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Abstract

We propose a novel approach that jointly uti-
lizes the labels and elicited rationales for text
classification to speed up the training of deep
learning models with limited training data. We
define and optimize a ranking-constrained loss
function that combines cross-entropy loss with
ranking losses as rationale constraints. We
evaluate our proposed rationale-augmented
learning approach on three human-annotated
datasets, and show that our approach pro-
vides significant improvements over classifi-
cation approaches that do not utilize ratio-
nales as well as other state-of-the-art rationale-
augmented baselines.

1 Introduction

Text classification has been used for numerous ap-
plications including sentiment analysis (Hemma-
tian and Sohrabi, 2019), information retrieval (Ag-
garwal and Zhai, 2012), and language identification
(Jauhiainen et al., 2019). When presented with a
large number of labeled documents, common text
classification models demonstrate impressive re-
sults. In practical settings, however, labeled data
is often scarce. Labeling documents is a tedious
task that requires time and effort, thus curating a
large labeled corpus can be expensive and even
unrealistic.

There is a wide range of use cases for businesses
and industry that require curating a labeled dataset
for the current task before the need to move on
to the next task arises. For example, consider le-
gal case document classification where documents
need to be labeled as relevant/not-relevant to the
current case at hand. The next legal case requires
labeling the documents as relevant/not-relevant for
that particular case, and so on. Similarly, several
fast-response tasks such as immediate analysis of
news and social media posts for a breaking news,
for a recently released product, for a policy an-
nouncement, etc., require fast curation of a small

and yet informative labeled dataset.

Label: negative Label: positive 

I do not find this show at all 
funny. I actually think it is 
much worse than any of the 
other terrible Disney channel 
sit-coms right now. 

I love this movie and have seen 
it quite a few times over the 
years. It does get better with 
every viewing. I agree with all 
of the positive reviews here. 

 

Figure 1: Rationales annotated on a negative movie re-
view and a positive movie review.

An effective approach to make the best use of the
human’s time and maximize classifier performance
with a small labeled dataset is to elicit rich feed-
back, in the form of rationales for classification,
during the labeling process (Zaidan et al., 2007,
2008; Donahue and Grauman, 2011; Sharma and
Bilgic, 2018). For sentiment classification, for ex-
ample, the annotators might highlight certain seg-
ments of the text that convinced them to label the
review as positive or negative (Figure 1). Unlike
humans, a classifier will not know which segments
of the document are responsible for its label dur-
ing training, until it has been presented with many
training samples. Since the human annotators read
the document to decide its label in the first place,
they have already spent the time to find the justifi-
cations for their labeling decision; hence, previous
studies have shown that the extra time needed to
highlight a piece of the text as a rationale for its
label is not high and is often worth more (for im-
proving the classifier) than spending that time to
label an additional document. Zaidan et al. (2007)
showed that rationale annotation has low overhead,
roughly twice the time required for annotating only
the labels. Sharma and Bilgic (2018) showed that
annotating a single document with rationales can
be worth as many as 20 documents that are simply
annotated with labels.

Prior work on learning with rationales focused
on one-hot encoding of the text in combination with
logistic regression and support vector machines
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(Zaidan et al., 2007; Sharma and Bilgic, 2018),
deep learning with multi-task learning (Melamud
et al., 2019), and rationale-augmented attention-
based models (Bahdanau et al., 2014), which still
required a large set of labeled documents. We pro-
pose a general approach that is applicable to both
one-hot encoding as well as deep learning embed-
ding representations and that is highly effective
under limited labeling settings.

The rationale supervision can be understood
as an expectation that a document should have a
higher probability of belonging to its class than the
same document from which the rationale(s) are re-
moved. Motivated by this intuition, we formulate a
hybrid loss function to combine classification loss
with ranking constraints for rationale supervision,
which serves as an effective way of directing the
model’s focus to rationales during training. Our
contributions in this paper include:
• We formulate a general and effective learning-

with-rationales method for text classification.
• We study its empirical effectiveness on three

human-annotated text classification datasets (sen-
timent analysis, aviation safety, and scientific
articles).

• We compare our method to several baselines, and
empirical findings show that it achieves the state-
of-the-art results. For example, our proposed
method is able to achieve 80% accuracy on the
IMDb movie review dataset (Zaidan et al., 2007)
with as few as 23 documents, whereas a fine-
tuned BERT model that does not use rationales
required 73 documents, and the most compet-
itive rationale-augmented baseline required 63
documents to achieve the same level of accuracy.

• We annotate a new text classification dataset with
rationales and make it publicly available.
The rest of the paper is organized as follows. We

first discuss related work and how our work differs
from previous work in Section 2. We formalize our
learning with rationales approach in Section 3 and
detail the experimental methodology in Section 4,
followed by a discussion of the results in Section
5. We discuss the limitations and future work in
Section 6 and then conclude.

2 Related Work

Zaidan et al. (2007) presented one of the first
approaches to learning with rationales for text
classification. They proposed to utilize human-
provided rationales by converting the rationales

into constraints for training support vector ma-
chines. They later extended the framework to a
rationale-constrained probabilistic model (Zaidan
and Eisner, 2008). Sharma and Bilgic (2018) pro-
posed a general method to incorporate rationales
into the training of any classifier by weighting the
rationale features higher than the non-rationale fea-
tures. However, their method relied on using a
bag-of-words representation of the documents.

As deep learning achieved the state-of-the-art
performance on text classification (e.g., (Sun et al.,
2019; Devlin et al., 2019; Zhang et al., 2015; Yang
et al., 2016)), recent work proposed methods specif-
ically for training deep learning models using ra-
tionale supervision. Some methods utilized the
rationales to generate rationale-augmented repre-
sentations of the text while others utilized the ra-
tionales for richer supervision of the model. For
instance, Zhang et al. (2016) proposed a Rationale-
Augmented CNN (RA-CNN) that jointly learns
from the labels of the documents as well as the
labels at the sentence level, by using a two-step ap-
proach. However, their approach still requires suf-
ficient amounts of data for training a model at the
sentence level to learn a valid rationale-augmented
representation of a document. Errica et al. (2021)
proposed a representation learning approach to
leverage rationales by learning to focus on rele-
vant input tokens in the embedding space. Bao
et al. (2018) proposed a framework to derive ma-
chine attentions from human-provided rationales.
Sastry and Milios (2020) defined a new attribution
score for words by computing the partial derivative
of the output with respect to the input in the word
embedding space, and used misattribution error as
an additional supervision in the loss function. Our
method has two major differences from these work:
i) our approach can use but does not require an at-
tention mechanism to focus on the rationales and ii)
our approach does not require learning a separate
representation for the rationales.

The work most closely related to ours is the
model proposed by Melamud et al. (2019), which
jointly learns to predict the labels for text as well
as the labels for each token of every input sentence
by determining whether the token is part of the ra-
tionales or not. Our approach differs from theirs
as our ranking loss is calculated by using only the
model’s predictions, rather than introducing aux-
iliary learning tasks. Moreover, the approach we
propose is more general: it can be used for any
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model that can utilize a logistic loss, ranging from
a logistic regression model coupled with a one-hot
encoding of words to a Long Short-Term Memory
(LSTM) model coupled with word embeddings. In
their same paper, Melamud et al. (2019) proposed
another method that utilizes rationales by construct-
ing rationale prototypes and rationale-biased text
vectors. However, these vectors are computed us-
ing a rationale-bias function to directly estimate the
similarity between words and annotated rationales
without incorporating any learning, and thus this
method works well only for few-shot learning.

3 Learning with Rationales

Let D = {x1, x2, · · · , xn} be a set of documents.
A small subset of the documents, L ⊂ D, are anno-
tated with labels, 〈xi, yi〉 where the value of yi
belongs to a label space, C = {c1, c2, · · · , ck}.
yi is unknown for a much larger set of unlabeled
documents, U = D \ L, represented as 〈xi, ?〉.
Each document, xi, contains a number of sentences,
{si1, si2, ..., sim}, each of which is represented as
a sequence of words: sij = {q1ij , q2ij , · · · , qlij}.

In the learning with rationales framework, a sub-
set of the words is marked by the human annotator
as rationales (i.e., justifications for the document’s
assigned label). Let ri =

⋃
qlij be the set of all

words that are marked as rationales within a docu-
ment, xi. It is possible that none of the words are
marked as rationales, and hence, ri = ∅ for such
documents. In the learning-with-rationales setting,
L is modified to contain 〈xi, ri, yi〉 and U repre-
sents 〈xi, ∅, ?〉. The objective is to train a model, f ,
that utilizes the documents xi, their labels yi, and
their rationales ri during training, and uses only
the documents xi at prediction time, as rationales
are naturally not available for the test documents.

3.1 Our Approach – LwR-RC

We first describe our proposed approach, Learning
with Rationales – Ranking-Constrained (LwR–RC),
and then illustrate how it can be specialized for
training deep learning models. To illustrate the mo-
tivation behind our approach, consider an example
document, D, that contains three sentences: “s1:
The movie came out last year. s2: The plot was
decent. s3: Acting was superb.”, which is labeled
as ‘positive’ by the annotator. Assume for the sake
of example, the annotator highlights only s3 as the
rationale. Let M be a masked document that is
same as the original document D, but from which

the sentences containing the rationale phrases are
removed. In this case, M would be missing s3.
We postulate that the model should be more sure
about the positive label of document D than the
label of document M, since D contains the essential
evidence, ‘Acting was superb’, for the ‘positive’
label, whereas M lacks that evidence. Similarly, let
R be the document that contains only the rationale
sentence s3. We postulate that the model should be
more sure about the label ‘positive’ of R than the
label of M, since R provides strong evidence for the
label, whereas M lacks that evidence.1

Traditional learning without rationales ap-
proaches optimize a loss function to compute the
model’s error on its predictions, e.g., a binary cross-
entropy classification loss, Lclf , is defined as:

Lclf = − 1

|L|
∑
i

(yi · log(p(yi|xi))

+(1− yi) · log(1− p(yi|xi)))
(1)

In order to leverage the annotated rationales, we
formalize our postulations by providing the model
with two additional objectives during training. The
first objective is to train the model to be more con-
fident about the label of a document (D) than the
label of the same document in which the rationales
are masked (M). The second objective is to train the
model to be more confident about the label of doc-
ument that contains only the rationales (R) than the
label of the same document in which the rationales
are masked (M). We achieve these objectives by us-
ing a ranking-constrained classification approach,
as described next.

Let 〈xi, ri, yi〉 ∈ L be a training document. First,
we construct an artificial document x′i by masking
out all the sentences that contain rationales ri. We
construct another artificial document xri consisting
of only the sentences that contain rationales ri. The
ranking-constrained classification approach incor-
porates the rationales into learning by modeling
two expectations: (i) the model should be more
sure of assigning the correct label yi to xi than
assigning yi to x′i, because x′i represents a docu-
ment from which the rationales have been removed,
and we refer to this objective as ‘Document versus
Masked document’ (DvM), where D represents xi
and M represents x′i, and (ii) the model should be
more sure of assigning the correct label yi to xri
than assigning yi to x′i, and we refer to this objec-

1It is possible that the annotator might pick both s2 and
s3 as rationales; the same arguments that D and R should be
more positive than M still applies.
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tive as ‘Rationale versus Masked document’ (RvM),
where R represents xri and M represents x′i.

Another possible objective can be ‘Rationale
versus Document’ (RvD), however, we excluded
RvD objective from our approach for the following
reason. Consider the following cases for a binary
(positive/negative) classification task:

• Case 1: D = R+M is positive; R is positive; M is
neutral or it contains a small amount of leftover
positive. In this case, RvD requires R > R+M,
which forces M to be negative, whereas RvM re-
quires R > M, which does not necessarily require
M to be negative. Thus, RvD is guaranteed to be
the wrong approach. RvM forces R > M, but
gives the model the flexibility to decide whether
M is a small positive, neutral, or negative.

• Case 2: D = R+M is positive; R is positive; M is
negative. In this case, RvD requires R > R+M,
which forces M to be negative, whereas RvM
simply requires R > M. In this case, RvD is
the correct choice, but RvM cannot be called the
guaranteed wrong choice.

• Remaining cases: The cases where D and R are
negative are similar.

As the cases above show, RvM is more flexible:
RvM simply nudges the model in the correct di-
rection and leaves the judgement about M to the
data. RvD, on the other hand, is a more forceful
approach; it forces the model to always make a
judgement about M, which is the incorrect judge-
ment in case 1. Thus, we include only the RvM and
DvM objectives in our proposed approach.

Formally, let yi ∈ {0, 1}: f(xi) = p(yi = 1 |
xi) = sigmoid(Wzzi) for some parameter matrix
Wz , where zi is the vector representation of xi. For
modeling the DvM objective, let µi = Wzzi and
µ′i = Wzz

′
i where z′i is the vector representation

of x′i. If the correct label is yi = 1, we would like
µi > 0 and µi > µ′i. If the correct label is yi = 0,
we would like µi < 0 and µi < µ′i. We convert
this constraint into a logistic loss, as follows:

LiDvM =

{
log(1 + exp(−(µi − µ′i))), yi = 1

log(1 + exp(−(µ′i − µi))), yi = 0
(2)

Summing LiDvM over all the training instances
and reorganizing the terms, we get:

LDvM = − 1

|L|
∑
i

(yi · log(p(yi|xi, x′i))

+(1− yi) · log(1− p(yi|xi, x′i)))
(3)

where,

p(yi|xi, x′i) =
1

1 + e−(µi−µ
′
i)

(4)

We define the ranking loss similarly for the RvM
component, using documents R and M and their
respective scores µri = Wzz

r
i and µ′i = Wzz

′
i,

where zri is the vector representation of xri . The
ranking loss LRvM is then defined as:

LRvM = − 1

|L|
∑
i

(yi · log(p(yi|xri , x′i))

+(1− yi) · log(1− p(yi|xri , x′i)))
(5)

where,

p(yi|xri , x′i) =
1

1 + e−(µ
r
i−µ′i)

(6)

We combine the classification loss Lclf with the
ranking losses, LDvM and LRvM , resulting in the
main objective function for our approach:
L = (1−λ1−λ2)Lclf+λ1LDvM+λ2LRvM (7)

where, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, and λ1+λ2 ≤ 1.
λ1 and λ2 are two hyper-parameters that control
the importance of the classification loss and the
ranking losses relative to one another. We study
the effect of these hyper-parameters on the model’s
performance and provide insights into their relative
importance in Section 5.2. We next describe how
LwR-RC can be implemented through a neural net-
work architecture, which can be specialized to a
logistic regression or to a deep learning model.

3.1.1 LwR-RC with Deep Learning

Figure 2 shows the deep learning architecture illus-
trating how the LwR-RC approach can minimize the
loss function of Equation (7). For every sentence
{si1, si2, ..., sim} within a document xi, we use
an embedding model to create sentence embedding
vectors {ti1, ti2, ..., tim}, and pass them through an
average pooling layer to create a single vector, zi,
representing a document. Similarly, the same sen-
tence embedding vectors are passed through two
different pooling layers to create two masked aver-
ages, z′i and zri , representing the document without
rationales and the document containing only the
rationales, respectively. There are several strategies
for aggregating many sentence vectors into a sin-
gle document vector; we use the average pooling
strategy for the experiments.

The LwR-RC approach can be used to train any
model that uses cross-entropy loss functions, in-
cluding logistic regression and deep neural net-
works. It can also work with several representa-
tions, including one-hot encoding of the words,
word2vec (Mikolov et al., 2013), and doc2vec (Le
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Figure 2: Architecture of the LwR-RC model for deep
learning using one input document, xi, as an example.

and Mikolov, 2014), as well as more recent lan-
guage models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019). For example, if we remove the em-
bedding layer and the hidden layers, and represent
the sentences using one-hot encoding of the words,
we would get a simple logistic regression classifier.
If we use BERT for encoding the sentences in the
embedding layer, then we can either use BERT em-
beddings directly or fine-tune the BERT model on
downstream classification tasks by optimizing the
ranking-constrained loss function.

4 Experimental Setup

In this section, we describe the three datasets, sev-
eral baselines, and the experimental settings.

4.1 Datasets
We used two publicly available datasets: a senti-
ment classification dataset and an aviation safety
dataset. Both datasets were annotated with labels
and rationales. Additionally, we introduce a new
scientific article classification dataset that we anno-
tated with labels and rationales.

IMDb is a movie review dataset annotated by
Zaidan et al. (2007). It consists of 1,800 docu-
ments. We used 600 reviews as the training set,
600 reviews as the validation set, and 600 reviews
as the test set.

ASRS is an Aviation Safety Reporting System
dataset. We used the same balanced binary classi-

fication dataset created by Melamud et al. (2019),
consisting of reports labeled with either ‘Profi-
ciency’ or ‘Physical Environment.’ The original
split had 386 documents for training and 392 doc-
uments for testing. We split the test set into two
and use 196 documents for validation set and 196
documents for test set.

AIvsCR contains scientific articles that we col-
lected from arXiv and annotated with rationales.
This dataset contains 2,394 documents from Arti-
ficial Intelligence (cs.AI) and Cryptography and
Security (cs.CR) categories. Two annotators inde-
pendently annotated 394 documents with rationales
for the ground truth label, and we computed the
inter-annotator agreement for the rationales in the
same manner as Zaidan et al. (2007). We used 394
human-annotated documents as the training set,
1,000 documents as the validation set, and 1,000
documents as the test set. Note that the valida-
tion and test sets do not need rationales; they only
need the documents and their labels for evaluation.
We make this dataset publicly available, and pro-
vide a complete description of this dataset in the
appendix.

4.2 Experimental Settings

For training LwR-RC, we fine-tuned a pre-trained
‘bert-base-uncased’ version of the BERT (Devlin
et al., 2019) model on downstream classification
task using our ranking-constrained loss function.
We used a TensorFlow implementation of BERT2.
We input each sentence within a document to BERT
and used the ‘[CLS]’ logits from the last hidden
layer as the sentence embeddings. To fit the model
into GPU (NVIDIA Quadro RTX 5000) memory,
we truncated each input sentence to at most 48
tokens (including two special tokens ‘[CLS]’ and
‘[SEP]’), and each document to at most 64 sen-
tences. We used only one hidden layer with 100
nodes in the hidden layers section of Figure 2,
and used tanh as the activation function. The
total number of model parameters for LwR-RC is
109,559,241. The running time of training LwR-
RC is similar to training a fine-tuned BERT model
without using rationales; LwR-RC needs to make
two more forward passes to compute µ′i and µri for
x′i and xri , respectively.

We present average learning curves over 5 dif-
ferent runs to assess how the models would per-

2https://tfhub.dev/tensorflow/bert_en_
uncased_L-12_H-768_A-12/3
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form under varying labeling regiments, and plot
error bars showing the standard error. Each learn-
ing curve starts with a bootstrap of 5 randomly
selected documents from each label. Each step of
the learning curve corresponds to labeling 20 addi-
tional documents. For a fair comparison between
various learning strategies, all learning strategies
(our approach and the baselines) are fed the same
sequence of documents. After the bootstrap phase,
we run 10 more steps, and hence the budget of
learning curves runs up to 10 + 20 × 10 = 210
documents.
Tuning Hyper-parameters. For a fair compari-
son between our method and the baselines, at each
iteration of learning, we performed grid search
to optimize the tunable hyper-parameters of each
method using the held-out validation set. For LwR-
RC, we experimented with different pairs of hyper-
parameters, λ1 and λ2, whose values were selected
from the set {0, 0.125, 0.25, 0.5}. We fine-tuned
BERT model for LwR-RC for 10 epochs, and se-
lected the best model across different epochs using
the held-out validation set. We next discuss the
details of the baselines.

4.3 Baselines

We compare our approach with one Learning with-
out Rationales (Lw/oR) baseline and four Learning
with Rationales (LwR) baselines.
Learning without Rationales. The Lw/oR-BERT
baseline fine-tunes the BERT model for down-
stream classification tasks, and optimizes the model
by only minimizing the classification loss func-
tion, Lclf , without utilizing any ranking constraints,
LDvM or LRvM , according to Equation (1). It
is worth noting that traditional Lw/oR approaches
that fine-tune BERT model on classification tasks
have shown impressive performances, and there-
fore, Lw/oR-BERT is a strong baseline. For exam-
ple, Sun et al. (2019) achieved the state-of-the-art
performances on eight text classification tasks by
fine-tuning the BERT model, outperforming both
CNN and LSTM based models as well as using
just pre-trained BERT embeddings. We observed
similar trends in our experiments.
Learning with Rationales Baselines. We con-
ducted experiments using four learning-with-
rationales baselines from the literature.
1) Rationale-Augmented SVM (RA-SVM): This
approach is Zaidan et al. (2007)’s model that trans-
lates the importance of rationales into additional

constraints for training support vector machines.
This method requires three hyper-parameters: regu-
larization C for the original samples, regularization
Ccontrast for the contrast samples, and margin µ
between the original and contrast samples. We op-
timized these hyper-parameters using grid search,
and selected the values of both C and Ccontrast
from the set {0.01, 0.1, 1, 10, 100} and the value
of µ from the set {0.01, 0.1, 1, 10}.
2) Rationale-Augmented LR (RA-LR): This ap-
proach is Sharma and Bilgic (2018)’s approach
that emphasizes the rationales and de-emphasizes
non-rationales in the vectorized feature matrix rep-
resentation of the documents. It has three hyper-
parameters, weight r for the rationale terms, weight
o for the non-rationale terms, and regularization C.
We selected the value of r from the set {1, 10, 100},
the value of o from the set {0.01, 0.1, 1}, and the
value of C from the set {0.01, 0.1, 1, 10, 100} to
optimize the hyper-parameters using grid search.
3) RB-BOW-PROTO and 4) RB-WAVG-BERT:
These are two models proposed by Melamud et al.
(2019) that achieved the state-of-the-art perfor-
mance in their experiments compared to Rationale-
Augmented CNN (Zhang et al., 2016), Rationale-
Augmented SVM (Sharma and Bilgic, 2018), and
ULMFiT (Howard and Ruder, 2018). RB-BOW-
PROTO uses a pre-trained word2vec embedding
to construct rationale-biased text vectors for each
class as prototypes, and then uses nearest-neighbor
classification, instead of training a model to fine-
tune the embeddings. This method has one hyper-
parameter, α, that controls the impact of rationale
biases on the rationale-bias function. We selected
the value of α from the set {1, 3, 6, 12} to opti-
mize it using grid search. The second approach,
RB-WAVG-BERT, which is a strong baseline more
closely related to our work, fine-tunes BERT model
to jointly learn the labels on documents and the la-
bels on tokens. We fine-tuned this model for 10
epochs and selected the best model across different
epochs, using the learning rate of 5e-6, as suggested
by the paper. Melamud et al. (2019) found that RB-
BOW-PROTO performed better under extremely-
limited labeling settings, and that RB-WAVG-BERT
performed better when the training size was larger;
hence, we included both approaches as baselines.

5 Results

We first present results comparing LwR-RC with
the baselines, and then discuss the effects of the
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two ranking-constrained losses on the performance
of LwR-RC.

5.1 Comparison with the Baselines

Figure 3 presents learning curves comparing the
average accuracy of the methods over five different
runs with up to 210 documents for improved read-
ability. The learning curves with a larger budget of
up to 310 documents are included in the appendix.
BERT vs. LwR without BERT. The Lw/oR-BERT
baseline that did not use rationales but fine-tuned
BERT outperforms on the IMDb and AIvsCR
datasets the two LwR frameworks (RA-SVM and
RA-LR) that used rationales but did not use BERT
embeddings. Zaidan et al. (2007) and Sharma and
Bilgic (2018) showed that RA-SVM and RA-LR out-
performed several Lw/oR approaches, and hence
these two are strong LwR baselines. Still, a fine-
tuned BERT model that does not use rationales is
able to outperform these two strong baselines that
used rationales but did not utilize the BERT em-
beddings. This result highlights the added benefit
of the “existing knowledge” that pretrained embed-
dings provide.
BERT Baselines. RB-WAVG-BERT, the baseline
that fine-tuned BERT model and utilized rationales,
outperforms Lw/oR-BERT, the baseline that did
not use rationales, showing the benefits of utilizing
rationales with recent deep learning models. How-
ever, the improvements provided by RB-WAVG-
BERT become noticeable only after the model has
seen enough data (e.g., more than 50 documents),
which was also noted by Melamud et al. (2019).
LwR-RC vs. the Best Baseline. We next turn
our attention to a fairer comparison: LwR-RC ver-
sus RB-WAVG-BERT; both used and fine-tuned
BERT embeddings and both utilized rationales.
LwR-RC provides statistically significant improve-
ments3 over RB-WAVG-BERT, with a p–value of
less than 0.05, especially when the annotation bud-
get is small, and it performs comparably at larger
budgets. For IMDb, LwR-RC provides up to 22.3%
improvements in accuracy over RB-WAVG-BERT;
for ASRS, LwR-RC provides up to 21.7% im-
provements in accuracy over RB-WAVG-BERT. For
AIvsCR dataset, Lw/oR-BERT can quickly reach
90% accuracy even without utilizing rationales, and
thus the improvements provided by LwR-RC on this
dataset for most training budgets are not as large
as the improvements on the other two datasets;

3The complete t-test results are presented in the appendix.

Target Accuracy (%)
Dataset Method 65 70 75 80 85 90

IMDb
Lw/oR-BERT 14 36 52 73 148 N/A
RB-WAVG-BERT 9 32 43 63 97 208
LwR-RC 5 9 15 23 36 220

ASRS
Lw/oR-BERT 43 69 N/A N/A N/A N/A
RB-WAVG-BERT 36 57 87 192 N/A N/A
LwR-RC 12 19 27 44 90 N/A

AIvsCR
Lw/oR-BERT 5 7 8 10 28 93
RB-WAVG-BERT 4 6 8 10 28 73
LwR-RC 2 3 5 8 13 29

Table 1: Comparison between the number of annotated
documents needed to achieve a target accuracy by the
three methods. ‘N/A’ represents that a target accuracy
could not be achieved by a method even with 310 train-
ing documents.

however, LwR-RC can still provide up to 8.67%
improvements in accuracy over RB-WAVG-BERT.
Regarding RB-BOW-PROTO, as Melamud et al.
(2019) also observed, it performs well only under
extremely-limited budget settings.

Corresponding to the learning curves presented
in Figure 3, Table 1 shows the number of annotated
documents needed for training LwR-RC as well as
the two fine-tuned BERT baselines, Lw/oR-BERT
and RB-WAVG-BERT, to achieve a target accuracy
(ranging from 65% to 90%). As Table 1 shows,
LwR-RC usually needs 2 and sometimes 3 times
fewer number of annotated documents compared
to Lw/oR-BERT and RB-WAVG-BERT to achieve
the same level of accuracy.

5.2 The Effects of the Loss Functions

We further investigate the effects of the two
ranking-constrained losses. Specifically, we want
to understand how LwR-RC behaves with the two
ranking-constrained losses: LwR-RCDvM that uses
only LDvM (setting λ1 to 0.25 and λ2 to 0 in Equa-
tion (7)), and LwR-RCRvM that uses only LRvM
(setting λ1 to 0 and λ2 to 0.25 in Equation (7)).
Figure 4 presents the learning curves for these set-
tings. For the IMDb dataset, LwR-RCRvM achieves
a slightly higher accuracy than LwR-RCDvM after
100 training documents. For ASRS dataset, LwR-
RCDvM performs the best, and for AIvsCR dataset,
LwR-RCRvM performs the best.

To investigate it further, we provide average
statistics for the number of sentences, the num-
ber of rationale sentences, and the percentage of
rationale sentences within the documents for each
dataset in Table 2. We observe that LwR-RCRvM
performs better when the percentage of rationale
sentences in documents is high, e.g., IMDb and
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Figure 3: Comparison between our approach, LwR-RC, and the five baselines using the best hyper-parameter
setting for each method.
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Figure 4: Comparison between different ranking constrained losses for LwR-RC. LwR-RCDvM represents using
the parameter setting (λ1=0.25, λ2=0), and LwR-RCRvM represents using the parameter setting (λ1=0, λ2=0.25)
in Equation (7).

Average Statistics IMDb ASRS AIvsCR
# Sentences 33.7 15.3 8.5
# Rationale sentences 7.9 2.4 2.5
% Rationale sentences 25.7 19.0 30.5

Table 2: Average statistics per document for the IMDb,
ASRS, and AIvsCR datasets. The percentages in the
third row are computed by taking an average of the
percentages of rationale sentences for all documents
within each dataset, instead of dividing the values in
the first row by the values in the second row directly.

AIvsCR datasets, and LwR-RCDvM performs bet-
ter when the percentage of rationale sentences is
low in the documents, e.g., ASRS dataset.

We hypothesize that different ranking constraints
may be affected differently by a number of factors,
including the budget for training documents, the
diversity of rationales, the number of rationales
provided for each document, how thorough the an-
notator was in providing rationales, and the domain,
to name a few. Table 2 provides only a glimpse of
such a study. An exhaustive study is needed for
making a definitive conclusion about how various
document and rationale statistics affect different
ranking-constrained losses, which is beyond the

scope of this study. However, the tuning strategy
that picks the best λ parameters for LwR-RC at
each iteration of learning using a validation set, and
hence chooses the appropriate balance between the
two loss functions, works well in practice, as was
shown in Figure 3.

6 Limitations and Future Work

We presented experimental results for binary clas-
sification tasks in this paper. To the best of our
knowledge, prior learning-with-rationales frame-
works also focused on binary classification tasks
in their experiments. Extending the framework
to multi-class settings is a promising future direc-
tion. Such an extension would require adapting the
loss functions to multi-class settings and creating
multi-class classification datasets with rationales.
Extending the framework to multi-label settings
where a document can be assigned more than one
label, however, is more challenging, both for for-
mulating the problem as well as annotating the
datasets with rationales, because rationales need to
be assigned to their respective labels, which might
be more than one in a single document.
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7 Conclusions

We presented a novel approach to incorporate ra-
tionales as ranking-constraints into the training of
classification models with cross-entropy loss. The
proposed approach is general enough that it can be
used for simple models, such as logistic regression
with one-hot encoding of documents, as well as
deep learning models combined with text embed-
dings. We conducted empirical evaluations compar-
ing the proposed approach to several baselines and
observed that the proposed approach outperformed
the baselines in most settings, and was comparable
to them at the remaining settings.
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A Appendix

In this section, we supplement the results presented
in the paper with the following:
• In the paper, we focused on experimental results

with a budget of up to 210 training documents.
Here, we supplement the main results in the paper
with a larger budget of up to 310 documents.

• We present the improvements in accuracy pro-
vided by LwR-RC over the two fine-tuned BERT
baselines, Lw/oR-BERT and RB-WAVG-BERT,
for all three datasets at varying budgets.

• We provide the results of paired t-tests comparing
LwR-RC to Lw/oR-BERT and RB-WAVG-BERT.

• In the paper, we provided the formulation of LwR-
RC for binary classification for the ease of exposi-
tion. Here, we extend the formulation of LwR-RC
to multi-class classification.

• We provide a complete description of the AIvsCR
dataset that we collected and annotated with ra-
tionales for the ground truth labels.

• Additionally, we provide the AIvsCR dataset and
the other two datasets (IMDb and ASRS), as well
as the source code for all the experiments in our
paper with this submission as separate .zip files.

B Results with Larger Budgets

In the paper, we focused on experimental results
with a budget of up to 210 training documents
(Figure 3). We supplement the results in Figure
3 with a larger budget of up to 310 training doc-
uments in Figure 5. As can be seen in Figure 5,
the trends of all the results in the paper remain
the same even with larger budgets. For IMDb and
AIvsCR datasets, LwR-RC still performs better or
comparably to the most competitive baseline, RB-
WAVG-BERT; for ASRS dataset, LwR-RC still out-
performs all the baselines. However, as the number
of labeled documents grows, we expect our models
and the baselines to converge to a similar accuracy,
as the models no longer need the human-provided
rationales and can learn statistically “what is im-
portant” from a large collection of documents that
are simply annotated with labels.

C Accuracy Improvements

We present the improvements in accuracy provided
by LwR-RC compared to the baselines for the three
datasets across different training budgets. Specifi-
cally, we compare LwR-RC with the two fine-tuned
BERT based approaches, Lw/oR-BERT and RB-

WAVG-BERT. As shown in Table 3, LwR-RC pro-
vides significant improvements in accuracy over
the two baselines across most training budgets: for
IMDb, the improvements are up to 23.68%; for
ASRS, the improvements are up to 28.31%; for
AIvsCR, the improvements are up to 8.67%.

D Statistical Significance Results

In this section, we provide a summary of pairwise
one-tailed t-tests comparing LwR-RC with the two
most competitive baselines, Lw/oR-BERT and RB-
WAVG-BERT, for all three datasets at varying bud-
get regiments. Table 4 shows the p–values of one-
tailed paired t-tests with the alternative hypothe-
sis “the performance of LwR-RC is better than the
baseline approach". As this result shows, LwR-RC
statistically significantly outperforms both Lw/oR-
BERT and RB-WAVG-BERT at most budget regi-
ments with a p–value of less than 0.05.

E Extension to Multi-class Classification

In our paper, we focused on binary classification.
LwR-RC, can be extended to multi-class classifi-
cation with a few modifications. For multi-class
classification, let yi ∈ {c1, c2, · · · , ck}: f(xi) =
p(yi = c | xi) = softmax(Wzzi) for some pa-
rameter vector/matrix Wz , where c is the correct
label for instance xi and zi is the vector represen-
tation of xi. Assuming that yi is encoded as one-
hot representation, the classification loss function,
Lclf , will then change from binary cross-entropy
to categorical cross-entropy:

Lclf = − 1

|L|
∑
i

(yi · log(p(yi|xi))) (8)

For modeling the DvM objective of LwR-RC, let
µi =Wzzi and µ′i =Wzz

′
i, where z′i is the vector

representation of x′i. Then, for the correct label c,
we would like µci > 0 and µci > µ′ci , which results
in the following objective function:

LDvM = − 1

|L|
∑
i

(yi · log(p(yi|xi, x′i)) (9)

where,
p(yi|xi, x′i) = softmax(−(µi − µ′i)) (10)

We define the ranking loss similarly for the RvM
component, this time using the R and M documents
and their respective scores µri = Wzz

r
i and µ′i =

Wzz
′
i, where zri is the vector representation of xri .

The ranking loss LRvM is then defined as:

LRvM = − 1

|L|
∑
i

(yi · log(p(yi|xri , x′i)) (11)
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Figure 5: Comparison between our approach, LwR-RC, and the five baselines using the best hyper-parameter
setting for each method.

Budget Dataset Lw/oR-BERT LwR-RC Abs. Imp. % Imp. RB-WAVG-BERT LwR-RC Abs. Imp. % Imp.

10
IMDb 64.10 71.73 7.63 11.91% 66.03 71.73 5.70 8.63%
ASRS 58.98 63.57 4.59 7.79 % 58.88 63.57 4.69 7.97%

AIvsCR 80.44 84.02 3.58 4.45% 77.32 84.02 6.70 8.67%

30
IMDb 68.13 84.27 16.13 23.68% 68.90 84.27 15.37 22.30%
ASRS 60.20 77.24 17.04 28.31% 63.47 77.24 13.78 21.70%

AIvsCR 85.26 90.20 4.94 5.79% 85.88 90.20 4.32 5.03%

50
IMDb 74.63 86.70 12.07 16.17% 78.43 86.70 8.27 10.54%
ASRS 67.45 81.33 13.88 20.57% 68.98 81.33 12.35 17.90%

AIvsCR 88.66 91.62 2.96 3.34% 88.94 91.62 2.68 3.01%

70
IMDb 79.30 87.60 8.30 10.47% 80.77 87.60 6.83 8.46%
ASRS 70.20 82.86 12.65 18.02% 71.73 82.86 11.12 15.50%

AIvsCR 89.20 92.04 2.84 3.18% 89.82 92.04 2.22 2.47%

90
IMDb 83.33 88.20 4.87 5.84% 83.93 88.20 4.27 5.08%
ASRS 68.67 85.00 16.33 23.77% 75.61 85.00 9.39 12.42%

AIvsCR 89.80 92.30 2.50 2.78% 90.92 92.30 1.38 1.52%

110
IMDb 82.80 89.10 6.30 7.61% 87.13 89.10 1.97 2.26%
ASRS 70.41 85.92 15.51 22.03% 73.88 85.92 12.04 16.30%

AIvsCR 90.92 93.22 2.30 2.53% 91.80 93.22 1.42 1.55%

130
IMDb 84.67 88.67 4.00 4.72% 88.77 88.67 N/A N/A
ASRS 72.96 85.20 12.24 16.78% 76.43 85.20 8.78 11.48%

AIvsCR 91.78 92.94 1.16 1.26% 92.04 92.94 0.90 0.98%

150
IMDb 85.03 89.43 4.40 5.17% 89.47 89.43 N/A N/A
ASRS 71.53 84.80 13.27 18.54% 77.86 84.80 6.94 8.91%

AIvsCR 92.52 93.80 1.28 1.38% 92.84 93.80 0.96 1.03%

170
IMDb 86.47 89.30 2.83 3.28% 89.23 89.30 0.07 0.07%
ASRS 73.16 84.80 11.63 15.90% 79.29 84.80 5.51 6.95%

AIvsCR 92.10 93.06 0.96 1.04% 92.68 93.06 0.38 0.41%

190
IMDb 85.70 89.77 4.07 4.75% 89.00 89.77 0.77 0.86%
ASRS 72.24 85.00 12.76 17.66% 79.90 85.00 5.10 6.39%

AIvsCR 92.58 93.08 0.50 0.54% 92.54 93.08 0.54 0.58%

210
IMDb 86.43 89.47 3.03 3.51% 90.13 89.47 N/A N/A
ASRS 72.04 85.61 13.57 18.84% 80.92 85.61 4.69 5.80%

AIvsCR 92.82 93.48 0.66 0.71% 93.02 93.48 0.46 0.49%

Table 3: Accuracy results comparing LwR-RC with the two fine-tuned BERT baselines, Lw/oR-BERT and RB-
WAVG-BERT, at varying budgets. ‘Abs. Imp.’ represents the absolute accuracy improvements that LwR-RC
provides over the baselines and ‘% Imp.’ represents the percentage of improvements in accuracy that LwR-RC
provides with respect to the baselines. ‘N/A’ represents that LwR-RC doesn’t provide any improvements over the
baselines. For each dataset, the highest improvements that LwR-RC provides over the two baselines across all
budgets are highlighted in boldface.

where,
p(yi|xri , x′i) = softmax(−(µri − µ′i)) (12)

We combine the classification loss Lclf with the
ranking losses, LDvM and LRvM , resulting in the
main objective function for our approach for multi-

class classification:
L = (1− λ1 − λ2)Lclf + λ1LDvM + λ2LRvM

(13)
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Budget Dataset p–value
Lw/oR-BERT RB-WAVG-BERT

10
IMDb 0.011 0.012
ASRS 0.005 0.031

AIvsCR 0.047 0.002

30
IMDb 0.001 0.002
ASRS 0 0.005

AIvsCR 0.033 0.006

50
IMDb 0.001 0.04
ASRS 0 0

AIvsCR 0.005 0.006

70
IMDb 0.009 0.022
ASRS 0 0

AIvsCR 0.028 0.027

90
IMDb 0.009 0.018
ASRS 0 0.004

AIvsCR 0.008 0.006

110
IMDb 0.017 0.078
ASRS 0 0.001

AIvsCR 0.004 0.011

130
IMDb 0.008 0.574
ASRS 0 0.001

AIvsCR 0.019 0.01

150
IMDb 0.028 0.511
ASRS 0 0

AIvsCR 0.039 0.065

170
IMDb 0.004 0.456
ASRS 0.001 0.01

AIvsCR 0.016 0.185

190
IMDb 0.049 0.181
ASRS 0 0.02

AIvsCR 0.231 0.031

210
IMDb 0.001 0.921
ASRS 0 0.003

AIvsCR 0.086 0.101

Table 4: Statistical significance results comparing LwR-
RC to the two fine-tuned BERT baselines for all three
datasets at varying budget regiments. We report the p–
values for one-tailed paired t-tests with the alternative
hypothesis “the performance of our approach is better
than the baseline approach". The results where LwR-
RC performs statistically significantly better than the
baselines (with a p–value of less than 0.05) are bold-
faced.

F AIvsCR Dataset Collection and
Annotation

In our study, we experimented with three human-
annotated datasets, IMDb, ASRS, and AIvsCR. We
collected and annotated the AIvsCR dataset. To
construct this dataset, we first collected 6,000 arti-
cles equally from two categories, cs.AI and cs.CR,
from arXiv.org using a custom search query in the
arXiv API. We provide the code, including the cus-
tom search queries, that we used to collect the data
from arXiv.org with the supplementary material.

For annotating the AIvsCR dataset, two anno-
tators, A1 and A2, were provided with the same
instructions as Zaidan et al. (2007) described in
their paper: highlight the rationales at your best but

Statistics A1 A2
# rationales per document 3.8 8.4

# rationale words per document 17.4 31.3
% rationales overlapping with A1 100 30.5
% rationales overlapping with A2 64.0 100

Table 5: Average statistics for AIvsCR dataset and the
two annotators, A1 and A2. The table presents the num-
ber of rationales and the number of rationale words per
document provided by the two annotators, as well as
the inter-annotator agreement for their rationale anno-
tation.

do not mark everything.
We calculated the inter-annotator agreement for

the rationales, where the rationales provided by the
two annotators for the same document are consid-
ered as overlapping if they have at least one word
in common, following the same manner of Zaidan
et al. (2007). The relevant statistics are shown in
Table 5. To make the best use of each annotator’s
effort, for every document, we kept the overlap-
ping words, phrases, and sentences between the
two annotators’ highlighted rationales as the final
rationales, as illustrated in the following example:
• A1: rectified linear units are among the most

widely used activation function in a broad vari-
ety of tasks in vision.

• A2: rectified linear units are among the most
widely used activation function in a broad vari-
ety of tasks in vision.

• Final: rectified linear units are among the most
widely used activation function in a broad vari-
ety of tasks in vision.
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