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Abstract

Domain Adaptation (DA) of Neural Machine
Translation (NMT) model often relies on a pre-
trained general NMT model which is adapted
to the new domain on a sample of in-domain
parallel data. Without parallel data, there is
no way to estimate the potential benefit of
DA, nor the amount of parallel samples it
would require. It is however a desirable func-
tionality that could help MT practitioners to
make an informed decision before investing
resources in dataset creation. We propose a
Domain adaptation Learning Curve prediction
(DaLC) model that predicts prospective DA
performance based on in-domain monolingual
samples in the source language. Our model re-
lies on the NMT encoder representations com-
bined with various instance and corpus-level
features. We demonstrate that instance-level is
better able to distinguish between different do-
mains compared to corpus-level frameworks
proposed in previous studies (Xia et al., 2020;
Kolachina et al., 2012). Finally, we perform in-
depth analyses of the results highlighting the
limitations of our approach, and provide direc-
tions for future research.

1 Introduction

The classical Domain Adaptation scenario (Freitag
and Al-Onaizan, 2016; Luong and Manning, 2015)
usually relies on an existing NMT model trained
on large datasets originated from various sources.
This general model is adapted to the new domain,
with a small sample of in-domain parallel data,
through finetuning or other DA methods. Without
any parallel in-domain data, we cannot estimate the
quality of general NMT model on the domain of
interest, nor can we anticipate what will be the ben-
efits of the DA and how much parallel in-domain
data is required.

In this work, we address the problem that trans-
lation service providers may regularly face when
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receiving a request for a new domain translation.
In such case, a new domain is often defined by
its source language samples, and the translation
provider needs to invest into in-domain parallel
dataset creation in order to be able to perform
evaluation and Domain Adaptation of its general
model. Current state of the art research in NMT
Domain Adaptation rarely provides any insights
on the amount of data required to perform Domain
Adaptation depending on input domain characteris-
tics. This is however a desirable feature that would
allow to (i) estimate the data creation cost (time and
money-wise) for the client requesting an adaptation
to completely new domain; (ii) make an informed
decision on how to distribute fixed data creation
budget when there is a need to handle multiple DA
simultaneously (as we demonstrate further shar-
ing this budget equally across all domains may
not be optimal). The goal of this work is to gain
better insights on Domain Adaptation dynamics,
and provide practical guidelines for such a real-life
scenario.

Several studies address the problem of learning
curve estimation models (Xia et al., 2020; Ye et al.,
2021; Kolachina et al., 2012) of MT or NLP mod-
els without actually training those. This is done
by training a prediction model which takes corpus-
level representation X as an input and predicts the
score y for this corpus as an output. In the case
of MT learning curves prediction, X would cor-
respond to the parallel data sample (used to train
MT model), and y is the BLEU score achieved by
an MT model trained on X . This means that each
training point creation requires training a new MT
model, which may become very costly if we want
to create a training set of reasonable size. In this
work, we propose a novel framework to perform the
learning of the prediction model at instance-level.
It can significantly decrease the cost of training
samples creation, by leveraging instance-level rep-
resentations.
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There are multiple factors that would impact DA
learning curve: the complexity of the new domain,
characteristics of the in-domain samples, baseline
performance on the new domain, DA algorithm and
its hyperparameters. In this work, we concentrate
on the factors related to domain complexity and in-
domain sample characteristics. We are particularly
interested to understand how much can we get from
source only in-domain sample, which corresponds
to the real-life scenario.

Aharoni and Goldberg (2020) points out that
the notion of domain can be fuzzy. They suggest
that pretrained language models (LMs) representa-
tion could contain rich information about different
domains, and have demonstrated that there might
be significant overlap between different domains
at instance-level. In the context of NMT Domain
Adaptation, NMT encoder representations are bet-
ter suited to characterize different domains, and
to evaluate the difficulty of those domains for the
general NMT model (Del et al., 2021).

The main contributions of this work are:

(i) We formulate the problem of DA learning
curves prediction as instance-level framework
and demonstrate that instance-level represen-
tation favours fine-grained knowledge transfer
across different domains thus significantly de-
creasing the cost of training samples creation;

(ii) We propose a prediction model that relies on
NMT encoder representations combined with
a number of other instance and corpus-level
characteristics, computed from the monolin-
gual (source) in-domain sample only;

(iii) We analyse how far we can go in DA per-
formance prediction based on the source side
information only, and outline some limitations
of this constraint in Section 7.

2 Related work

The problem of Learning Curve prediction can
be related to a number of different existing prob-
lems in Natural Language Processing (NLP) and
Machine Learning. In this section, we briefly re-
view few works that have tried to predict Learning
Curves (also known as Scaling Laws) or domain
shift for different NLP tasks. We also overview
some works on Active Learning for NMT since
those features can also be relevant to our task.

Learning Curve and domain shift prediction.
There is a number of works that have attempted
to predict model’s performance without actually
executing (and even training) the model in differ-
ent contexts. Elsahar and Gallé (2019) predicts
the classifier’s performance drop under the domain
shift problem; Elloumi et al. (2018) estimates the
ASR performance for unseen broadcasts. Xia et al.
(2020); Ye et al. (2021) study the problem of pre-
dicting a new NLP task performance based on the
collection of previous observed tasks of different
nature. Their proposed models are evaluated on
MT among other tasks.

Closest to our work, Kolachina et al. (2012) pre-
dicts the learning curves for the Statistical Machine
Translation(SMT) task. They formulate the task as
a parametric function fitting problem, and infer the
learning curve relying on set of features based on in-
domain source and/or target sample (assuming no
in-domain parallel sample is available). Most of the
above-mentioned works rely on corpus-level score
predictions and therefore require large amount of
trained MT model instances to generate sufficient
amount of training points for the predictor model.

There is very recent interest around modeling
the Scaling Laws for a language model (Kaplan
et al., 2020) or a NMT model (Gordon et al., 2021;
Ghorbani et al., 2021). Similar to (Kolachina et al.,
2012) these works try to derive a parametric func-
tion that would allow to make a connection between
the model’s training characteristics (amount of data,
parameters or compute) and model’s final perfor-
mance. These models operate at corpus level and
do not address the problem of Domain Adaptation
(and the fact that different domains may follow
different scaling laws functions).

To best of our knowledge, our work is the first
attempt to specifically solve learning curves pre-
diction in the context of NMT Domain Adaptation.
We propose an instance-level framework relying
on NMT encoder representations (which none of
the previous work did) in combination with other
features. Owing to this framework, our proposed
framework requires a small amount of trained MT
models with less than 10 models.

Active learning for NMT. Active Learning (AL)
algorithms are built to select the most useful sam-
ples for improving the performance of a given
model. Therefore, the criteria used by AL algo-
rithms in NLP or MT tasks (Zhang et al., 2017;
Zhao et al., 2020; Peris and Casacuberta, 2018;
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Dou et al., 2020; Wang et al., 2020; Zhan et al.,
2021) could also serve as discriminative features
when it comes to predicting the future NMT per-
formance. We reuse some of the scoring functions
introduced by previous work as specified in Section
4.2. On the other hand, we believe that a successful
Learning Curves prediction framework can help
identify important features and/or samples for an
AL framework.

3 Analysis of real Domain Adaptation
Learning curves

In this section, we analyse several real learning
curves for NMT Domain Adaptation to show how
learning curves do behave across domains and to
motivate our work. In order to perform this analy-
sis, we first present the NMT baseline model (i.e.,
general model) we utilize, as well as datasets used
for Domain Adaptation. We also discuss the NMT
evaluation metrics that we can rely on when train-
ing the learning curve predictor model1.

NMT model. We consider two different NMT
systems: English-German and German-English
systems trained on WMT20 dataset (Barrault et al.,
2020). We provide technical details about architec-
ture and datasets used to train those NMT systems
in the Appendix A.

Domain Adaptation data. We rely on the
dataset released by Aharoni and Goldberg (2020).
The dataset consists of train/dev/test with dedu-
plicated sentences. This dataset splits for 5 do-
mains (Koran, IT, Medical, Law, Subtitles) from
OPUS (Tiedemann, 2012) for German-English. For
each domain, we create random samples Sn,d of
size n (with n =1K, 10K, 20K, 100K) at d domain.
Those samples are then used to train instances of
Domain Adapted models MSn,d

resulting in total
19 models2. We will further refer to the size of
these different samples as anchor points (of the
learning curve).

Domain Adaptation. For each general NMT
model (baseline), we create a set of Domain
Adapted models trained on different samples of in-
domain data described previously (anchor points).

1In what follows we may refer to the learning curve pre-
dictor model as predictor to avoid the confusion with NMT
model.

2We didn’t train 100K-sampled DA model for Koran do-
main since it only has 20K parallel sentences in the training
split
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Figure 1: Domain Adaptation Learning Curves for
English-German NMT model. Y-axis represents the
performance of Domain adapted model (e.g., chrF or
BLEU), X-axis: amount of in-domain samples used by
Domain Adaptation (at log scale).

Domain Adaptation is done via finetuning only
with an in-domain dataset (Appendix A provides
details).

NMT evaluation. Our main goal is to obtain a
corpus-level score that would allow us to assess the
DA performance which is traditionally measured
by BLEU score (Papineni et al., 2002). While
BLEU score may exhibit reasonable correlation
with human judgements at corpus-level, it is known
to have poor correlation at instance-level. Recall
that we are interested to exploit instance-level rep-
resentations to favour knowledge transfer across
domains, therefore we require a reliable instance-
level metric to create gold annotations that the pre-
dictor model could learn from. We rely on chrF
(Popović, 2015) score that, according to WMT 20
MT evaluation track (Mathur et al., 2020), provides
reasonable correlation with human judgement for
instance-level evaluations. For learning curves pre-
diction we rely on mean chrF (average instance-
level chrF across the whole test set) as a proxy for
corpus-level score thus making connection with
instance-level scores used for training of the pre-
dictor.

Analysis of Learning Curves. Figure 1 reports
how BLEU and mean chrF scores progress with
amount of in-domain samples used for Domain
Adaptation (English-German). First, we note that
mean chrF metric exhibits the same behaviour as
BLEU when tracing the Learning Curve3.

Second, we note the difference in a Domain
Adaptation progress for each of domains. For
instance, Koran learning curve is quite steep,
while Subtitles domain improves very slightly and
reaches a plateau performance at already 1K Do-

3Table 5 in Appendix A provides BLEU/chrF for German-
English and confirms the above observation. All the evalua-
tions are performed with SacreBLEU toolkit (Post, 2018).
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main Adaptation anchor point. We also note
that this behaviour isn’t necessarily linked to the
performance of the baseline model on those do-
mains: Law and Medical domains achieve quite
high scores when translated with the baseline NMT
model (tables 5, 6 in the appendix), but they keep
improving as in-domain data grows. Subtitles on
the other hand has lower baseline BLEU and mean
chrF scores and Domain Adaptation with growing
in-domain data doesn’t seem to help much. Such
behaviour probably reveals the limitations of the
dataset, and/or a Domain Adaptation method used
for this domain that would merit further investi-
gations. The problem that we want to address in
our work is whether it is possible to forecast such
behaviour in advance, and how far we can go in
this task with source only in-domain data sample.

4 Approach

In this section, we first formalize the DA learning
curve predictor. Then, we describe the representa-
tions and our model for the problem.

4.1 Problem setup

We are given a baseline model MG (trained on gen-
eral corpus G), input sentence x and a new domain
d defined by its sample Sd. The DA learning curve
predictor can be modeled as a scoring function gθ
which depends on the instance-level representation
φ(x), and corpus-level representation ξ(Ssd)

4.
ModelMSd

is an NMT model obtained by adapt-
ing MG to the new domain(i.e., d on the in-domain
sample of parallel sentences Sd). Learning of DA
learning curve predictor can be done by regress-
ing the actual scoring function y = s(x,MSd

) that
provides translation quality score for an input sen-
tence (from the test domain) x translated with MSd

.
s(x,MSd

) refers to chrF score as discussed in Sec-
tion 3.

The learning objective is then formulated as

min
θ

∑
d∈D

∑
x∈Td

(s(x,MSd
)− gθ(φ(x), ξ(Ssd)))2

where D and Td are a set of training domains5

and training sentences of d domain6, respectively.

4Ss
d denotes source side of in-domain sample Sd since we

restrict ourselves to the case where we can only access source
side of in-domain samples.

5We consider the scenario where the test domain is not
known during the predictor learning phrase and disjoint form

Baseline encoder

Max-pooling layer

Fusion layer

Encoder pooling component

Multiple convolution filters

Extracting instance-level features 

Extracting corpus-level features 

Figure 2: Overview of the learning curve predictor
model, where xi is the i-th token of x. ME

G denotes
the encoder of the baseline translation model(MG)

4.2 Input representations

In this section, we describe different features we
consider for input sentence x and for the source-
side of in-domain sample Ssd.

NMT encoder representations contain a wealth
of information that can be very relevant to the
adaptability of the model to the new domain.
Therefore, we consider it as an important building
block of our predictor model. In our implementa-
tion, we take the last encoder layer representation
of each token, which are then aggregated through
a pooling component in a single vector φenc(x)
(Encoder pooling component at Figure 2).

Corpus-level features ξ(Ssd) allow us to charac-
terize the in-domain sample Ssd with respect to its
size, diversity, and similarity to pretrained data
G. In the simplest case we consider sample size
(amount of instances) as a single corpus-level fea-
ture. In addition we add some of the features used
by Xia et al. (2020); Kolachina et al. (2012) namely:
(1) amount of tokens in Ssd; (2) vocabulary over-
lap ratio between G and Ssd; (3) the average sen-
tence length (in characters, in tokens); (4) the num-
ber of unique tokens in Ssd; and (5) type token
ratio (Richards, 1987)7.

Instance difficulty features (DF). The quality
of the translation depends on how difficult input
sentence is for the NMT system.

Difficulty features φDF (x) include model-based
uncertainty functions from Zhao et al. (2020): (1)

training domains.
6Td does not contain the training sentence for adapted

model.
7We apply log-scale to all feature values to reduce the

variability in feature values.
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Figure 3: Learning curves provided by DaLC compared against gold predictions, baseline predictors (exp3,
XGboost-corpus, XGboost-instance) for German-English/FT.

least-confidence score, (2) margin score (3) average
token entropy. Those features rely on the pretrained
model MG, and therefore could be seen as redun-
dant with encoder representations. However, as
we demonstrate in Section 6 they turn out to be
helpful in some cases. Finally, we consider (4) the
cross-lingual cosine similarity score between rep-
resentation of the source sentence x and its trans-
lation MG(x). These representations are obtained
from an external pretrained multilingual sentence
embedding model, LaBSE (Feng et al., 2020).

4.3 Domain Adaptation Learning Curve
(DaLC) predictor

DaLC predictor corresponds to the model depicted
by Figure 2. It contains two main components:
(1) encoder pooling component that processes
NMT encoder representations (given as a sequence
of vectors) and produces a single vector φenc(x).
(2) fusion layer combining encoder representations
φenc(x) with other pre-computed instance-level
features φDF (x) and corpus-level features ξ(Sd).

In our experiments, we use the multi-filter CNN
architecture proposed by Kim (2014) that is widely
used in text classification tasks as encoder pool-
ing component. Forfusion component, we simply
stack K feed-forward layers followed by ReLU
and Sigmoid activation functions at the final layer.

5 Experimental settings

5.1 Data and Evaluation

English-German. We rely on data described in
Section 3. We use development split (2K sentences)
for predictor training: it is randomly split into train
(80%) and validation (20%) sets.

The predictor is evaluated on test split portion for
each domain (2K sentences). The results reported
for each domain are obtained with the predictor
trained in Leave-one-out settings (e.g., predictor
trained on Law, IT, Koran, Medical is evaluated on
Subtitles). Such evaluation allows us to mimic real-
life scenario where we need to predict performance
for a completely new domain which is not known
at training time.

The evaluation of the predictor is done by mea-
suring error between the predicted score and the
ground truth score (measured by mean chrF) across
all the anchor points. Following Kolachina et al.
(2012), we report Root Mean Square Error (RMSE)
across all the available test anchor points. In addi-
tion, we report absolute error at each anchor point
(when possible) to allow for finer-grained analysis
of the results. Each experiment is repeated 5 times
with different random seeds, and an average across
all runs is reported.

English-Korean. We consider five specialized
domains (technology, finance, travel, sports and
social science) publicly available from AI-Hub 8.
The size of the validation and test sets are 10k and
5k, respectively. We randomly sample Sn,d of 2K
sentences following the settings of English-German
experiment. Detailed information of baseline NMT
models and DA models for English-Korean is de-
scribed in Appendix A. We adopt the same evalua-
tion scenario as in English-German (leave-one-out
settings with RMSE evaluation)

8https://aihub.or.kr/aihub-data/
natural-language/about
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IT Koran Law Medical Subtitles Avg
German-English/FT

exp3 0.125 0.292 0.305 0.397 0.321 0.288
XGboost-corpus 0.197 0.235 0.305 0.435 0.157 0.266

XGboost-instance 0.084 0.201 0.062 0.176 0.126 0.130
DaLC 0.009 0.058 0.057 0.094 0.015 0.047

DaLC / DF 0.011 0.065 0.058 0.117 0.022 0.055
DaLC / corpus 0.049 0.045 0.097 0.117 0.052 0.072

DaLC / NMTEnc 0.025 0.148 0.085 0.081 0.061 0.080
English-German/FT

exp3 0.035 0.180 0.116 0.114 0.112 0.112
XGboost-corpus 0.111 0.081 0.169 0.169 0.029 0.112

XGboost-instance 0.072 0.157 0.159 0.116 0.09 0.119
DaLC 0.048 0.107 0.123 0.041 0.057 0.075

DaLC / DF 0.065 0.102 0.123 0.044 0.053 0.077
DaLC / corpus 0.048 0.086 0.126 0.043 0.063 0.073

DaLC / NMTEnc 0.043 0.169 0.125 0.016 0.095 0.090
German-English/Adapter

exp3 0.055 0.175 0.100 0.169 0.141 0.128
XGboost-corpus 0.079 0.137 0.115 0.166 0.083 0.116

XGboost-instance 0.100 0.145 0.092 0.162 0.097 0.119
DaLC 0.022 0.045 0.080 0.102 0.019 0.054

DaLC / DF 0.024 0.057 0.082 0.109 0.020 0.058
DaLC / corpus 0.030 0.048 0.087 0.109 0.036 0.062

DaLC / NMTEnc 0.079 0.168 0.081 0.068 0.089 0.097

Table 1: RMSE for DaLC predictor compared against exp3 and XGboost baselines on De-En and En-De directions,
where FT and Adapters correspond to the NMT Domain Adaptation method in each experiment.

5.2 Baseline predictor models

Traditionally predictor models are evaluated
against a naive baseline predicting the mean over
observations used for training. However, such base-
line does not make much sense in the context of
learning curve prediction since it is unable to ex-
trapolate to new anchor points.

exp3 baseline. exp3 is a 3-parameter function
that is defined by y = c − e(−ax+b). Kolachina
et al. (2012) has identified this function as a good
candidate for SMT learning curve prediction fit-
ting. In our experiment, we fit this function through
least-squares algorithm to all the observations we
dispose across all the domains and anchor points
(19 points). This function can be seen as an exten-
sion of mean baseline allowing to extrapolate to
unobserved anchor points.

XGboost-based baselines. Following Xia et al.
(2020) we also use gradient boosting trees model
(Friedman, 2000), implemented in XGboost (Chen
and Guestrin, 2016). XGboost-corpus baseline cor-
responds to the XGboost model trained with the
corpus-level features: this baseline is compara-
ble with the one used by Xia et al. (2020). We
also compare our model against XGboost-instance
baseline which corresponds to the XGboost model
trained with the full set of features (section 4.2)

that DaLC predictor is trained with. NMT encoder
representations are squeezed in a single vector via
min-max pooling and fed to XGboost along with
other instance-level features. Comparing XGBoost-
corpus and XGboost-instance results allows us to
decouple the impact of instance-level representa-
tions and impact of the predictor model learnt from
these representations. Exact details of XGboost
training are reported in Appendix B.

5.3 DaLC predictor

In our preliminary experiments, we observed that
the capacity of encoder pooling component does
not have much impact on the overall performance.
We believe this is because NMT encoder outputs
already provide rich contextualized representations
of the input sequence. On the other hand, it is
important to give enough capacity to the Fusion
layer which should mix instance-level representa-
tions (including NMT encoder representation) with
corpus-level features. In our experiments, encoder
pooling component is a single layer multi-filter
CNN (with 3 filters of size 2, 3, and 4). Fusion
layer is composed of 4 feed-forward layers of hid-
den size 512, followed by ReLU activation, and
final feed-forward layer followed by Sigmoid acti-
vation that brings the final prediction at 0-1 scale.
We use Mean Squared Loss (MSE) for training. We
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Finance Social Sports Tech Travel Avg
Korean-English/FT

exp3 0.055 0.028 0.018 0.080 0.069 0.050
XGboost-corpus 0.246 0.187 0.205 0.307 0.152 0.219

XGboost-instance 0.035 0.066 0.031 0.092 0.027 0.050
DaLC 0.028 0.007 0.016 0.085 0.010 0.029

DaLC / DF 0.046 0.010 0.020 0.086 0.010 0.034
DaLC / corpus 0.037 0.009 0.019 0.104 0.017 0.037

DaLC / NMTEnc 0.025 0.046 0.021 0.089 0.011 0.038

Table 2: RMSE for DaLC predictor compared against exp3 and XGboost baselines on the finetuning method with
the Ko-En direction.

apply early stopping criteria with the patience of 10
epochs. We provide more training hyperparameters
in the Appendix E.

6 Results

6.1 Prediction for observed anchor points

Table 1 reports the results across different domains
for English-German and German-English. Table 2
reports the results for Korean-Enligsh. We compare
corpus-level baselines (exp3 and XGboost-corpus)
against different instance-level predictors: (i) our
DaLC predictor relying on the full set of instance-
and corpus-level features described in the section
4.2; (ii) XGboost-instance (section 5.2) relying on
same features as DaLC; (iii) Ablation of differ-
ent groups of features from full model (DaLC/DF,
DaLC/corpus or DaLC/NMT encoder)

For each domain, we report RMSE when com-
paring predicted mean chrF to the gold mean chrF9

score averaged across all the anchor points (0, 1k,
10k, 20k and 100k).

Instance-level vs corpus-level. We note that
instance-level models generally outperform corpus-
level models for most of domains and language
pairs. An exception is English-German direction,
where XGboost-corpus leads to better prediction
then XGboost-instance in Koran and Subtitles do-
main. According to additional visualisation of
these result in Figure 3 and Figure 7 (in Appendix)
we see that XGboost-corpus model actually fails to
learn meaningful patterns as it predicts the same
score (0.5) for all the domains across all the anchor

9The gold mean chrF corresponds at anchor point K for
domain d corresponds to the actual value of mean chrF ob-
tained after adaptation of NMT model with K samples from
domain d.

points10. It leads to lower RMSE for Koran and
Subtitles domains only because the gold mean chrF
for those sets is very close to 0.5. Therefore, even if
the instance-level leads to higher RMSE it provides
more accurate predictions overall as shown by Avg
column in Table 1.

We observe that while DaLC reaches lowest
RMSE across all the domains for German-English
and Korean-English, it is not necessarily true for
English-German. We note however, that DaLC per-
formance varies less across domains, and reaches
overall best performance (reflected by Avg col-
umn) which means that it is less influenced by
overall mean performance (as opposed to corpus-
level models), and is able to better exploit instance-
level representations that favour knowledge transfer
across domains.

In addition in the Appendix C we report com-
putation cost for instance-level and corpus corpus
level models.

Impact of different features. We note that the
impact of DF and corpus features varies across the
domains. One clear trend is that NMT encoder fea-
tures seem to be important for predictor quality. An
interesting exception is the Medical domain, where
the removal of NMT encoder representations seem
to reach the best RMSE. Furthermore, Appendix J
provides an in-depth ablation study for each feature
used in the model.

Impact of DA algorithm. We examine the ef-
fectiveness of the proposed method on the differ-
ent adaptation algorithm, comparing adapter lay-
ers (Bapna and Firat, 2019) to full finetuning. The
Adapter layer is a small module inserted on top of
each encoder and decoder block and updated only

10We believe this might be due to the very small amount of
corpus-level training samples.
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Figure 4: ChrF score distribution of training and test datasets across each experiment case in the German-English
FT experiment. Each histogram shows the difference between the training and test ChrF score distributions in
each leave one out setting. For instance, the ChrF score distribution of the Koran column obtains where training
distribution denotes all training anchor points of IT, Law, Medical and Subtitles domain, and test distribution
represent chrF score in all anchor points of the Koran domain.

with in-domain samples (while keeping the rest of
the model frozen). The hidden dimension size of
the adapter is 1024. Details of the adapted models
is provided in Table 5.

Table 1 demonstrates the quality of predictions
domain adapted model via Adapter layers in the De-
En direction. Comparing to FT results on the De-
En direction, we notice that the predictor quality
behaves similarly for both DA methods. It indicates
that DaLC can be extended to other DA methods.

Impact of other factors. We report additional
experiments such as depending on the number of
domains for training predictor and performance on
a mixing of two different domains in Appendix H
and Appendix D.

6.2 Interpolation and Extrapolation of DA
performance

One of practical and possible scenarios is predic-
tion of DA performance for the anchor points that
were not observed in the training data. Table 3
shows the accuracy of our predictor for interpo-
lation11 (3k and 40k) and extrapolation12 (160k)
scenarios for Subtitles test domain in the De-En
direction. We recall that the predictors have been
trained on 0k, 10k, 20k and 100k anchor points for
IT, Medical, Law and Koran domains.

We report the absolute error with respect to gold
mean chrF (MAE) for these specific anchor points.
We can see that DaLC achieves significantly lower
error compared to other baselines. We note how-
ever that extrapolation error (160k) is higher com-
pared to interpolation errors (3k and 40k).

11Interpolation: prediction for the unseen anchor points that
are within the range of observed anchors.

12Extrapolation: prediction for the anchor point that lies
beyond observed anchors.

model 3K 40k 160k
exp3 0.1087 0.1640 0.1934

XGboost-instance 0.1546 0.0922 0.1125
DaLC 0.0063 0.0080 0.0413

Table 3: Results for interpolation and extrapolation of
learnt models to new (unseen in training) anchor point:
we report the absolute value of the difference between
gold and predicted values (subtitles domain)

7 Analysis and Discussion

The results reported in previous section suggest
that overall DaLC prediction error depends a lot on
the nature of the test domain (as seen on Figures
3, 7 and Table 1). Thus, all the predictors tend to
overestimate the mean chrF score on Koran do-
main, or underestimate the score on Law domain.
In this section we try to analyse this phenomenon
and explain such behaviour.

7.1 Train/test data distribution

Figure 4 provides visualization of training and test
distribution for each domain. We can see that in
the case of Koran and Law domains there is a high-
est shift between train and test distribution of chrF
scores: Koran has more low-quality translations
(low chrF value) compared to its training domains,
while for Law it is the opposite. This discrepancy
leads to underestimated scores for Law domain and
overestimated scores for Koran. On the other hand,
we can see the predictor has higher accuracy in
other domains that have a similar distribution be-
tween training and test distributions. We observe
the same patterns for the En-De direction (Figure
6), or when extending our framework to more train-
ing domains (Appendix H).
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Figure 5: Comparison of learning curve prediction with DaLC and DaLC +with 0k on the De-En direction.

7.2 Adding 0 anchor point

The above finding regarding train/test discrepancy
leading to a higher prediction error implies that
even though our model is able to exploit instance-
level representations to some extent (it achieves
lower prediction error compared to corpus-level
baseline), it is still heavily impacted by overall data
distribution. One possible explanation for such
behaviour would be the fact that source-level rep-
resentations may not contain enough information
for model to rely on to predict future translation
quality. A simple example would be a source sen-
tence that should be either translated in “formal” or
“informal” manner depending on what the target do-
main is. When the model lacks information about
target language distribution for the new domain its
simply has no mean to learn faithful predictor.

In this experiment, we consider the scenario
where we have access to a small sample of par-
allel data (2K sentences) for the test domain. When
such sample is available the predictor training data
can be enriched with 0-anchor point samples corre-
sponding to the translations produced by our base-
line model and their corresponding chrF scores.

Figure 5 and Figure 8 in Appendix demonstrate
the results of this experiment (Table 13 reports
RMSE scores for the reader interested in more in-
depth analysis). We see that addition of 0k anchor
point significantly improves the learning curves
obtained by DaLC predictor. This confirms our
hypothesis that relying on monolingual in-domain
sample may limit the predictors’ performance for
certain domains. Adding a small parallel sample
to obtain 0k anchor point instances seems to be
effective work around for this problem.

8 Conclusion

In this work, we formulate a problem of Domain
Adaptation Learning Curves prediction for NMT
as instance-level learning framework. We demon-
strate that it is possible to learn reasonable learning
curve prediction model with a very small amount of
NMT model instances via instance-level learning
rather than corpus-level learning that most previ-
ous works rely on. We propose a DaLC model re-
lying on NMT encoder representations, combined
with various instance and corpus-level features. We
show that such model is able to achieve good results
with small amount of pretrained model instances.
We perform in-depth analysis of the results for the
domains where the predictor was less successful
and conclude that the capacity of the predictor rely-
ing on the source-side sample only can be limited
for some domains. Further analysis of characteris-
tics of such domains could lead to better Domain
Adaptation strategies. Finally, we believe it will
be interesting to deepen the connections between
Active Learning framework and Learning Curves
prediction frameworks which could mutually help
one another.
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A NMT model training and domain
adaptation hyper parameters

A.1 Baseline

English-German Our baseline models rely
on transformer-base architecture (Vaswani
et al., 2017) trained on WMT-20 German-English
dataset. For English-German direction we used
inline casing (Berard et al., 2019) and tokenized
text with BPE (Sennrich et al., 2016) using 24K
vocabulary size encoding joint vocabulary shared
between two languages. We also share embedding
parameters between source and target. We use
Fairseq toolkit (Ott et al., 2019) for training the
baseline model with default training parameters for
transformer-base architecture as proposed
by Vaswani et al. (2017). Specifically, MG con-
sists of six layers, 512 units and eight heads. We
utilize the same Adam warm-up optimizer as in the
original paper. Note that the baseline model for
Finetuning and Adapter experiments in the same
language direction are identical regardless of Do-
main Adaptation methods.

Korean-English We follow the same experi-
ment setting described in Appendix. E. We utilize
transformer-big architecture (Vaswani et al.,
2017) trained on the Ko-En direction. Training
datasets of baseline model is constructed by using
six categories datasets13 in AI-Hub 14. The total
number of training dataset is 1.51M parallel sen-
tences. We set the size of BPE as 32K.

A.2 Domain Adaptation

Hyper-parameters used for Domain Adaptation
models are reported in the Table 4. We use early
stopping criteria on the validation loss performance
in order to avoid overfitting to the data. Note that
at this stage we used greedy decoding to compute
chrF scores. We verified that the actual learning
curves with greedy decoding behaves similarly to
the learning curves with beam search. We stick
to greedy decoding because we believe that beam
search brings additional complexity to the perfor-
mance prediction. We leave the impact of decoding
method on the performance prediction for future
work.

Table 5 and Table 8 report the BLEU/mean chrF
scores reached by each of our models on each lan-

13We aggregate news, dialogue, colloquial, Korean culture,
ordinance and website.

14https://aihub.or.kr/aidata/87

En-De De-En Ko-En
Learning rate 0.001 0.001 0.001

batch size 4k 2k 2k

Table 4: Parameters used for Domain Adaptation of
NMT system in each direction, where the batch size
denotes the tokens per batch. En-De/FT and En-
De/Adapter utilize the same learning rate and the batch
size.

guage. We note that the model adapted via fine-
tuning follows the same trend as the one adapted
via adapter layers. Table 6 reports best achieved
loss for each domain and each anchor point, as well
as the number of epochs required to reach it. One
needs to keep in mind that the size of a single epoch
varies across anchor points (it is 10 times bigger for
10k anchor point than for 1k anchor point). Note
that loss is directly comparable between different
domains and different anchor points since it corre-
sponds to Cross-entropy loss relying on the same
vocabulary.

B Implementation details of XGboost

We run the XG-boost regressor using XGBoost li-
brary 15. The learning rate of the XG-boost is set to
0.1. We follow the default regularization to allevi-
ate the overfitting problem. The objective function
of the XG-boost is RMSE. Regarding the model
parameters, the number of trees and the maximum
depth of trees are 100 and 10, respectively.

C Computation time and memory usage

We compare the computation time and memory
usage of DaLC with other models on the learn-
ing curve prediction task in Table 7. Although,
corpus-level frameworks(i.e., XGboost-corpus and
exp3) require less computation cost and memory
resources, the performances of these models with
small number of anchor points are very far from the
real value described in Table 1. The most computa-
tional heavy part of our model is the computation
of anchor points used to train the predictor model.
Anchor point implies training a Domain Adapted
model with in-domain samples (200 300 sec in best
case scenario of 1000 in-domain samples and up
to 4h for larger in-domain samples). For this rea-
son, instance-level frameworks are more practical
in real-life scenarios as they achieve good perfor-
mance with small amount of anchor points. Note,

15https://github.com/dmlc/xgboost
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IT Koran Law Medical Subtitles
BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

German-English/FT
Baseline 29.2 0.506 10.2 0.335 27.8 0.554 32.7 0.585 20.9 0.415

1K 27.8 0.498 13.3 0.367 34.6 0.600 36.6 0.629 21.2 0.393
10K 30.8 0.568 20.2 0.430 40.1 0.641 45.0 0.702 24.9 0.439
20K 33.5 0.596 19.7 0.426 42.6 0.648 47.7 0.709 26.0 0.451
100K 39.5 0.658 - - 49.0 0.696 55.1 0.753 30.8 0.500

English-German/FT
Baseline 32.1 0.544 11.9 0.358 36.8 0.627 34.5 0.599 21.8 0.472

1K 33.4 0.576 16.3 0.393 39.2 0.643 37.7 0.634 23.9 0.472
10K 34.6 0.605 21.5 0.441 42.3 0.668 41.9 0.664 25.2 0.482
20K 35.9 0.619 23.4 0.452 43.3 0.675 42.6 0.668 25.2 0.484
100K 38.2 0.653 - - 46.7 0.702 46.6 0.694 25.6 0.490

German-English/Adapters
Baseline 29.2 0.506 10.2 0.335 27.8 0.554 32.7 0.585 20.9 0.415

1K 30.0 0.520 12.5 0.341 33.1 0.562 33.0 0.613 16.7 0.374
10K 30.2 0.562 17.2 0.387 38.6 0.614 41.9 0.670 21.5 0.416
20K 31.3 0.585 19.0 0.401 40.0 0.629 44.2 0.691 23.5 0.445
100K 35.2 0.638 - - 46.0 0.673 51.1 0.730 25.4 0.476

Table 5: Domain Adaptation performance across domains for English-German and German-English models as
measure either in BLEU or in chrF scores.

IT Koran Law Medical Subtitles
Epoch loss Epoch loss Epoch loss epoch loss epoch loss

English-German/FT
1K 4 3.718 12 4.228 4 3.033 5 3.203 3 3.840
10K 12 3.502 20 3.680 10 2.929 12 3.034 9 3.784
20K 11 3.433 20 3.489 9 2.881 10 2.971 7 3.762
100K 11 3.242 - - 13 2.759 12 2.809 6 3.691

Table 6: Domain Adaptation convergence statistics. We report the number of epochs when the Domain Adaptation
reached the best validation loss, as well as the value of best validation loss. Note that each epoch corresponds to
different amount of updates for different anchor point due to the difference in the in-domain samples used for DA.
The loss however is comparable across different anchor points and different domains since it is always based on
the same vocabulary.

Figure 6: ChrF score distribution of training and test datasets across each experiment case in the English-German
FT experiment. Each histogram shows the difference between the training and test ChrF score distributions in each
least one out setting. For instance, the training distribution of Koran column obtains from all training anchor points
of IT, Law, Medical and Subtitles domain. Test distribution of Koran column represents chrF score in all anchor
points of the Koran domain.
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Model Train time(s/epoch) Test time(s/anchor) params
exp3 0.001 0.0002 3
XGboost-corpus 0.23 0.0013 100
XGboost-instance 1.44 0.0802 1.03M
DaLC 8.23 0.0914 3.9M

Table 7: Computation time and memory usage of each
model, where the test time is the time to inference one
anchor point.

that previous works Xia et al. (2020); Kolachina
et al. (2012) relied on 50-90 of MT model instances
to train reliable corpus-level predictor.

Considering the performance and total training
time to obtain training anchor points, instance-level
frameworks are feasible solutions to estimate the
future performance without finetuning. In instance-
level frameworks, DaLC is slightly slower than
XGboost-instance but DaLC outperforms other ap-
proaches as shown in Table 1. Moreover, DaLC is
a very light in terms of parameter size compared to
transformer base (65M). Our model can accurately
forecast the finetuning performance with only 4%
of the total number parameters of transformer
base without the need of computation resources
for finetuning.

D Performance on the Mixed domain

We evaluate our model under a loosely defined do-
main, such as mixing of two domains. To simulate
this scenario, we defines a mixed domain by aggre-
gating Tech and TED domain. The samples Sn.d
of size n in the mixed domain uniformly sampled
from each domain. The test set of a mixed domain
also is constructed with all test sentences of both
domains. We train DaLC with anchor points of Fi-
nance, Social, Sports and Travel (i.e., Except ‘Tech’
domain) and then evaluate the performance on the
mixed domain. Table 10 summaizes the perfor-
mance on each anchor point in the mixed domain
experiment.

Table 9 demonstrates the RMSE errors across an-
chor points on the defined mixed domain and each
domain. As previously, DaLC reaches lower (and
more stable) prediction error compared to corpus-
level models on averages. Thus, even the corpus-
level can reach lower error in some cases (E.g.,
XGboost-corpus on TED) they still tend to be very
close to predicting the mean score of the training
data, and therefore their predictions are not stable
across domains, while DaLC’s predictions are more
stable.

E Predictor implementation details

The overall architecture of the predictor is de-
scribed in Figure 2. Our prediction is composed
of two parts, the encoder pooling component and
the fusion layer component. The encoder pooling
component is based on the multi-filter CNN archi-
tecture proposed by Kim (2014) which is widely
used in text classification tasks. It encodes the sen-
tence to latent feature hi, which contains context
information to predict performance.

At first, the model obtains the encoder repre-
sentation ei ∈ Rd of the i-th token of the input
x = (x1, x2..., xn) from the encoder of the base-
line model(MG), where d and n is the size of di-
mension and the length of x . The size of hidden
dimension d is 512 in our implementation. Next,
we apply the multiple convolution filters across the
sequence in the same manner as the original paper,
where the window sizes of convolution filters are
2,3 and 4. We then obtain the output hi ∈ Rd
from the max pooling operation along the sequence
of convolution outputs. To fuse all features, we
concatenate the features of encoder representations
hi, the pre-computed domain-difficulty features
φDL(x) and the corpus-level features ξ(Sd). The
fusion layer forecasts the performance based on
the concatenated features, where the fusion layer is
constructed with a five layer feed-forward neural
network with non-linear activation functions. We
utilize a non-linear function as ReLU, but the last
layer of the feed-forward neural network utilize the
Sigmoid function to change the output from zero
to one. Learning is done via MSE loss between the
predicted score and the ground-truth score.

Training hyperparameters To optimize the
model, we use the learning rate as 0.001 with Adam
optimizer. Moreover, the learning rate gradually
decreases based on an exponential decay scheduler.
All experiments stop the training based on the early
stopping with patience as 10. Note that the param-
eters of MG encoder are fixed while training the
predictor.

F Overview of predictor training dataset
creation

• We start from the deduplicated train/dev/test
splits.

• we sampled 1k, 10k, 20k or 100k samples
from the train split
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Finace Social Sports Tech Travel
BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Korean-English/FT
Baseline 49.5 0.718 37.9 0.644 46.2 0.678 27.6 0.583 37.2 0.623

1K 52.5 0.736 41.9 0.674 48.8 0.695 50.9 0.728 39.9 0.645
10K 54.6 0.749 44.5 0.691 51.2 0.712 56.9 0.768 41.4 0.655
20K 55.5 0.754 45.6 0.699 52.2 0.717 58.9 0.780 42.1 0.660
100K 58.0 0.768 48.5 0.718 54.7 0.732 63.2 0.807 43.8 0.672

Table 8: Domain Adaptation performance across domains for Korean-English model as measure either in BLEU
or in chrF scores.

Mixed TED Tech
exp3 0.231 0.297 0.136
XGboost-Corpus 0.170 0.070 0.229
XGboost-Instance 0.169 0.196 0.141
DaLC 0.105 0.112 0.099

Table 9: RMSE on the mixed domain experiments,
where ‘Mixed’ column means RMSE error on perfor-
mance estimation in the mixed domain test sentences.
‘TED’ and ‘Tech’ column represents the performance
on only test sentences on the corresponding domain in
the mixing domain.

Mixed TED Tech
Korean-English/FT

Baseline 0.503 0.423 0.583
1K 0.562 0.427 0.697

10K 0.590 0.431 0.748
20K 0.596 0.429 0.763
100K 0.618 0.439 0.795

Table 10: ChrF scores on each test set with a mixed
Domain Adaptation case, where the models trained
with uniformly sampled TED and Tech training dataset.
Note that a Domain Adaptation model on each an-
chor point(i.e.,row-wise) is the same adaptions model.
‘Mixed’ represents average chrF scores on test sen-
tences of both TED and Tech domains.

• we finetuned English-German baseline NMT
system on each of those samples

• We then were able to compute instance-level
chrF for each domain, at each anchor point for
dev and test splits.

G Additional results

Table 11 reports prediction errors (RMSE/MAE)
across all available anchor points for all domains
for DaLC. Additionally, we provide results of the
learning curves depending on the different com-
bination components of DaLC in Figure 9. Table
12 reports the deviation from the gold predictions
for each anchor point, each domain. Figure 7 is
the learning curve prediction result in the English-
German direction. We also report Table 13 to
demonstrate the detail RMSE errors with + with
0k experiments described in Section 7.2

H Impact of the amount of domains

Elsahar and Gallé (2019) have shown one can ob-
tain better precision at performance drop prediction
due to domain shift when the amount of training do-
mains increases. Inspired by this finding, we extend
the set of our training domains with additional do-
mains (English-German language pair only): Bible,
Tatoeba, Medline, TAUS, PatTR, and MuchMore.
We provide some details of these various datasets
in the Appendix I.

For each of these datasets, we created a predic-
tor training dataset following the same settings as
previously (whole procedure is outlined in the Ap-
pendix F).

We train DaLC predictor keeping the same test
domains as previously, but extend corresponding
training domains with newly introduced domains.
We consider following extensions of the training
domains: (Bible, Medline, PatTR), (TAUS, Tatoeba,

1803



1k 10k 20k 100k
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

it

1k 10k 20k

koran

1k 10k 20k 100k

law

1k 10k 20k 100k

medical

1k 10k 20k 100k

subtitles

gold exp3 XGboost-corpus XGboost-instance DaLC

Figure 7: Learning curves provided by DaLC compared against gold predictions, baseline predictors (exp3,
XGboost-corpus, XGboost-instanc) for English-German.
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Figure 8: Comparison of learning curve prediction with DaLC and DaLC +with 0k on the English to German

MuchMore) or All (6 new domains). The goal of
this split is to decouple the differences in perfor-
mance that are due to the amount of training data
from those due to the nature of new domains added.
Table 15 reports the results. We can see that ad-
ditional domains indeed improve the overall error.
We note that error decreases Law domain, but er-
ror increases on Koran domain. When looking at
the result we see that the addition of new domains
simply leads to higher predictions scores overall
(which is due to overall high chrF scores in the
additional domains).

I Additional datasets

• Bible, Tatoeba from Opus Website16

• Medline: consists of abstracts from scientific
publications, distributed as part of WMT-20

16https://opus.nlpl.eu/

Biomedical translation challenge17

• TAUS18: TAUS Corona Crisis Corpora that
consists of crawled documents related to
Covid-19 crisis.

• PatTR19: patents related to medical domain

• MuchMore20: scientific medical abstracts ob-
tained from the Springer Link web site.

J In-depth ablation study

Table 14 reports the results for in-depth ablation
study on Subtitles domain. Table 14 shows the

17http://www.statmt.org/wmt20/
biomedical-translation-task.html

18https://md.taus.net/corona
19https://ufal.mff.cuni.cz/ufal_

medical_corpus
20https://ufal.mff.cuni.cz/ufal_

medical_corpus
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performance of the model after removing the cor-
responding feature from the input in the DaLC.
The result shows that all features contribute to im-
prove the performance in our task and empirically
demonstrates the importance of each feature. The
normations correspond to

• MS : margin score,

• LC: least-confidence score,

• ATE : average token entropy,

• Labse: LaBSE based cosine similarity score,

• c-length : the average sentence length in char-
acters,

• n-token: the amount of tokens in Ssd,

• l-token : the average sentence length in to-
kens,

• TTR : type token ratio in Ssd,

• overlap: vocabulary overlap ratio between G
and Ssd,

• n-vocab :the number of unique tokens in Ssd,

where the each term is mentioned at the Section
4.2.
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domain Mean exp3-fit XGboost-instance DaLC/DF DaLC
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

koran 0.328 0.164 0.292 0.145 0.201 0.200 0.064 0.065 0.058 0.056
it 0.073 0.028 0.125 0.049 0.084 0.076 0.011 0.009 0.009 0.009

medical 0.366 0.162 0.397 0.176 0.176 0.172 0.117 0.115 0.094 0.082
law 0.248 0.108 0.305 0.134 0.085 0.079 0.058 0.047 0.057 0.053

subtitles 0.308 0.094 0.321 0.139 0.126 0.120 0.022 0.019 0.015 0.007

Table 11: Global Learning Curve prediction error: we report RMSE/MAE across all the anchor points available
for each domain. De-En translation, Adaptation method: finetuning

it koran law medical subtitles
0 -0.011 (0.506) -0.075 (0.335) 0.082 (0.554) 0.043 (0.585) 0.001 (0.415)

1000 -0.005 (0.498) -0.053 (0.367) 0.072 (0.600) 0.088 (0.629) -0.020 (0.393)
10000 0.010 (0.568) -0.036 (0.430) 0.039 (0.641) 0.120 (0.702) -0.002 (0.439)
20000 0.002 (0.596) -0.061 (0.426) 0.029 (0.648) 0.100 (0.709) 0.007 (0.451)

100000 -0.004 (0.658) - 0.044 (0.696) 0.096 (0.753) -0.026 (0.500)

Table 12: Learning Curves prediction results. En-De translation, Adaptation method: finetuning Each cell reports
gold mean chrF score and prediction model deviation from gold mean chrF ( prediction error ).

German-English/FT English-German/FT
IT Koran Law Medical Subtitles IT Koran Law Medical Subtitles

XGboost-instance 0.092 0.209 0.080 0.176 0.151 0.075 0.158 0.155 0.105 0.083
DaLC 0.006 0.051 0.050 0.102 0.017 0.064 0.111 0.128 0.032 0.050

Adding 0k anchor point of the test domain
XGboost + with 0k 0.900 0.144 0.073 0.156 0.900 0.076 0.152 0.160 0.108 0.086

DaLC + with 0k 0.007 0.032 0.029 0.060 0.024 0.059 0.028 0.023 0.016 0.035

Table 13: RMSE for DaLC predictor and XGboost baseline when adding 0k anchor point of a test domain as
additional training data on English-German language pair. +with 0k represents the model utilizes the 0k anchor
point of the given test domain in training. We report RMSE across all anchor points of the test domain excluding
the 0k anchor point.

Full φDF ξ
DaLC wo MS wo LC wo ATE wo Labse wo c-length wo n-token wo l-token wo TTR wo overlap wo n-vocab

RMSE 0.0097 0.0175 0.0103 0.0186 0.0112 0.0179 0.0174 0.0241 0.0263 0.0194 0.0119
MAE 0.0085 0.0141 0.0121 0.0149 0.0095 0.0153 0.0147 0.0176 0.0176 0.0159 0.0102

Table 14: Ablation study of DaLC. AL with the subtitles domain, where the model train with the other domains
case, such as koran, medical, it and law domains. ‘wo’ indicates removal of corresponding feature from the input
of the model. For example, ‘wo lf’ indicates removing the least confidence score in the input.

IT Koran Law Medical Subtitles Avg
4 domains 0.054 0.114 0.124 0.032 0.06 0.077

+ Bible + Medline + PatTR 0.033 0.128 0.076 0.031 0.044 0.062
+ TAUS + Tatoeba + MuchMore 0.016 0.124 0.083 0.012 0.092 0.065

+ All 0.028 0.136 0.061 0.018 0.089 0.066

Table 15: Impact of the number of domains on the predictors performance (En-De, FT)
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Figure 9: Learning curves for gold scores and predictors combining different components (please refer to section
6 for details of those combinations. Best viewed in color.
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