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Abstract
Content is created for a well-defined purpose,
often described by a metric or signal repre-
sented in the form of structured information.
The relationship between the goal (metrics)
of target content and the content itself is non-
trivial. While large-scale language models
show promising text generation capabilities,
guiding the generated text with external met-
rics is challenging. These metrics and con-
tent tend to have inherent relationships and
not all of them may be of consequence. We
introduce CaM-Gen: Causally aware Gener-
ative Networks guided by user-defined target
metrics incorporating the causal relationships
between the metric and content features. We
leverage causal inference techniques to identify
causally significant aspects of a text that lead
to the target metric and then explicitly guide
generative models towards these by a feedback
mechanism. We propose this mechanism for
variational autoencoder and Transformer-based
generative models. The proposed models beat
baselines in terms of the target metric control
while maintaining fluency and language qual-
ity of the generated text. To the best of our
knowledge, this is one of the early attempts
at controlled generation incorporating a metric
guide using causal inference.

1 Introduction

Most content is created for a well-defined goal. For
example, a blog writer often publishes articles to
gain popularity and trigger conversations, and a
columnist may write an opinionated piece to gather
feedback. In marketing applications, these goals
are business objectives that need to be optimized
using the content shared with the customers. The
validation of whether the goal was met or not is
done by tracking metrics that capture the reader
behavior. In social media, metrics include number
of comments, likes, or shares whereas for a pub-
lishing house they are the number of views and
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readers. These engagement metrics (hereafter, met-
rics) are proxy for target goals. Based on historical
content, textual content characteristics that success-
fully achieve the desired metrics can be assessed
(Tan et al., 2019; Verma et al., 2020). Guiding text
generation models by these signals is important for
meeting the required goals.

While recent neural language models have
shown tremendous success towards fluent text gen-
eration (Radford et al., 2018; Devlin et al., 2019),
achieving controlled, goal-specific generation is
challenging. There has been work on text gener-
ation controlling for style, topic, or size (Keskar
et al., 2019). These methods are able to leverage
content characteristics that are common between
the definition of goal (i.e., control) and the text.
However, for metrics that are not explicit in the
text, controlled generation is non-trivial to codify.
The challenge is introduced due to the fact that for
external metrics, there is a need to first identify
the relationship between the content characteristics
and the metric and then to explicitly introduce a
guide/constraint enabling the generator to learn the
desired content properties. Contrary to style, these
choices might be difficult for a layman to manually
identify and input to the generative models.

Textual content is an amalgam of various linguis-
tic features — lexical, pertaining to word choices;
semantics, concerned with the meaning; syntac-
tic, relating to parts of speech tags; and surface-
level features, comprising punctuation, word count,
sentence count, etc. To avoid misinformation (or
clickbait-y) generation, automated tools should be
able to alter the syntactic and surface-level charac-
teristics of text to meet the desired outcome. Ex-
plicitly identifying features of interest that result in
intended outcome can enable finer control. In this
paper, we first discuss method to identify a subset
of these features that have direct and significant im-
pact on the outcome metric, derived from causality
literature (Funk et al., 2011). A causally signifi-
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cant relationship helps encode the ‘if this, then that’
logic; adding such a guide for the generator can
help ensure on-metric generation.

In this paper, we propose causal guidance mecha-
nism for two modeling frameworks that are used for
metric-guided generation — conditional variational
autoencoders (Sohn et al., 2015) and Transformer-
based language models (Vaswani et al., 2017). For
conditional variational autoencoders (CVAE), we
modify the VAE graph to introduce causal guid-
ance. In Transformer-based language models, we
introduce causal guidance by adding causal losses
for explicit feedback on causal features.

Our key contributions are introducing causal
guidance frameworks for metric-guided, controlled
text generation in CVAE and Transformer-based
generative models. We experiment with a new
dataset of news articles related to COVID-19 along
with the NYT-comments dataset,1 showing im-
proved performance against baseline methods. To
the best of our knowledge, this is one of the first
attempts towards controlled generation on engage-
ment metrics and inclusion of causal guidance for
controlled generation in generative models.

2 Related Work

The literature on text generation spans various gen-
erative models, including variational autoencoder
(VAEs), generative adversarial networks (GANs),
and sequential models. VAEs have been used for
unconditional (Bowman et al., 2016), as well as
constrained text generation (Zhang et al., 2016;
Pagnoni et al., 2018). Pagnoni et al. (2018) gener-
ate a sentence sequence y conditioned on the input
sentence for machine translation, thus mimicking
a sequence-to-sequence model. Hu et al. (2017)
control sentiment and tense in text generation us-
ing discriminators with VAEs. Zhao et al. (2017)
introduce an additional reconstruction network in
CVAEs for controlling linguistic features in dia-
log generation. As we show in our experiments,
this does not adapt well to controlled generation
where the relationship with the target goal is not
as explicit in text. We identify these nuanced rela-
tionships between the text and the underlying goal
and enable explicit control over the text features
influencing the target outcome by modifying the
VAE graph.

While VAEs enable controlled generation, they

1https://www.kaggle.com/aashita/
nyt-comments

do not generate fluent language with limited data.
Large Transformer-based language models (Rad-
ford et al., 2018; Devlin et al., 2019) have shown
efficacy in generating fluent language, allowing for
fine-tuning for specific tasks on a smaller dataset
while maintaining good language quality. Keskar
et al. (2019) introduce style control, such as do-
main (books, wikipedia, etc.), by conditioning the
generated distribution on the style token y, i.e.
p(x|y) =

∏n
i=1 p(xi|x<i, y). The language model

learns the conditional probability p(xi|x<i, y) by
training on sequences of raw text prepended with
the style control. This approach provides only weak
control, especially if the variation in textual fea-
tures for the same target metric is large. Zeng et al.
(2020) enable finer control over generation space
by introducing the control y in various internal lay-
ers of the Transformer network. Singh et al. (2020)
control for a combination of lexical styles to re-
produce author’s styles using a RL framework for
Transformer-based language models. While style
is well reflected in the choice of vocabulary and lan-
guage distribution, the difference in the language
distribution is not as apparent for an external metric
as control. We observe that the external metric is
more influenced by various syntactic and surface-
level text features, as opposed to the underlying
vocabulary. We achieve finer control over these by
a causally aware generative language model.

Causal Inference. Causal analysis entails dis-
secting the effects of specific treatment on the out-
come variables, while controlling for other con-
founding factors. These methods are widely used
in fields such as marketing, advertising, healthcare
and more recently textual analysis (Feder et al.,
2021). Causal inference in text has many facets, as
expounded in Feder et al. (2021). In this work, our
focus is understanding the effect of specific charac-
teristics of text on the outcome of interest. Previous
work in this area has studied various text charac-
teristics and outcomes, such as effect of words on
sentiment classification (Paul, 2017), effect of pres-
ence of theorems on the acceptance rate of papers
and the effect of gender on the popularity of social
media posts (Veitch et al., 2020), and the effect
of specific content features on the user response
(Tan et al., 2019; Verma et al., 2020). These work
focus on identifying the effect of textual features
on the outcome. We go one step further and aim at
introducing causal guidance in text generation.
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3 Causal Features Identification

To incorporate finer control over generation of text
to achieve a specific target metric, we first identify
features that contribute to the respective outcome.
Here, the outcome metric is the target value we
wish to control. We consider various syntactic (e.g.
noun/adjective count) and surface-level textual fea-
tures (e.g. word/sentence/paragraph count) and
measure their effect on the metric. Consider two
text choices – S1: “The dog sprinted ahead so fast,
the girl had much hard time keeping up with it.", S2:
“The dog sprinted fast ahead. The girl panted try-
ing to keep up.”; both meaningful and reasonable
generations. Say, textual content with less words
per sentence and more sentences is better liked. In
this case, word count would have negative effect
on outcome metric and sentence count would have
a positive effect. Thus, the model should generate
shorter sentences, resulting in S2. Although this ex-
ample uses semantically equivalent text pieces for
illustration, we do not have such parallel instances
for generation task discussed in the paper. In ab-
sence of parallel data, it is non-trivial to isolate the
effect of a specific text feature on the outcome met-
ric. Thus, we turn to causal estimation methods to
identify this effect without controlled parallel data.

The hypothetical change in an input feature of
text in the observed data is defined as an interven-
tion, and the input feature in question is termed as
the treatment variable (t). For a binary treatment,
the effect of treatment on the outcome (i.e., y) in the
ith text sample is defined as y1(xi)− y0(xi). Here,
y0 represents outcome in absence of treatment and
y1 represents outcome when treatment is applied
and xi are the other covariates (text features). The
average treatment effect (ATE) is the expected ef-
fect of providing the treatment (i.e. including a
specific feature) and is given by E[y1(xi)−y0(xi)].
This can not be directly calculated as we do not
know what the outcome is if a certain part of text
is changed in a certain way, i.e., y0(xi) and y1(xi)
is not known for the same i. Moreover, in observed
data, the treatment assignment is not independent
of baseline covariates. We account for this by em-
ploying a propensity-based scoring, which serves
to balance treatment assignment in treated and un-
treated groups (Austin, 2011).

The propensity score is defined as the probabil-
ity of treatment assignment conditional on baseline
covariates, i.e. π(xi) = p(ti = 1|xi). We em-
ploy multi-layer neural networks to approximate

propensity scores (Tan et al., 2019). The propensity
scoring model is trained using the assigned treat-
ment ti corresponding to the observed covariates
xi with cross entropy loss. The average treatment
effect (ATE) can be estimated by inverse propensity
treatment weighing (IPTW) (Austin, 2011), where
each outcome is weighed by inverse probability of
receiving the corresponding treatment. Thus,

ATE =
1

n

n∑
i=1

[
tiyi
π(xi)

− (1− ti)yi
1− π(xi)

]
(1)

For a doubly robust estimate, we augment IPTW
with potential outcome model (Funk et al., 2011).
The potential outcome models estimate outcomes if
treatment is applied (t = 1) or not applied (t = 0),
given the other covariates. We model potential
outcome using two neural networks (for t = 0, 1),
trained to minimize mean squared error in predicted
and actual outcome in observed articles with t = 1
and t = 0, respectively. The expected outcome
in presence of the treatment feature is then a func-
tion of the observed outcome with treatment for the
treated group and the predicted outcome with treat-
ment for the untreated group, given article features,
weighted by a function of the propensity scores.

y1(xi) =
tiyi
π(xi)

− ti − π(xi)

π(xi)
ŷ1(xi) (2)

Similarly, the overall response in the absence of
treatment is estimated as

y0(xi) =
(1− ti)yi
1− π(xi)

+
ti − π(xi)

1− π(xi)
ŷ0(xi) (3)

The average effect of the treatment feature on the
outcome is estimated as the mean of the difference
of expected outcome with and without treatment.

ATE =
1

n

n∑
i=1

(y1(xi)− y0(xi)) (4)

This provides an estimate of which text features
have the most impact on the outcome (target) met-
ric.2 The ATE of continuous treatment features
can be estimated in a similar fashion, assuming a
normal treatment distribution (Tan et al., 2019).

4 CaM-Gen

We present a causally aware text generation method
in VAE and Transformer-based models. In sec-
tion 4.1, we begin by discussing the metric-guided

2Table 3 lists the features discussed in the paper. Complete
list of features and their ATE is included in Appendix D
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Figure 1: VAE Graph - (a) Conditional generation, (b)
Causal feedback in conditional generation. Black solid
line ( ) and red dashed line ( ) corresponds to the
prior and posterior network connections

generation framework in Variational Autoencoders
(VAE) (Zhang et al., 2016). We then describe our
causal-guidance mechanism which augments this
conditional VAE (CVAE) with a causal graph to in-
corporate causally significant features in generative
process. In Transformer-based text generation (sec-
tion 4.2), we first discuss controlled text generation
by modifying Transformer layers with respect to
the target control (Zeng et al., 2020). We then in-
troduce our proposed causal feedback mechanism
to guide the model towards pre-identified causal
features for controlled generation. We conclude
with section 4.3 comparing and drawing parallels
between the two generative frameworks and their
respective causal mechanisms.

4.1 Conditional Variational Autoencoder

We first adapt the CVAE architecture, inspired by
Zhao et al. (2017). As opposed to generating a
response to previous utterances, we model the con-
ditional generation as a next sentence generation
task – generate the next sentence x, given the pre-
vious context c, and the target metric y.

We consider a latent variable z that captures the
latent distribution over the generation space. We
estimate z using the prior network p(z|c, y), as-
suming a multi-variate Gaussian distribution. The
sentence x is generated by the decoder network
pθ(x|c, z, y). The prior of the outcome metric is ap-
proximated using pθ(y|c). Since the outcome met-
ric depends on both the generated x and the given
context c, we do not assume independence between
the inputs c and y. We consider two recognition
networks qϕ(y|x, c) and qϕ(z|x, c, y) to approxi-
mate the true posteriors pθ(y|x, c) and pθ(z|x, c, y)
(graph as shown in Fig. 1a). The CVAE network

can be trained using the variational lower bound.3

LVnc(θ,ϕ;x, c, y) = Eqϕ(z,y|x,c)[log pθ(x|c, z, y)]
− Eqϕ(y|x,c)KL[qϕ(z|x, c, y)||pθ(z|c, y)]
−KL[qϕ(y|x, c)||pθ(y|c)]

(5)

Intuitively, the first term is the reconstruction loss;
the second term aligns the latent variable z with
respect to the metric y and the generated text x;
and the last term ensures that generation adheres to
the target metric.

Causal-guidance in CVAE. The above condi-
tional generation controls the target metric as a
whole, but does not directly influence specific as-
pects of the text that impact the outcome metric.
Ideally, the latent variable z would implicitly learn
these during training. However, in practice this is
not so, especially in the case of limited data and
multiple confounders. Besides aligning the latent
space z w.r.t. x, we enable explicit causal guidance
by aligning the latent space to the causally signifi-
cant features t (features significantly impacting the
target metric) in the generated text. Causal feature
vector t comprises features with ATE (section 3)
higher than a threshold.4

The posterior distribution of latent variable z is
now estimated as qϕ(z|t, x, c, y). By definition, the
outcome metric distribution will be affected by the
causal features t in the generated x. The posterior
distribution for outcome metric y can hence be ap-
proximated as qϕ(y|t, x, c). The feedback of these
causal effects is propagated through the network by
minimizing the KL divergence between the prior
distribution pθ(y|c) and qϕ(y|t, x, c) (Fig. 1b). The
loss function5 for causal CVAE is

LVc(θ, ϕ; t, x, c, y) =

Eqϕ(z,y|t,x,c)[log pθ(x|c, z, y)]
−Eqϕ(y|t,x,c)KL[qϕ(z|t, x, c, y)||pθ(z|c, y)]
+Eqϕ(z,y|t,x,c)[log pθ(t|x, c, z, y)]
−KL[qϕ(y|t, x, c)||pθ(y|c)]

(6)

3Proof included in Appendix A.1
4Significance threshold are chosen empirically. See Causal

Feature Identification in Section 6 for details
5Proof included in Appendix A.2
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Figure 2: CaM-Gen: Transformer

4.2 Conditional generation in Transformer
The proposed Transformer model is based on the
GPT-2 architecture (Radford et al., 2018), which is
trained on language modeling loss for predicting
the next token given all the previous tokens. The
model is first pre-trained with language modeling
objective on a large corpora to build understand-
ing of language distribution enabling it to generate
coherent text. Although fine-tuning with the same
objective shifts the language distribution of gener-
ated text towards the fine-tuning corpus, explicitly
controlling for a target metric is more nuanced. To
introduce this explicit control, we use the metric
to modify self-attention and normalization layers
in the Transformer blocks (Zeng et al., 2020), as
shown in Fig. 2.6 In the former, attention weights
of Transformer blocks are biased towards the target
by changing the query vector in attention mecha-
nism with the affine transformation of y. In the
latter, the scale and bias parameters of layer nor-
malization are replaced by functions of y. This
ensures that the target information does not wash
away (Park et al., 2019) and is preserved through
the normalization layers. The generative model is
trained with the language modeling loss given by,

LG = Ex,y

[
−

n∑
i=1

logPG(xi|x<i, y)

]
(7)

We introduce a metric loss as feedback for the de-
gree of metric control achieved during generation.

6η, γ, β are the scale/bias parameters in respective layers
(details in Appendix B)

This is defined as the cross-entropy loss between
the input target metric and the projected metric for
the generated text. The latter is calculated using a
fastText (Joulin et al., 2016) classifier trained on
the outcome on the historical text across various
metrics. Such a classifier, which predicts the en-
gagement on held-out test set with high confidence,
serves as an indicator of expected engagement on
generated text. The metric loss is

Lmetric = Ex,y,x̃=G(x,y)

[
− y logPF (y|x̃)

]
(8)

PF (y|x̃) denotes the probability of the outcome of
the generated text x̃ to be the target metric y. We
can not directly use this loss in back-propagation
because of the discrete sampling of x̃ in the gener-
ative model. Thus, we use PF (y|x̃) as reward and
apply REINFORCE algorithm (Sutton et al., 1999)
for policy-gradient based optimization.

Causal-guidance in Generative Model. The
addition of the target metric as control in input
embedding, self-attention mechanism or layer nor-
malization guides the generative model towards
the target metric by shifting the language distribu-
tion of the generative model. However, an explicit
guidance of different aspects of text that influence
the outcome metric is absent. To achieve this, we
add causal guidance in the generation process. We
introduce a causal loss in the above Transformer
model to lead the generated text to adopt causally
significant features (t). The output tokens gener-
ated from the Transformer are fed into an SVM
that extracts these features from the generated text.
The model is then trained with the additional objec-
tive of minimizing the cross-entropy loss between
the target metric and the predicted outcome metric
based on these causal features in output text.

Lcausal = Ex,y,x̃=G(x,y)

[
− y logPF ′(y|t(x̃))

]
(9)

where PF ′ is the expected outcome metric given
the causal features t(x), estimated using a fastText
model trained on causal features extracted from
observed data. The proposed causal loss aims at
ensuring that the causal features in generated text
adheres to target metric by isolating the effect of
causal features in text from its context.

The resultant loss optimized by the proposed
model is a weighted sum of these losses, i.e. L =
λGLG+λmetricLmetric+λcausalLcausal, where λG,
λmetric, λcausal are weights for different losses se-
lected by hyper-parameter tuning on validation set.
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Dataset Metric Low Med. High
Webhose Participation 20482 9181 9529
(Total:39192) Replies 20440 9262 9490
NYT Comment 3160 3075 3168
(Total:9403) Upvote 3122 3126 3155

Table 1: Number of samples in across metrics

4.3 Parallels: Causal CVAE and Transformer

In the VAE-based models, we consider the context
c and discuss the next sentence (x) generation task.
At token-level, c is similar to the context x<i in
the next token (xi) generation objective. Thus, the
decoding term in CVAE loss (first term in Eq. 5) is
equivalent to LG (Eq. 7) in the Transformer model.
Similarly, the KL divergence between metric prior
and posterior distribution in LVnc (last term in Eq.
5) can be equated to the metric loss in Eq. 8. The
corresponding term in LVc (last term in Eq. 6)
serves as the causal loss, similar to Lcausal in Eq.
9. With minor adjustments, this causal guidance
framework can be extended to other generative net-
works in a similar fashion.

5 Experiments

5.1 Datasets

We experiment with 2 text datasets: NYT com-
ments, which comprises articles with comments
and metrics such as upvote and comments count
and the Webhose7 dataset comprising of articles
and comments with metrics such as total participa-
tion on articles, replies count, and various social
media reactions for these articles. These metrics
are used as target goal for article text generation.
We filter and pre-process8 this data resulting in
39k article data which we use for our training with
a train-dev-test split of 80-10-10 (Table 1). We
categorize the target metrics into high, medium,
and low classes, resulting in categorical target goal
(e.g., high/ low replies count).

5.2 Training

For causal model, we use two sequential feed for-
ward neural networks with 5 dense layers of size
128, each followed by an activation layer, for the
treatment and potential outcome network trained
with Adam optimizer (Kingma and Ba, 2015). The
parts of speech (POS) are extracted using the POS

7https://webhose.io/free-datasets/
news-articles-that-mention-corona-virus/

8Preprocessing details in Appendix C

tagging in textblob9 library. Both treatment and
potential outcome networks are trained on 90-10
train-test split over 10 epochs.

For CVAE, we use a bidirectional recurrent neu-
ral network (bi-RNN), which encodes each context
sentence to a fixed 300-sized vector. We pass these
vectors through another GRU network with one
hidden-layer of 600-dimension, resulting in the
context vector c. The decoder network is also a
one-layer GRU with dimensionality 400. The end-
to-end model is trained with an Adam optimizer.

We use a Transformer model with 16 multi-
attention heads with latent dimension of 768 and
a vocabulary size of 50527 with BPE encoding
(Sennrich et al., 2016). We use the GPT-2 (Rad-
ford et al., 2018) model with 117M parameters
pre-trained on the WebText dataset to initialize our
model and then fine-tune it with NYT and Webhose
datasets using our causal metric-guided framework.
For causal variants, the causal vector t is extracted
from the generated text based on a pre-determined
list of causally significant features (identified be-
forehand using ATE analysis in section 3).

5.3 Evaluation metrics

Control: We measure target control accuracy
against predicted outcome metric in the generated
text using fastText classifiers trained on available
data. The classifiers have test accuracy of 79.8%,
81.4%, 80% and 79.9% for participation, replies,
comment, upvotes counts, respectively.
Fluency: We measure the text fluency and the
language model quality using perplexity, ROGUE
(Lin, 2004) and BLEURT (Sellam et al., 2020)
scores. The perplexity is a measure of likelihood
of the generated sentence on a language model.
We use a pre-trained GPT-2 model to evaluate text
perplexity. A lower value is preferred. BLEURT
is a pre-trained evaluation metric based on BERT
(Devlin et al., 2019) that provides a robust measure
for reference-based text generation. We calculate
ROGUE and BLEURT scores against reference
articles in test data with same keywords and target.

6 Results

We compare causal and non-causal variants of the
proposed CVAE and Transformer-based models. In
the Transformer variants, we evaluate the perfor-
mance with metric added as a guide in embedding,
attention, and normalization layers, trained with

9https://textblob.readthedocs.io
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Metric/ Model Variation Control (↑) Perplexity BLEURT ROUGE (↑)
Dataset % accuracy (↓) (↑) 1 2 L

Pa
rt

ic
ip

at
io

n
(W

eb
ho

se
) Transformer

Baseline GPT-2 51.93 16.27 -0.98 0.010 0.0 0.002
LG 59.94 15.14 -0.81 0.110 0.013 0.085

LG + Lmetric 62.78 3.03 -0.83 0.113 0.012 0.074
Causal model (our) 69.86 3.19 -0.79 0.201 0.022 0.130

CVAE
Baseline CVAE 51.37 34.37 -0.80 0.113 0.010 0.063
metric-guided 54.43 28.21 -0.69 0.179 0.017 0.099

Causal model (our) 55.66 30.03 -0.71 0.130 0.012 0.079

R
ep

lie
s

(W
eb

ho
se

)

Transformer
Baseline GPT-2 51.79 17.76 -0.91 0.005 0.0 0.005

LG 59.87 13.94 -0.85 0.051 0.004 0.043
LG + Lmetric 60.17 3.48 -0.79 0.107 0.011 0.070

Causal model (our) 68.27 3.12 -0.81 0.211 0.022 0.133

CVAE
Baseline CVAE 50.58 38.41 -0.89 0.046 0.001 0.035
metric-guided 56.14 20.58 -0.8 0.124 0.002 0.072

Causal model (our) 60.00 30.24 -0.76 0.031 0.001 0.022

C
om

m
en

ts
(N

Y
T

)

Transformer
Baseline GPT-2 37.24 27.45 -0.83 0.140 0.088 0.135

LG 49.85 23.59 -0.87 0.095 0.051 0.088
LG + Lmetric 53.82 14.99 -0.89 0.10 0.011 0.052

Causal model (our) 54.36 13.18 -0.81 0.10 0.01 0.049

CVAE
Baseline CVAE 39.12 58.35 -1.41 0.059 0.002 0.031
metric-guided 44.42 41.64 -1.32 0.069 0.003 0.036

Causal model (our) 54.59 40.02 -1.29 0.064 0.003 0.032

U
pv

ot
es

(N
Y

T
)

Transformer
Baseline GPT-2 39.49 27.44 -0.83 0.132 0.080 0.127

LG 46.02 23.57 -0.88 0.077 0.032 0.070
LG + Lmetric 53.66 14.93 -0.82 0.110 0.011 0.053

Causal model (our) 59.54 13.19 -0.80 0.103 0.010 0.051

CVAE
Baseline CVAE 37.06 72.68 -0.89 0.057 0.002 0.031
metric-guided 43.21 65.94 -0.84 0.064 0.002 0.036

Causal model (our) 53.96 57.70 -0.84 0.056 0.001 0.030

Table 2: Automatic Evaluation for Webhose (Participation, Reply count) and NYT (Comments, Upvotes) Datasets.
The causal Transformer model beats all other methods on metric control while achieving comparable fluency.

LG (Eq. 7). Next, we introduce the metric loss to
add feedback for adherence to target metric, train-
ing the model with LG + Lmetric (Eq. 8). The final
proposed causal model is trained with LG + Lmetric

+ Lcausal (Eq. 9). For CVAE, non-causal and causal
models are trained with LVnc and LVc (Eq. 5, 6)
respectively. We fine-tune a GPT-2 (Radford et al.,
2018) model with metric token added to the prompt
for control, similar to (Keskar et al., 2019), and use
it as a baseline. We also use the method proposed
by (Zhao et al., 2017) as the baseline CVAE model.

As seen in Table 2, adding metric as explicit
guide improves accuracy both in Transformer and
CVAE models, and the causal models outperforms
all other variants in the same architecture. Addition-
ally, our variants are at par in text quality, with the
Transformer models performing notably better on
language fluency than CVAE models. We attribute
this to generative pre-training with large corpus
equipping Transformer-based language model with
fluent language generation. Note that, given the
free-form nature of generative task, the references
considered for ROUGE and BLEURT are a poor fit
as the generation space could be pretty large. This

is reflected in low scores for these metrics across
all models. Hence, low perplexities are a better
indication of generation fluency.

Causal CVAE exhibits better metric control than
the non-causal and baseline CVAE but performs
poorer than the causal Transformer model. This
could also be an artifact of language quality since
the underlying classifiers are trained on fluent lan-
guage. Across Transformer variations, addition of
metric loss and causal guidance improves metric
control, validating our hypothesis. It is interest-
ing to note that the perplexity drops substantially
on adding the metric loss in Transformer-based
model. This could raise the question on how ad-
ditional losses (constraints) could result in more
fluent generation. We emphasize that, in baseline
and all other variants, the constraint is on the tar-
get metric. Thus, both baseline GPT-2 and modi-
fied Transformer (with only LG) attempt to align
their generation space to this target. An inadequate
alignment of generation space to the desired con-
trol is likely to result in noisy generations. In that
sense, metric/causal do not add more constraints,
rather add feedback to meet the specified constraint
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Figure 3: Class-wise performance for Transformer-based model variants.
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(b) Replies Count

Figure 4: Average treatment effect of features like word count, sentence count, POS tag counts across metrics.

Treatment Loss Accuracy
Word Count 0.1791 0.9301
Sent Count 0.2268 0.9266
Noun Count 0.1520 0.9520
Verb Count 0.1437 0.9592
Adjective Count 0.2133 0.9349
Adverb Count 0.1863 0.9431
Pronoun Count 0.1522 0.9377

(a) Propensity scoring model
Outcome metrics MAE Accuracy
Upvotes 0.1357 0.9157
Replies count 0.2359 0.8455
Discussion depth 0.2549 0.8322
Comment count 0.1438 0.9104

(b) Potential outcome model

Table 3: Loss and test accuracy of of causal effect iden-
tification models

(goal), leading to more controlled and less noisy
generations. This would potentially explain higher
perplexities observed in the first two variants.
Class-wise Performance. Table 2 aggregates re-
sults across target classes. To compare the perfor-
mance across high/medium/low class, we record
class-wise metric accuracy. Fig. 3 shows con-
fusion matrices for Transformer-based variants

with high/medium/low participation count as tar-
get. Across methods, we observe that controlling
for medium target metric is harder than either of
the other classes. Compared to the baseline, vari-
ants with causal guidance and metric loss show
improved performance for both high and low target
class. Our proposed causally guided Transformer
model is the best performing model on per class-
level as well, confirming the efficacy of our pro-
posed approach across different target classes.
Causal Feature Identification. Table 3 shows the
accuracy of the propensity scoring and potential
outcome models. Our propensity scoring models
have accuracy > 0.92 for all treatment features
and the potential outcome model performs well for
Upvote and Comment count. We use these as target
metrics in generative models for NYT dataset. Sim-
ilar analysis on Webhose data yields Participation
and Replies count as target metric. Fig. 4 shows
Average Treatment Effect (ATE) of various text
features on these outcome metrics. We empirically
choose significance level of 0.1 and consider fea-
tures with ATE of greater than 0.1 (in magnitude)
as ‘causally significant’ features. We include these
as causal features in the generative models.
Causal Analysis. We note that the fastText classi-
fiers used for metric evaluation have relatively low
accuracy (although much better than a random 33%
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(b) Baseline Model

Figure 5: Comparison of textual features in text generated by causal vs baseline Transformer model

classification). We attribute this to high variability
in the text and unpredictability of resulting engage-
ment. As discussed previously, a causal analysis
of historical text accounts for semantic and topical
variation. Similarly, a causal analysis of generated
data, and subsequent comparison with historical
trends, could compensate for any potential inade-
quacies of classifier-based evaluation. To this end,
we perform a causal analysis of the text generated
by the baseline and our proposed model.

We generate text with high, medium and low
target participation count (pcount) as target and
record average value of various treatment features
(Fig. 5). Here, the word and sentence counts
are normalized and POS features are fraction of
words with certain POS tag over total number of
words in the generated text. We test the adoption of
‘causally significant’ features in the causal model
by analyzing feature distributions of text generated
by causal model and baseline Transformer model
across classes (high/medium/low). For instance,
word count has a negative ATE on pcount (Fig. 4a).
Thus, we would expect a text with higher word
count to have lesser pcount. As seen in Fig. 5a,
our causal model with ‘high’ target pcount gen-
erated articles with lower word count on average
than the causal model with ‘low’ target (red and
blue bars in first group in Fig. 5a respectively).
Similar trends are observed across other ‘causally
significant’ treatment features. In contrast, the text
generated by baseline model (Fig. 5b) either do not
show significant variation in these features across
text generated with high, medium and low target
or the difference is inconsistent, reflecting the lack
of control over aspects of text in baseline models
where generation is only guided by target metric.
As these features, by definition, significantly im-

pact the outcome; this analysis adds further confi-
dence in stronger adherence to the target metric in
our proposed causal approach over the baseline.

7 Conclusion

We present a framework for causally aware metric-
guided generation in VAE and Transformer-based
models. We successfully identify causally signifi-
cant text features using causal analysis and incor-
porate them into the generative model. We show
that integrating causal guidance in guided gener-
ation enables better control over the target met-
ric, while maintaining language quality. Our pro-
posed causally guided Transformer model shows
improved performance across datasets. Moreover,
we show that the generated text adheres to these
causal features, in line with their observed effect
in historic data. This exploration opens up avenues
for leveraging causality for controlled generation.

Ethics Statement. We recognize and acknowl-
edge that our work carries a possibility of misuse
for fake news generation, the same as any text gen-
eration system. We strongly recommend coupling
any such technology with a fake news detection
and review system before deployment. We do not
believe that our method exacerbates fake news gen-
eration as it aims to optimize syntactic and surface-
level features, and not topical or semantic features.
On the contrary, having a causal guidance towards
these specific factors may guide models to focus
on these features and deter them from other non-
desirable optimization of content. The data and
approaches for generating text that optimizes for
clicks exist already. Our proposed approach adds a
nuanced control on the linguistic features to opti-
mize for generating desirable content, rather than
unconstrained optimization for clicks.
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A Conditional Variational Autoencoder

A.1 Non-Causal CVAE
The graph for non-causal conditional generation
using variational autoencoder is shown in Fig. 1
(left). As discussed in section 4.1, we approximate
the intractable posterior distribution pθ(z|x, c, y)
with the recognition network qϕ(z|x, c, y), where

qϕ(z|x, c, y) = qϕ(z, y|x, c)qϕ(y|x, c) (10)

The variational parameters ϕ are chosen such that
the approximate posterior distribution qϕ(z|x, c, y)
is as close to the true posterior distribution
pθ(z|x, c, y) as possible. This is done by mini-
mizing the KL divergence between the two distri-
butions. Thus,

ϕ∗ = argmin
ϕ

KL[qϕ(z, y|x, c)||pθ(z, y|x, c)],

(11)

where the KL divergence is given by,

KL[qϕ(z, y|x, c)||pθ(z, y|x, c)

= Eqϕ(z,y|x,c)

[
log

qϕ(z, y|x, c)
pθ(z, y|x, c)

]
= Eqϕ(z,y|x,c)

[
log qϕ(z, y|x, c)

− log
pθ(x, c, z, y)

pθ(x|c)

]
.

(12)

Rearranging equation 12 gives,

log pθ(x) = KL[qϕ(z, y|x, c)||pθ(z, y|x, c)
+Eqϕ(z,y|x,c)

[
log pθ(x, c, z, y)

− log qϕ(z, y|x, c)
] (13)

We want to minimize the KL divergence term on
R.H.S. of equation 13. Since, the KL divergence
is ≥ 0, the variational lower bound on the log
likelihood log pθ(x) is given by

L(θ, ϕ;x, c, y) = Eqϕ(z,y|x,c)
[
log pθ(x, c, z, y)

− log qϕ(z, y|x, c)
]

= Eqϕ(z,y|x,c)
[
log[pθ(x|c, z, y)p(z, y|c)]

− log qϕ(z, y|x, c)
]

= Eqϕ(z,y|x,c) log pθ(x|c, z, y)
−KL

[
qϕ(z, y|x, c)||pθ(z, y|c)

]
(14)

Using equation 10, we get

KL
[
qϕ(z, y|x, c)||pθ(z, y|c)

]
= Eqϕ(y|x,c)KL

[
qϕ(z|x, c, y)||pθ(z|c, y)

]
+KL

[
qϕ(y|x, c)||pθ(y|c)

] (15)

Replacing in equation 14, we get the variational
lower bound for non-causal CVAE as

L(θ, ϕ;x, c, y) = Eqϕ(z,y|x,c) log pθ(x|c, z, y)
−Eqϕ(y|x,c)KL

[
qϕ(z|x, c, y)||pθ(z|c, y)

]
−KL

[
qϕ(y|x, c)||pθ(y|c)

]
(16)

A.2 Causal CVAE
As discussed in section 4.2, we add causal guid-
ance in CVAE framework by adding the treatment
vector t for aligning the latent space of the Varia-
tional Autoencoder. The posterior distribution for
the causal-CVAE graph in Fig. 1 (right) is approxi-
mated by qϕ(z|x, c, y). Similar to equation 14, we
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get the variational lower bound for causal CVAE
as

L(θ, ϕ; t, x, c, y) = Eqϕ(z,y|t,x,c)
[
log pθ(t, x, c, z, y)

− log qϕ(z, y|t, x, c)
]

= Eqϕ(z,y|t,x,c)
[
log[pθ(t|x, c, z, y)

pθ(x|c, z, y)p(z, y|c)]
− log qϕ(z, y|t, x, c)

]
= Eqϕ(z,y|t,x,c) log pθ(t|x, c, z, y)
+Eqϕ(z,y|t,x,c) log pθ(x|c, z, y)
−KL

[
qϕ(z, y|t, x, c)||pθ(z, y|c)

]
.

(17)

The conditional posterior qϕ(z, y|t, x, c) is given
by

qϕ(z|t, x, c, y) = qϕ(z, y|t, x, c)qϕ(y|t, x, c).
(18)

Thus,

KL
[
qϕ(z, y|t, x, c)||pθ(z, y|c)

]
= Eqϕ(y|t,x,c)KL

[
qϕ(z|t, x, c, y)||pθ(z|c, y)

]
+KL

[
qϕ(y|t, x, c)||pθ(y|c)

]
.

(19)

Using this in equation 17 gives us the variational
lower bound for causal CVAE as

L(θ, ϕ; t, x, c, y) = Eqϕ(z,y|t,x,c) log pθ(t|x, c, z, y)
+Eqϕ(z,y|t,x,c) log pθ(x|c, z, y)
−Eqϕ(y|t,x,c)KL

[
qϕ(z|t, x, c, y)||pθ(z|c, y)

]
−KL

[
qϕ(y|t, x, c)||pθ(y|c)

]
(20)

B Conditional generation in Transformer

As discussed in section 4.3, we modify attention
and normalization layers in a transformer architec-
ture for adding metric as a guide. Inspired by Zeng
et al. (2020), we introduce the metric as follows:
(1) Input embedding: The metric control y is di-
rectly added to the token and position embeddings
of the input to the first transformer layer. This en-
ables control by slanting the input representation
towards the target metric.
(2) Self-attention: In self-attention mechanism of
transformers, each input token is weighted with
respect to other positions in the input. For each
token xt, query qt, key kt and value vt is calcu-
lated using learned weight matrices WQ, WK and

W V respectively. The attention score for token
xt is computed by a compatibility function of the
corresponding query qt with the keys ki of other
tokens and the attention vector is computed as the
weighted average of these attention scores with the
value vector vt. This can be written as

softmax

(
QKT

√
dk

)
V, (21)

where dk is the dimension of the key vector kt. We
modify this attention calculation to introduce the
control y by changing the query vector in the above
equation to qt = ηt(y), where ηt denoted an affine
transformation. Modifying the query vector accord-
ing to the specific target metric allows for biasing
attention weights towards the target and capturing
target control in the context representation, which
aids in targeted decoding and generation.
(3) Layer Normalization: Classically, the layer
normalization in transformers is calculated as

LayerNorm(ν) = γ
ν − µ

σ
+ β, (22)

where µ and σ are the mean and standard deviation
of the elements in ν and γ and β are the scale and
bias parameters. The metric control, y, is used to
modulate hidden representations of the generative
model via normalization layers. The scale and bias
parameters in the layer normalization are replaced
as functions of y, namely γ(y) and β(y) in the
above equation. As discussed in Park et al. (2019),
normalization layer applied on input with same
target control would wash away the target informa-
tion captured in the input to normalization layer.
Adding target control in the scale and bias parame-
ter ensures that the control is preserved through the
normalization layers of transformer.
Training details. For fine-tuning, we prepend
the input sentence with metric identifiers, to keep
the input layer unchanged. We, then, extract the
prepended metric token and use it to modify atten-
tion and normalization layers as described earlier.
The output of final transformer layer is fed into a
pre-trained fastText model to estimate the fitment
of generated text to the target metric class in the
form of metric loss.10 During inference, the genera-
tion is conditioned on the prompt, which is a combi-
nation of the topic and keywords. During training,
the keywords and topic for the article is prepended

10The computing infrastructure and hyper-parameter details
are included in Appendix E
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Feature ↓ Average Treatment Effect
Dataset → Webhose NYT
Metric → Participation Replies Comment Upvote
Word count −0.3816 −0.1034 −0.1034 −0.0171
Paragraph count 0.0079 0.0038 0.0025 0.0078
Sentence count 1.2308 1.4453 0.0203 −0.0498
Images Count NA NA 0.0279 0.0387
Links Count NA NA −0.0459 −0.0225
Slideshow Count NA NA 0.0456 −0.0077
Noun count −1.4758 −0.1589 −0.0062 −0.0239
Verb count 0.1591 −0.8179 0.0386 0.0214
Adjective count −0.2364 0.9527 −0.0012 −0.0008
Adverb count −0.0372 −0.0372 −0.0173 −0.0037
Pronoun count −0.01949 0.0203 −0.0069 −0.0153

Table 4: Average Treatment Effect of various article features on Comment count and Upvotes count for Webhose
and NYT data

to the input along with a {start of text} token.
Thus, the input is {metric token}+{topic}+{start
of keyword token}+{keywords}+{start of text to-
ken}+{article text}. The keywords and topics are
available for the NYT dataset for each article, and
are extracted from input text using topic modeling
(Blei et al., 2003) as described in next section.

C Data Processing

Webhose Covid-19 Dataset: We use the Webhose
dataset available at https://webhose.io/free-
datasets/news-articles-that-mention-corona-virus/
that has 410, 120 data points in total. We choose
the subset of this dataset limited to English. To
remove any outliers, we heuristically choose
articles with word count more than 30 but less
than 5000 words in the article. The data contains
engagement on various news articles in form of
participation count, replies count and various other
social media likes and share metrics. The social
media metrics includes PinInterest, LinkedIn,
Google+ shares and like, shares and comments
on Facebook. Most of these are very sparse in
the dataset, for instance, less than ∼ 12k data
points have Facebook comments as non-zero.
Thus, we choose participation count and replies
count as good indicators to the engagement on
the article and use these as our target metrics.
We consider only the articles with participation
count > 1, leaving us with 39192 data points in
total. The metric value for participation count and
replies count vary from 1 − 297 and 0 − 5751
respectively with a mean and standard deviation
of 14.37, 27.90 and 129.91, 446.71. To control for
these metrics in our models, we convert these to
categorical variable with the threshold of 2 and
21 for participation count. The low bucket is the

largest bucket with least standard deviation in the
value of metric; the medium and high categories
have almost same number of data points as shown
in Table 1 in the paper. Similarly for replies
count, the threshold is 2 and 32 with equal size of
medium and high categories.

As mentioned earlier, the context for generative
models includes keywords and topic of the arti-
cle, that acts as “prompt" during inference stage.
For webhose data, the keywords are not directly
available in the dataset, NYT-comments dataset
has keywords. We extract the keywords as top n
(n = 10) words from the articles using TF-IDF
vectors. The topics are extracted by topic model-
ing using Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). We choose 20 topics with a seed of 23
and then represent the topic of each input article as
the corresponding topic identifier ranging from 1-
20. For transformer-based model, the keyword and
topic tokens are added to the pre-trained tokenizer.

D Causal Features

The various textual features considered for causal
effect are as listed in Table 4. The average treat-
ment effect on NYT data metrics – Comment count
and Upvote count is as shown. Here, the signif-
icance level is empirically chosen as 0.01. Thus,
features with |ATE| > 0.01 on comment count or
upvote count y are included in the corresponding
causal generative model. For Webhose data, we
choose significance level of 0.1 and consider fea-
tures with ATE of greater than 0.1 in magnitude as
‘causally significant’ features.
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E Reproducibility checklist

E.1 Hyper-parameters
The causal feature identification models are trained
on a train-test split of 90-10, using a random seed
23 with stratified sampling over the outcome values,
for over 10 epochs in batches of size of 5.

For transformers, we use HuggingFace11 im-
plementation of GPT-2 and make the model and
training changes as described in the paper. The
hyper-parameters are kept the same as the original
implementation for uniformity. For the loss term
mentioned in equation 11 of the paper, we set λG,
λmetric, λcausal as 1. We train these models with a
batch size of 2 for over 3 epochs. The training time
over 4 GPUs was about 14 hours for webhose data
and about 5 hours for NYT dataset.

For the CVAE model, we use adam optimizer.
We initiate the training with the learning rate of
0.001 with learning rate decay of 0.6. We train
the models over 30 epochs with an early stopping
criterion of 0.996 threshold.

E.2 Resources
All the training experiments were run on a 4 GPU
machine with 64-bit 16 core tesla v100 processor
and 100 GB RAM.

11https://github.com/huggingface/transformers
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