) show that using types
can improve disambiguation of rare entities. Finally,
types have also been shown to improve performance
on coreference resolution (Khosla and Rose, 2020)
and natural language generation (Dong et al., 2021).

Entity typing A task closely related to our work is
entity typing, or predicting the set of types for a men-
tion (e.g., Ling and Weld, 2012; Gillick et al., 2014;
Onoe et al., 2021). A key difference is that entity typ-
ing methods often learn explicit type embeddings
to perform type classification, whereas TABi only
learns query and entity embeddings. Entity typing
methods could be used to add type labels to the
training data as an alternative to TABi’s approach
that uses a direct knowledge graph type mapping.

Retrieval for open-domain NLP There has been
extensive work on dense retrieval for open-domain
NLP tasks (e.g. Lee et al., 2019; Karpukhin et al.,
2020; Oğuz et al., 2020). However, most prior work
has assumed unstructured text as the only input.
As an exception, Oğuz et al. (2020) incorporate
structured data, such as knowledge graph relations
and tables, into dense retrieval by flattening the
structured data into text and adding it to the retrieval
index. This approach is complementary to TABi,
which incorporates the structured data into the loss
to learn better representations of the index.

Alternatives to bi-encoders Several works
have focused on improving the bi-encoder model

by leveraging multiple embeddings for each
query or candidate (Humeau et al., 2020; Khattab
and Zaharia, 2020; Luan et al., 2021). These
approaches are complementary to TABi—which
maintains a single embedding for each query
and candidate—and may lead to further quality
improvements at some computational expense.

8 Conclusion

We introduce a method to train bi-encoders on
unstructured text and knowledge graph types
through a type-enforced contrastive loss. Our loss
can improve retrieval of rare entities for ambiguous
mentions, while maintaining strong overall perfor-
mance on open-domain NLP tasks. We hope our
work inspires future work on integrating structured
data into pretrained models.
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Broader Impact

We believe that our work has the potential to posi-
tively impact underrepresented populations. A key
benefit of our method is improved retrieval of rare
entities, which infrequently or never occur in the
training dataset. Rare entities may not only consist
of individuals from underrepresented populations,
but may also be entities that are of interest to un-
derrepresented populations (e.g., songs, locations).
While we hope our work will have a positive impact,
we also caution that our method is susceptible to bi-
ases present in standard pretrained language models
and large Internet-based training datasets. We fine-
tune our model from a BERT-base pretrained model
using BLINK and KILT training datasets, which
include content from Wikipedia, Reddit, trivia web-
sites, and crowd-sourced questions and dialogue.
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Appendix

A Experimental Setup Details

A.1 Baselines

We use pretrained models for all learned text-only
baselines. For fair comparison, we use the KILT-E
knowledge base at inference time for all models
(see Section 4.1 for details on the knowledge base).
We include model parameter counts in Table 7.
Note that DPR, BLINK (Bi-encoder), BLINK,
ELQ, TABi-type-text, and TABi require an index
of embeddings to be stored in addition to the model
parameters for fast inference.

Model # Parameters

Text-only methods
Alias Table 0
TF-IDF 0
DPR 220M
BLINK (Bi-encoder) 680M
BLINK 1.0B
ELQ 680M
GENRE 406M

Type-aware methods
Bootleg 1.3B
GENRE-type 406M
TABi-type-text 110M
TABi 110M

Table 7: Number of model parameters.

For Alias Table, we compute the prior probability
of a mention-entity pair over the BLINK training
dataset.

For TF-IDF, DPR, and BLINK, we use the code
provided in the KILT repository.17 For the BLINK
cross-encoder, we use k = 10 as the number of
retrieved entities passed to the cross-encoder, fol-
lowing the recommended setting in Wu et al. (2020).
BLINK uses Flair (Akbik et al., 2019) for mention
detection when no mention boundaries are available.

For ELQ, we use the code provided in the
ELQ repository.18 We use the Wikipedia-trained
ELQ model and the recommended settings for
the Wikipedia model provided in the repository
(threshold=-2.9). We find this outperforms the
WebQSP-finetuned ELQ model on average on
AmbER and KILT.

For Bootleg, we use the code provided in the

17https://github.com/facebookresearch/
KILT

18https://github.com/facebookresearch/
BLINK/tree/main/elq

Bootleg repository.19 We use the model version
from July 2021. Bootleg uses a heuristic n-gram
method for mention detection when no mention
boundaries are available.

For GENRE, we use the code provided in the
GENRE repository.20 We use the BLINK-trained
model for experiments on AmbER (GOLD) and the
KILT-trained model for experiments on AmbER
and KILT. We use the default settings (beam
size=10, context length=384 tokens).

For GENRE-type, we modify GENRE so that
instead of just generating the entity name, the model
must generate the entity name and type to predict an
entity (e.g. "United States country"). First, we use
the FIGER types from KILT-E to generate a new
set of type-enhanced titles. We then train models
for both the AmbER and AmbER (GOLD) settings.
For AmbER experiments, we fine-tune from the
GENRE KILT-pretrained model for 4 epochs on the
KILT dataset. We set max tokens to 8,192 and train
on 16 A100s. We sweep the learning rate in {1e-4,
3e-5, 1e-5, 1e-6} and select the best value on the
KILT dev set using the macro-average R-precision
across the eight open-domain tasks (best learning
rate: 1e-6). For AmbER (GOLD) experiments,
we fine-tune from the GENRE BLINK-pretrained
model for 4 epochs on the BLINK dataset using the
same learning rate (1e-6). For both models, we run
inference using a trie created over the type-enhanced
titles and a maximum output length of 20 tokens.

For TABi-type-text, we use the type as textual
input to the entity encoder and no types are used
in the loss function. Specifically, we insert the
types after the entity title and before the description,
separated by a special separator token. We use
Lent for training TABi-type-text and use the same
training procedure as we use for TABi described
in Appendix A.4. We fix the temperature to 0.05
and batch size to 4,096. We sweep the learning
rate in {1e-4, 2e-4, 3e-4} for two epochs on the
KILT training data and select the best value on the
KILT dev set using the macro-average R-precision
across the eight open-domain tasks (best learning
rate: 2e-4). We use the same learning rate to train
a model on the BLINK training data.

For all models, we report a single run.

19https://github.com/HazyResearch/
bootleg

20https://github.com/facebookresearch/
GENRE
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A.2 Evaluation datasets

We include statistics on the evaluation datasets
described in Section 4.1 in Table 8. We report the
head/tail subsets for AmbER as defined in Chen
et al. (2021). Note we split AmbER randomly into
dev (5%) and test (95%) splits and report results on
test. We consider the open-domain tasks in KILT
(fact checking, question answering, slot filling, and
dialogue) and define the "head" as having a gold
entity that is in the top 1% most popular entities
by Wikipedia page views and the "tail" as being
in the bottom 90% of entities by Wikipedia page
views. We evaluate retrieval on eight datasets:
FEVER (Thorne et al., 2018), T-REx (Elsahar
et al., 2018), Zero Shot RE (Levy et al., 2017),
Natural Questions (Kwiatkowski et al., 2019),
HotPotQA (Yang et al., 2018), TriviaQA (Joshi
et al., 2017), ELI5 (Fan et al., 2019), and Wizard
of Wikipedia (Dinan et al., 2019).

A.3 Training data

We include additional details about the training data
described in Section 4.1.

Unstructured text In the BLINK training data,
each sentence has a single mention labeled with men-
tion boundaries and a gold entity from a Wikipedia
anchor link. The KILT training data is a superset of
the BLINK training data, that additionally contains
sentences from standard fact checking, slot filling,
open domain QA, dialogue, and entity disambigua-
tion datasets. With the exception of the entity disam-
biguation examples, the additional examples have
a gold entity label, but no gold mention boundaries.

Knowledge graph types We describe (1) how
we assign types to entities, and (2) how we assign
types to queries. For both entities and queries, we
use the FIGER type set Ling and Weld (2012) for
types (i.e., each type label must be one of 113 types
in the type set); however, our method is not specific
to the FIGER type set and any type set with coarse
types may lead to improvements.

Entity type assignments We assign types to en-
tities via a direct mapping of entities to knowledge
graph types. First, the majority of the entities
in KILT-E have a unique QID in Wikidata. For
these entities, we use a mapping from Wikidata to
Freebase using the "P646" property in Wikidata.
After finding the corresponding Freebase entity,
we derive the FIGER types from its Freebase types,
using the map from Ling and Weld (2012).

Query type assignments We follow Ling and
Weld (2012) to assign types to queries through
distant supervision. Specifically, we assign the
types of the gold entity for the query as the types
of the query. Thus we use a direct mapping of entity
types from a knowledge graph, rather than use a
probabilistic type classifier. Note that assigning
query types through distant supervision (with the
gold entity types) can be a noisy assumption. For
instance, consider the query “What was the outcome
of the election for Arnold Schwarzenegger?” with
the gold entity Arnold Schwarzenegger. The query
only implies that Schwarzenegger is a politician
with the keyword “election”. However, all types of
the gold entity Arnold Schwarzenegger would be
assigned to the query (e.g. “actor”, “body builder”,
assuming the types were in the type set). As not
all types associated with the gold entity may be
implied by the query, this method can add noise to
the query type labels.

Type statistics We are able to assign types to 73%
of examples in the BLINK training data and 76% of
examples in the KILT training data. In the BLINK
training data, the average example with types has
2.1 types with a max of 9 types. In KILT training
data, the average example with types has 2.0 types
with a max of 9 types.

A.4 Training procedure

We describe the training procedure for TABi.
We tie the query and entity encoders (i.e. use a
single encoder) and initialize from a BERT-base
pretrained model (Devlin et al., 2019). Following
BLINK’s protocol (Wu et al., 2020), we set the
maximum context length to 32 tokens and the
maximum entity description length to 128 tokens.
We set the batch size to 4,096 and use the AdamW
optimizer (Loshchilov and Hutter, 2019) and decay
the learning rate by 50% every epoch.

We use balanced hard negative sampling, follow-
ing Botha et al. (2020). Specifically, we only allow
ten negative examples of an entity for each positive
example in the training dataset. For all models of
TABi, we train the first epoch using local in-batch
negatives, and we mine for hard negatives at the end
of every epoch. Starting at the second epoch, we
train with both in-batch and hard negatives.

From results on preliminary experiments, we fix
the temperature=0.05 and the type weight α=0.1.
We then conduct a grid search for the initial learning
rate by training for two epochs on the KILT training
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Dev Test

Benchmark Dataset Total # Head # Tail Total # Head # Tail Type of Queries

AmbER

Human FC 594 284 310 11,290 5,054 6,236 Templated claims
Non-human FC 1,369 728 641 26,017 13,500 12,517 Templated claims
Human SF 297 138 159 5,645 2,531 3,114 Subject-relation facts
Non-human SF 684 355 329 13,009 6,759 6,250 Subject-relation facts
Human QA 297 123 174 5,645 2,546 3,099 Templated questions
Non-human QA 684 343 341 13,009 6,771 6,238 Templated questions

KILT

FEVER 10,444 6,406 614 10,100 - - Mutated Wikipedia claims
T-REx 5,000 35 4,553 5,000 - - Subject-relation facts
Zero Shot RE 3,724 111 2,974 4,966 - - Subject-relation facts
Natural Questions 2,837 1,444 204 1,444 - - Search engine questions
HotpotQA 5,600 2,115 797 5,569 - - Crowd-sourced questions
TriviaQA 5,359 3,747 223 6,586 - - Trivia questions from trivia sites
ELI5 1,507 644 168 600 - - Reddit questions
Wizard of Wikipedia 3,054 1,963 142 2,944 - - Crowd-sourced dialogue

Table 8: Evaluation dataset statistics.

data and selecting the best value on the KILT dev
set using the macro-average R-precision across
the eight open-domain tasks. We sweep the initial
learning rate in {1e-4, 2e-4, 3e-4} (best learning
rate=3e-4).

We use the same hyperparameter configuration
for training on both the BLINK training data and the
KILT training data. For models trained on BLINK
data and KILT data, we train for 4 epochs using
16 A100 GPUs (approximately 2.2 hours/epoch
for BLINK training data, 2.6 hours/epoch for
KILT training data, including sampling for hard
negatives).

A.5 Re-ranking details

While our standard configuration of TABi does not
use a re-ranker, we explore using an inexpensive
re-ranker on top of TABi. The re-ranker consists
of two steps: first, it linearly combines the top-K
entity scores from the bi-encoder with the top-K
entity scores of a sparse retriever using a tunable
weight λ. Second, it linearly combines these scores
with their corresponding global entity popularity
(e.g. Wikipedia page views) using a tunable weight
κ. We normalize scores before linearly combining
at each step.

More formally, let E be union of the set of
retrieved entities from the bi-encoder and the
sparse retriever. Then for an entity e ∈ E, where
se indicates the score from the sparse retriever, de
indicates the score from the dense retriever, and
pe indicates the popularity score, we compute the

re-ranked score fe as follows:

he=λse+de

fe=κpe+he

We use the baseline TF-IDF retriever for the
sparse retriever (see Appendix A.1 for details). Like
Chen et al. (2021), we use the monthly Wikipedia
page views (from October 2019) as the measure
of global entity popularity. Note that tuning these
weights does not require re-training or re-running
the bi-encoder evaluation.

For the experiments with the re-ranker, we
tune λ and κ on each of the 6 dev sets for
AmbER by first selecting λ that performs best
on the linear combination of the bi-encoder
and sparse retriever scores, and then fixing λ
and tuning κ. For both λ and κ, we sweep in
{0.0,0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0}.

B Extended Retrieval Results

B.1 AmbER results
We extend the results on AmbER included in
Section 4. First, we perform experiments to better
understand the strong performance of the baseline
TABi (α=0), which removes the type-based loss
term. We primarily attribute the strong performance
of TABi (α=0) relative to the BLINK (Bi-encoder)
to the training data and perform baseline ablations
in Table 9. We see that BLINK (Bi-encoder)
and TABi (α = 0) perform similarly when both
are trained on BLINK data, which consists of
Wikipedia entity disambiguation data. Training
on the KILT data, which additionally includes
multiple open-domain tasks, leads to significant
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Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

BLINK (Bi-encoder) + Flair 56.4 52.0 24.8 10.5 76.8 55.7 30.7 13.5 78.3 55.7 67.3 33.8 55.7 36.9
TABi (α=0, BLINK data) + Flair 45.6 49.7 4.6 2.9 77.4 58.1 48.4 30.4 78.0 58.0 63.4 39.9 52.9 39.8
TABi (α=0, KILT data) + Flair 44.7 44.9 7.5 7.4 80.0 84.0 74.5 73.6 83.4 70.2 77.6 56.5 61.3 56.1
TABi (α=0, KILT data) 77.6 61.9 41.4 39.1 70.9 87.1 83.2 85.9 72.5 66.3 82.2 57.7 71.3 66.3

Table 9: Retrieval accuracy@1 on AmbER (H for human, N for non-human subsets). Impact of the training data
on bi-encoder performance.

Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TF-IDF 76.4 76.1 60.9 60.6 80.4 82.9 52.6 50.0 78.1 82.3 58.9 54.2 67.9 67.7
DPR 47.9 27.9 72.6 43.2 34.0 14.0 74.3 43.6 46.0 22.2 77.5 45.4 58.7 32.7
BLINK (Bi-encoder) 89.5 90.1 81.5 71.6 94.5 95.9 48.9 41.2 94.9 95.8 90.9 86.3 83.4 80.1
BLINK 91.1 85.8 83.9 76.3 94.1 95.2 49.3 41.5 94.9 95.8 91.2 86.6 84.1 80.2
ELQ 78.4 61.1 66.8 37.2 74.5 44.1 59.7 27.1 77.5 47.2 62.1 30.7 69.8 41.2
GENRE 78.0 67.9 82.8 77.4 86.9 92.5 90.7 90.8 83.7 83.7 87.4 82.7 84.9 82.5

Bootleg† 98.3 97.6 69.9 65.7 96.5 93.6 66.8 56.2 97.1 96.7 74.8 76.3 83.9 81.0
GENRE-type 71.2 80.0 76.4 77.7 73.6 92.7 91.0 92.2 83.0 90.5 91.3 91.4 81.1 87.4
TABi-type-text 90.9 83.7 84.5 77.9 89.2 95.9 96.2 98.2 86.0 88.2 95.1 92.9 90.3 89.5
TABi 95.0 93.8 79.9 80.3 91.3 96.8 96.4 98.3 91.6 93.8 95.8 95.7 91.7 93.1

Table 10: Retrieval accuracy@10 on AmbER (H for human, N for non-human subsets). †Models with an alias table.

FC SF QA

Model H N H N H N Avg.

TF-IDF 1.0 0.6 2.5 2.5 2.5 2.5 1.9
DPR 0.2 3.8 1.2 10.7 2.3 12.2 5.1
BLINK (Bi-enc) 9.4 0.7 36.1 6.4 35.9 20.5 18.2
BLINK 5.4 0.0 17.6 8.6 27.7 29.7 14.8
ELQ 3.9 0.0 24.7 12.4 29.6 16.2 14.5
GENRE 4.3 1.0 28.3 39.2 10.9 13.9 16.3

Bootleg 3.0 0.0 26.7 15.5 31.6 27.8 17.4
GENRE-type 3.3 7.4 17.2 50.9 15.8 28.6 20.5
TABi-type-text 17.3 2.1 60.0 69.1 40.9 44.8 39.0
TABi 40.0 4.2 65.6 74.3 53.6 52.6 48.4

Table 11: Consistency results on AmbER for top-1. The
consistency is the fraction of mentions where all queries
for a mention are correct.

lift. Removing the mention detector, Flair, leads to
additional lift. Note that TABi (α=0) can retrieve
entities without mention detection since the KILT
training data includes open-domain tasks which do
not have mention boundaries.

Second, we include results for top-10 retrieval
accuracy (accuracy@10) on AmbER to understand
the retrieval performance at largerK (Table 10). We
find that TABi continues to outperform baselines
on average.

Finally, we report results for the consistency

metric introduced in Chen et al. (2021) for top-1
retrieval in Table 11. This metric measures the
proportion of mentions where all queries for the
mention are correct. In particular, Chen et al. (2021)
found that retrievers have a tendency to "collapse"
all predictions for a mention to the most popular
entity for the mention, which would result in a low
consistency value. We find that TABi outperforms
all models on this metric.

B.2 KILT results

We include R-precision results on the KILT dev
sets for the tasks and baselines in the main paper
in Table 12. As with the AmbER experiments, we
use the KILT-E knowledge base for inference for
all models. We see that GENRE, TABi-type-text,
and TABi outperform the other baselines across
the tasks, and perform comparably overall to
each other. Recall that GENRE, GENRE-type,
TABi-type-text, and TABi were trained on KILT
training data. BLINK, ELQ, and Bootleg were
trained on Wikipedia training data and DPR was
trained on question answering data. GENRE-type
performs substantially worse than GENRE overall,
suggesting that incorporating types in the entity
name degrades overall retrieval performance.

We also report results on the KILT test and
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Fact Check. Slot Filling Question Answering Dial.

FEV T-REx zsRE NQ HoPo TQA ELI5 WoW Avg

TF-IDF 48.4 57.4 72.8 20.1 43.4 27.8 4.6 38.8 39.2
DPR 57.0 14.9 44.3 54.5 25.5 46.2 16.1 26.9 35.7
BLINK (Bi-encoder) 64.4 59.4 84.3 35.1 43.1 61.6 11.3 26.0 48.2
BLINK 67.6 61.0 87.4 33.5 47.9 65.9 9.7 26.5 49.9
ELQ 65.1 71.2 95.0 42.4 45.9 67.7 9.2 26.8 52.9
GENRE 85.0 80.5 95.1 61.4 51.9 71.4 13.6 56.5 64.4

Bootleg† 62.3 69.4 81.8 34.5 43.6 53.1 9.7 28.2 47.8
GENRE-type 55.3 71.9 80.6 54.5 37.2 53.6 11.5 44.5 51.1
TABi-type-text 87.3 82.2 95.1 62.5 51.2 70.8 16.9 51.0 64.6
TABi 85.8 82.0 95.2 62.4 52.7 71.5 16.7 51.8 64.8

Table 12: R-precision on KILT open-domain tasks (dev data). (Top) text-only methods and (bottom) type-aware
methods. †Models with an alias table.

Fact Check. Slot Filling Question Answering Dial.

FEV T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

TF-IDF - - - - - - - - -
DPR 74.3 17.0 39.2 65.5 10.4 57.0 26.9 51.2 42.7
Multi-task DPR 87.5 83.9 93.1 68.2 28.4 68.3 27.5 67.1 65.5
BLINK - - - - - - - - -
GENRE 88.2 85.3 97.8 61.4 34.0 75.1 25.5 77.7 68.1
KGI 85.0 83.1 99.2 70.2 - 63.5 - 78.5 -
Re2G 92.5 89.0 - 76.6 - 74.2 - 80.0 -
TABi 88.6 89.4 98.7 64.9 35.5 69.2 28.2 69.1 67.9

Table 13: Recall@5 on KILT open-domain tasks (test data). We report numbers from Petroni et al. (2021) and the
KILT leaderboard where available.

Fact Check. Slot Filling Question Answering Dial.

FEV T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

TF-IDF 71.8 73.0 88.6 32.6 29.2 41.0 9.7 56.5 50.3
DPR 76.0 22.3 59.2 63.9 11.1 57.4 31.0 52.7 46.7
BLINK (Bi-encoder) 80.0 68.1 88.4 40.8 24.3 63.5 19.4 40.9 53.2
BLINK 82.9 69.6 89.6 43.7 27.4 66.9 22.3 44.6 55.9
ELQ 79.5 69.9 95.2 36.1 23.7 62.4 9.5 47.7 53.0
GENRE 89.0 85.3 97.3 58.5 34.7 75.7 20.5 75.0 67.0

Bootleg† 81.0 74.3 85.6 37.2 26.3 69.4 14.0 49.3 54.6
GENRE-type 66.9 80.1 89.7 54.4 23.4 58.4 18.5 62.4 56.7
TABi-type-text 90.6 89.1 98.0 63.4 34.1 71.3 25.9 64.6 67.1
TABi 89.3 88.8 98.3 63.1 34.2 70.0 25.6 64.8 66.8

Table 14: Recall@5 on KILT open-domain tasks (dev data). (Top) text-only methods and (bottom) type-aware
methods. †Models with an alias table.

dev sets for recall@5. In addition to R-precision,
recall@5 is reported on the KILT leaderboard
and measures the proportion of gold entities for a
query21 that occur in the top-5 ranked entities. If
there is a single gold entity, this is equivalent to
accuracy@5. We find similar trends as seen with R-
precision: TABi, TABi-type-text, and GENRE con-
tinue to have strong performance and outperform

21The KILT benchmark supports multiple gold entities for
a query.

other baselines (Table 13 (test) and Table 14 (dev)).

B.3 Impact of batch size

We study the impact of the batch size on TABi by
training on a 1M random sample of KILT training
data for two epochs for batch sizes in {256, 512,
1024, 2048, 4096}. We hold all other hyperparame-
ters constant. As we add n hard negative samples to
the batch in the second epoch, the batch size in terms
of the number of queries is reduced by a factor ofn+
1. Concretely, if the base batch size is 4,096 exam-
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Figure 4: Accuracy@1 on AmbER for varying batch
sizes.

ples and we use three hard negatives per query, each
batch in the first epoch has 4,096 queries, while each
batch in the second epoch has 1,024 queries. We de-
fine the batch size in terms of the number of queries
in the first epoch. In Figure 4, we see that generally
increasing the batch size improves the average accu-
racy@1 on AmbER (averaged over head and tail ex-
amples). However, we caution that this study is per-
formed with all other hyperparameters held constant
and a more optimal hyperparameter configuration
may exist at different batch sizes. We use a batch
size of 4,096 for all experiments in the main paper.

B.4 Type equivalence

We experiment with three type equivalence mea-
sures: (1) Any-types: two entities have equivalent
types if any types overlap, (2) All-types: two entities
have equivalent types if all types overlap, and (3)
gt50-types: two entities have equivalent types if at
least 50% of the types overlap. If the entities have
an unequal number of types, then we take 50% of
the greater number of types. An example of (3) is
a query A with the types [“musician”, “person”]
would be considered as having equal types to query
B with the types [“musician”, “person”, “author”],
since more than 50% of types of query B overlap
with query A.

Our main experiments currently use approach
(3), which is intuitively a softer equivalence than
(2). However, interestingly we find (2) and (3)
can have very similar performance, and both
greatly outperform (1). We report the average top-1
accuracy results of training the three methods for 2
epochs on a 1M random sample of KILT in Table 15.

C Extended Embedding Quality Analysis

C.1 Nearest
neighbor mention type classification

We include additional details on the datasets used
for mention type classification (experiments in Sec-

Avg. Head Avg. Tail

Any-types 67.9 63.0
All-types 71.0 69.8
gt50-types 71.0 69.0

Table 15: Top-1 accuracy on AmbER for different type
equivalence measures.

tion 5). The FIGER test set has 563 examples and
uses the 113 FIGER type taxonomy (Ling and Weld,
2012). We use the subset of the OntoNotes test set
from Shimaoka et al. (2017) that removes pronomi-
nal mentions. We further remove examples that map
to the "other" type, resulting in a final OntoNotes test
set with 3,066 examples. The classifier uses 50 types
from the OntoNotes type taxonomy (Gillick et al.,
2014) across the sampled training set and the final
test set. While the training sets use distant supervi-
sion to label mentions with types over Wikipedia
and news reports, respectively, both test sets consist
of manually annotated mentions in news reports.

C.2 Nearest neighbor entity type classification
We include the setup and results for the entity
type classification task from Section 5. We create
two datasets for entity type classification using
the KILT-E knowledge base: Coarse-types and
Fine-types. We use the seven coarse types in the
FIGER type system as the coarse types and take
the other types as fine types. We create the Coarse-
types dataset by sampling without replacement
3,000 entities that correspond to the seven coarse
FIGER types: "location", "person", "organization",
"product", "art", "event", and "building". We divide
the sampled entities into training and test sets for a
total of 16,781 training examples and 4,195 test ex-
amples. Similarly, we create the Fine-types dataset
by sampling without replacement 300 entities that
correspond to the FIGER fine types. We discard
fine types that do not have at least 300 entities,
leaving 100 fine types. We then divide the sampled
entities into training and test sets for a total of
23,884 training examples and 5,968 test examples.

Table 16 reports the results for entity type
classification. We find that TABi outperforms
BLINK, suggesting that our loss helps cluster
entities by type in the embedding space.

C.3 Entity similarity task
We describe how we construct the dataset for the
entity similarity task. We first find the closure of
all Wikidata types assigned to each entity in the
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Dataset Model Acc. Micro F1 Macro F1

Coarse-types BLINK 81.1 89.0 84.1
TABi 92.7 95.9 95.9

Fine-types BLINK 71.6 82.0 77.5
TABi 76.6 86.8 84.0

Table 16: Entity type classification using a nearest
neighbor classifier over entity embeddings.

KILT-E knowledge base. We then bucket Wikidata
types by the frequency with which they occur in the
KILT-E knowledge base (using five buckets). To
include types of varying frequencies, we randomly
sample 10 Wikidata types from each bucket (50
types total). Finally, we sample 10 pairs of entities
for each type for a total of 500 entity pairs.

To assign "ground-truth" similarity values to
each entity pair, we submit the entity pairs to the
KGTK Semantic Similarity toolkit web API.22 We
use the Jaccard similarity metric returned by the
toolkit as the ground-truth similarity. This metric
assigns larger values if the types shared by two
entities are more specific (i.e. fine-grained). As
ground truth values are assigned automatically,
there is some noise in the dataset. However, we
observe that the trends on the entity similarity task
generally follow the trends on the other embedding
quality analysis tasks.

22https://github.com/usc-isi-i2/
kgtk-similarity
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