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Abstract

To maximize the accuracy and increase the
overall acceptance of text classifiers, we
propose a framework for the efficient, in-
operation moderation of classifiers’ output.
Our framework focuses on use cases in which
F1-scores of modern Neural Networks classi-
fiers (ca. 90%) are still inapplicable in prac-
tice. We suggest a semi-automated approach
that uses prediction uncertainties to pass un-
confident, probably incorrect classifications to
human moderators. To minimize the workload,
we limit the human moderated data to the point
where the accuracy gains saturate and further
human effort does not lead to substantial im-
provements. A series of benchmarking exper-
iments based on three different datasets and
three state-of-the-art classifiers show that our
framework can improve the classification F1-
scores by 5.1 to 11.2% (up to approx. 98 to
99%), while reducing the moderation load up
to 73.3% compared to a random moderation.

1 Introduction

Accurately classifying an overwhelming amount
of textual data is a common research challenge
(Pouyanfar et al., 2018). In recent years, machine
learning approaches, particularly Neural Networks
(NNs), have received great attention to support tex-
tual classification (Lai et al., 2015). However, in
practice, fully automated approaches are still rare
due to the general lack of top, almost-perfect clas-
sification accuracy. If the accuracy of a trained
and hyper-tuned state-of-the-art classifier still does
not meet the domain requirements, a full manual
approach is likely to be the fall-back solution.

To prevent classification mistakes and strengthen
the overall acceptance of artificial decision making,
socio-technical approaches that integrate human
domain experts in the decision loop are gaining
in importance (Holzinger, 2016). Recent research
has shown that including the prediction uncertainty
of NNs can detect more complex text inputs, i.e.,

either short or very long texts with less informa-
tive tokens (Xiao and Wang, 2019), and probably
wrong (Hendrycks and Gimpel, 2017) predictions,
which are worth checking manually. Since human
resources are cost intensive and do not scale well to
larger workloads, moderation processes should be
designed with human-resource-efficiency in mind.
Yet, the efficient in-operation integration of hu-
man efforts for building semi-automated decision-
making systems – i.e. moderated classifiers – re-
mains largely unexplored.

This paper introduces a novel framework for the
efficient moderation of NN text classifiers. Our
framework extends a given NN with human exper-
tise to create a semi-automated decision-making
system. Text instances are moderated manually
when classifier outcomes are likely to be false. We
use the concept of prediction uncertainty (Der Ki-
ureghian and Ditlevsen, 2009) to quantify the re-
liability of a classification. When a classifier is
highly uncertain, we let human moderators inter-
vene. To minimize human efforts, we propose to
limit the moderation to the point where the clas-
sification accuracy gain saturates. While active
learning (Settles, 2009) aims to limit human efforts
during the training of classifiers, our moderation
framework seeks to substantially enhance the ac-
curacy of trained and already deployed classifiers
– surpassing the maximum achievable accuracy of
an automatic classifier to still achieve an almost-
perfect in-operation accuracy.

Our contribution is twofold. First, we introduce a
novel saturation-based framework for the efficient,
in-operation moderation of NN-based text classi-
fiers. Second, we empirically evaluate the accu-
racy improvement and needed moderation load for
three English text classification tasks including hate
speech detection, sentiment analysis, and topic clas-
sification. We run multiple training trails using dif-
ferent predictive uncertainty estimation approaches
and compare their initial and post-moderation F1-
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scores and evaluate their suitability.
The remainder of the paper is structured as fol-

lows: Section 2 introduces our moderation frame-
work and outlines the uncertainty estimation tech-
niques to decide when to moderate. Then, Section
3 describes the setting to evaluate our framework.
Afterwards, we report on the experiment results in
Section 4 and discuss the implications and limita-
tions of our findings in Section 5. Finally, Section
6 discusses related work and Section 7 concludes
the paper.

2 Moderating NN Classifiers

2.1 Moderated Classifiers

In order to prevent low confident classifications
and increase the accuracy of NN text classifiers,
we propose the concept of a moderated classifier.
A moderated classifier combines an artificial clas-
sifier with a human oracle. The oracle steers the
decision-making in case the machine is unable to
provide a reliable outcome. The level of reliability
is measured based on the predictive uncertainty of
the artificial classifier.

Misclassifications occur when the inferred label
yi of an input xi does not correspond to the ac-
tual true label ŷi and thus ŷi 6= yi holds. If only
classifications made under a high uncertainty are
delegated to a human oracle, the number of mis-
classifications can be significantly reduced while
keeping manual workloads low.

A moderated classifier fω

mod
is created from an

artificial classifier fω as follows:

fω

mod(x) :=

{

fω(x) if u[y|x, ω] ≤ ϑu

oH(x) else
(1)

where oH : X → Y represents the human ora-
cle, u[y|x, ω] ∈ U ⊂ R

+ an uncertainty measure
of fω(x) and ω the learned parameters of f . If
the uncertainty is below a threshold ϑu ∈ U , the
inferred label y = fω(x) is considered to be reli-
able and will be kept. If the threshold is breached
(u[y|x, ω] > ϑu), a human oracle oH is consulted
and his or her decision is deemed correct. The
oracle can also include a group of moderators to
share the workload or increase accuracy in the case
of contradictions. Conflicts could, e.g., be solved
following inter-annotator agreement approaches
(Artstein and Poesio, 2008). In this paper, we focus
on single human moderation.

0% 25% 50% 75% 100%
Moderation Effort

1

Ac
cu

ra
cy Expected Accuracy

Random Accuracy
Difference Curve
Saturation Point

Figure 1: Saturation detection for manual moderation.
Saturation is reached at the highest point of the differ-
ence between the expected and random accuracy curve.

2.2 Determining Uncertainty Thresholds

The efficient use of (the usually limited) human
resources is essential for semi-automated classifi-
cation approaches. The moderation of text classifi-
cation can be particularly time-consuming and cost
intensive, as moderators might need to carefully
read and think about the text. It is thus important
to limit the moderation effort to a reasonable and
worthwhile amount. Limiting the moderation ef-
fort is a trade-off between saving resources and
increasing accuracy.

We suggest a saturation-based moderation
strategy to determine the uncertainty threshold ϑu.
As we assume misclassifications to occur more
frequently with high uncertainty scores, the mod-
eration is expected to become less efficient with
an increasing moderation load. At some point, sig-
nificant improvements may not be achieved and
further efforts have a decreasing impact in terms
of increasing accuracy. A saturation-based strat-
egy seeks to limit the moderation up to a point,
where the expected accuracy improvement turns
and becomes less rewarding.

Figure 1 shows a hypothetical saturation curve
for a moderated classifier. The blue curve rep-
resents the expected accuracy of our framework
when a certain amount of the most uncertain pre-
dictions are manually moderated. The accuracy of
a moderated classifier is based on (a) the manual
classification and (b) the accuracy of the model
classifying the instances which are not passed to
a human. An accuracy of 100% is reached when
100% of the instances are correctly decided man-
ually. The plotted accuracy curve is of shape
f(x) = a(1 − e−bx). The black line shows the
moderation accuracy when instances are randomly
sampled for moderation. A random moderation se-
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lects the to-be-moderated instances independently
and evenly distributed from a dataset. Since a ran-
dom sample is expected to include the same pro-
portions of misclassifications, the accuracy gain
increases linearly over the moderation effort.

A natural point of saturation can be calculated
as the highest point of the difference curve between
the expected and the random accuracy (Satopaa
et al., 2011). It describes the situation where a
continued uncertainty-based moderation would be-
come less effective than the moderation of ran-
domly selected instances. We argue that the mod-
eration should be stopped at this natural limit for
keeping the manual effort efficient.

2.3 Uncertainty Modeling Techniques

Uncertainty in NNs classifications generally occurs
when inputs are corrupted by noise or not from the
distribution of the training dataset (Der Kiureghian
and Ditlevsen, 2009). To estimate model and data
uncertainties in fω we use techniques which have
performed well in similar uncertainty-based tasks
like computer vision (Kendall and Gal, 2017) and
active learning (Burkhardt et al., 2018; Gal et al.,
2017). We focus on the following uncertainty mod-
eling techniques and on a baseline:

Baseline We consider deterministic softmax out-
comes of a usual NN as a baseline indicator of
confidence (e.g. Hendrycks and Gimpel 2017). A
softmax activation function applied to the last layer
of a NN normalizes the network’s outcome into
pseudo class probabilities.

Monte Carlo Dropout (MCD) According to
Gal and Ghahramani (2016), Dropout can be inter-
preted as a Bayesian approximation of a Gaussian
process. Dropout is generally used as a stochastic
regularization technique for NNs to prevent overfit-
ting (Srivastava et al., 2014). To perform approx-
imate Bayesian inference, a NN is trained with
Dropout applied before every weight layer and
a softmax activation function after the last layer.
Then, Dropout is additionally performed at predic-
tion time to sample from an approximated distribu-
tion of the real class posterior.

Bayes by Backprob (BBB) Bayes by Backprob
is another Bayesian approximation technique to
model uncertainties in NNs (Blundell et al., 2015).
In BBB, a probability distribution is placed over
the NNs weights ω. The approach seeks to learn
the posterior distribution p(ω|D) given the train-

ing data D. Due to intractabilities, the posterior
distribution is approximated by a variational distri-
bution q(ω|θ) by minimizing the Kullback–Leibler
divergence (Kullback, 1997). As for MCD, multi-
ple forward passes are performed to sample over
different weights ω̂t ∼ q(ω|θ).

Ensemble An Ensemble of multiple independent
deterministic NNs is an alternative approach to
Bayesian approximation (Lakshminarayanan et al.,
2017). The idea is to use M independent trained
NN classifiers and average their softmax outcomes
to a single classification score. The parameters of
the different models are randomly initialized and
individually optimized.

We use score functions based on the uncertainty
modeling techniques to quantify the uncertainty of
individual classifications (Lewis and Gale, 1994;
Burkhardt et al., 2018; Gal et al., 2017). Score
functions aim to report high uncertainty values for
unreliable classifications. Commonly used metrics
are the Least Confidence (Culotta and McCallum,
2005), Smallest Margin (Scheffer et al., 2001), and
Mutual Information (Houlsby et al., 2011).

3 Experimental Design

3.1 Research Questions and Method

To evaluate our saturation-based moderation frame-
work, we conduct benchmarking experiments using
different public datasets and NN classifiers. We fo-
cus on the following research questions:

RQ1 How does uncertainty modeling improve the
performance of unmoderated and moderated
classifiers?

RQ2 How much accuracy improvement would
the saturation-based moderation bring and
at what cost?

With RQ1, we particularly aim to check whether
a mere uncertainty modeling (i.e. still a full au-
tomated classification without moderation) would
solve the problem and lead to top classification ac-
curacy close to 99%. With RQ2, we aim to evaluate
our framework’s cost/effect in different settings.

To answer the research questions, we perform
a series of machine learning experiments. First,
we assess the initial performance of three classi-
fiers extended with the different uncertainty mod-
eling techniques. We apply the micro F1-score to
measure the accuracy of classifiers on the actual
classification task. Further, we assess a model’s
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ability to detect misclassifications. We compute
the AUC-ROC score, which measures the Area Un-

der the Receiver Operating Characteristics curve,
based on the correct (positive class) and misclassi-
fied (negative class) outcomes. All experiments are
performed on the held-out evaluation set.

Second, to evaluate the moderated classification
and determine the best suited uncertainty estima-
tion technique, we examine how a moderation af-
fects the overall F1-score when a certain number of
uncertain instances get moderated manually. Fur-
ther, we calculate the points of saturation to esti-
mate the achievable F1-scores while limiting hu-
man moderation efforts.

3.2 Research Data and Setup

For the experimental evaluation, we use three pub-
licly available datasets. The Hate Speech dataset
provided by a recent Kaggle competition1 consists
of Wikipedia comments manually labeled for toxic
behavior. We unify different types of toxicity in
the datset to a binary classification task (toxic /
non-toxic) and run our experiments on a subset
of random 40,000 comments. The IMDB dataset
(Maas et al., 2011) consists of 50,000 highly po-
larized English film reviews, which either are as-
sociated with a positive or negative user sentiment.
Finally, the 20NewsGroups dataset (Lang, 1995)
comprises 18,846 English documents which are
grouped in 20 different news topics. As train-
ing, test, and evaluation sets, we randomly sample
from the Hate Speech, IMDB, and 20NewsGroups
datasets and apply train-test-evaluation splits of
20,000:10,000:10,000, 25,000:12,500:12,500 and
9,846:4,500:4,500 respectively. We perform all
experiments five times with randomized train-test
data splits and a constant held-out evaluation set.

Moreover, we use three common NN architec-
tures from the literature, further referred to as CNN,
KimCNN, and DistilBERT. CNN consists of one
convolutional layer, a global max pooling layer
and two fully connected dense layers similar to
recent studies on app reviews and tweets classi-
fication (Stanik et al., 2019). We apply Dropout
before each weight layer with a rate of 0.4 and use
L2-Regularisation with a kernel penalty of 1e-05.
As word representations, we take 100 dimensional
trainable vectors which are randomly initialized.
For KimCNN, we follow the NN architecture and

1https://www.kaggle.com/c/jigsaw-toxi

c-comment-classification-challenge

configuration suggested by Kim (2014). The au-
thor proposes a multichannel convolutional NN
with different filter region sizes, followed by a 1-
max pooling layer. As word representations, we
take static 300 dimensional Google word2vec em-
beddings which are pretrained on 100 billion news
articles (Mikolov et al., 2013). Lastly, we use the
popular state-of-the-art text classification approach
DistilBERT (Sanh et al., 2019), a distilled version
of the Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019). Distil-
BERT consists of 40% fewer parameters compared
to BERT and is thus much more efficient to train
while retaining about 97% of its performance. We
fine-tune DistilBERT via the default settings of the
Huggingface Trainer API.2

We apply the three uncertainty modeling tech-
niques MCD, BBB, and Ensemble (described
above) to each of the classifiers. For MCD and
BBB, 50 stochastic forward passes are applied. We
use 5 NNs as the size of our ensemble. It has been
shown that larger ensembles do not significantly im-
prove uncertainty estimations (Lakshminarayanan
et al., 2017). For the MCD and Baseline approach,
we perform inference on the same trained model
since they share the same training procedure. For
DistilBERT we only implement MCD by activat-
ing the model’s internal Dropout layer at inference
time as performed by Miok et al. (2021). For the
implementation of BBB into CNN and KimCNN
we exchange the network’s layers with Bayesian
layers using the TensorFlow Probability library.3

BBB cannot be directly applied to DistilBERT.
This would require altering the network’s architec-
ture and retraining the model from scratch. Finally,
we use the Kneedle algorithm (Satopaa et al., 2011)
to detect the point of saturation as discussed in Sec-
tion 2.2. Since real saturation curves are usually
not smooth we use polynomial interpolation to fit
a spline used for detecting saturation points. Our
replication package is publicly available online.4

4 Experiments Results

4.1 Extending Classifiers with Uncertainty

Modeling

Table 1 presents the initial performance of the clas-
sifiers when no manual moderation is performed.

2https://huggingface.co/transformers/
3https://www.tensorflow.org/probabili

ty
4https://github.com/jsandersen/CMT
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Table 1: Effect of extending NN text classifiers with the uncertainty modeling techniques (without manual mod-

eration). Each cell shows the mean | standard deviation of five independent classification runs. For each of the
nine experiments (3 classifiers x 3 datasets) the scores of the best performing uncertainty modeling technique are
highlighted in green and the lowest scores in red.

Hate Speech IMDB 20NewsGroups

Metrics Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble

F1-score ↑ 90.2|0.1 90.6|0.2 90.4|0.2 90.4|0.3 88.7|0.1 89.0|0.1 89.0|0.1 89.6|0.2 86.9|0.2 87.1|0.1 87.4|0.3 90.1|0.4

C
N

N

Mean Conf. Mis. 89.3|0.2 83.4|0.4 87.5|0.3 85.2|0.4 88.5|0.6 79.5|0.2 82.5|0.7 82.5|0.2 65.4|0.7 57.5|1.9 57.2|0.8 55.5|0.8
Mean Conf. Suc. 98.3|0.1 96.9|0.1 98.1|0.1 97.6|0.1 97.9|0.1 95.2|0.1 96.3|0.1 96.3|0.1 94.4|0.3 85.1|0.4 91.6|0.2 90.8|0.2

Range ↑ 8.7 13.5 10.6 12.4 9.4 15.7 13.8 13.8 29.0 34.6 34.4 35.3

AUC-ROC ↑ 86.3|0.5 86.1|0.6 86.3|0.4 86.8|0.3 83.7|0.2 84.0|0.1 83.8|0.4 83.8|0.2 89.8|0.1 90.0|0.2 90.2|0.4 89.2|0.5

F1-score 91.2|0.2 91.4|0.1 91.3|0.2 91.3|0.1 88.9|0.2 89.7|0.2 89.3|0.1 89.5|0.1 88.2|0.3 88.7|0.2 86.8|0.2 89.5|0.2

K
im

C
N

NMean Conf. Mis. 82.6|0.8 77.5|0.3 82.8|0.3 81.7|0.2 78.5|0.5 73.4|0.2 82.3|0.3 76.5|0.5 54.2|0.5 48.1|0.4 60.1|0.3 52.0|0.4
Mean Conf. Suc. 97.0|0.3 95.4|0.1 97.1|0.1 96.8|0.1 97.5|0.1 92.2|0.1 96.5|0.1 93.6|0.2 90.8|0.3 84.5|0.4 92.0|0.1 89.5|0.2

Range 14.4 17.9 14.3 15.1 15.9 18.8 14.2 17.1 36.6 36.4 31.9 37.5

AUC-ROC 85.1|0.6 87.6|0.2 85.2|0.4 85.9|0.0 83.6|0.4 84.7|0.3 85.0|0.2 84.0|0.4 88.4|0.3 89.1|0.3 88.5|0.5 88.2|0.2

F1-score ↑ 94.0|0.2 94.1|0.1 - 94.0|0.1 93.7|0.1 93.7|0.1 - 93.9|0.2 90.5|0.4 90.4|0.4 - 91.1|0.3

D
is

ti
lB

E
R

T

Mean Conf. Mis. 86.6|0.5 83.3|0.6 - 85.8|1.2 85.7|1.1 82.1|0.8 - 82.8|0.8 71.1|1.7 66.4|0.9 - 68.3|0.8
Mean Conf. Suc. 98.5|0.1 98.1|0.1 - 98.5|0.1 98.2|0.3 97.5|0.2 - 97.7|0.2 95.1|0.2 93.5|0.2 - 94.5|0.1

Range ↑ 11.9 14.8 - 12.7 12.5 15.4 - 14.9 24.0 27.1 - 26.2
AUC-ROC ↑ 89.5|0.5 91.6|0.3 - 91.4|0.4 88.7|0.4 88.9|0.4 - 89.0|0.3 90.2|0.4 90.4|0.3 - 90.4|0.3

The table is organized in evaluation metrics and
uncertainty modeling techniques which are applied
to each dataset and classifier. Each cell consists
of the mean followed by the standard deviation of
five independent classification runs. For each clas-
sifier and dataset the scores of the best performing
uncertainty modeling techniques are highlighted
in green and the lowest scores in red. Mean Conf.

represents the mean confidence score of all misclas-
sified (Mis.) and successful classifications (Suc.).
The mean confidence range (Range) is computed
as the range between the mean confidences.

The results reveal that CNN and KimCNN reach
similar F1-score across all experiments ranging
from 86.9 to 91.3%. DistilBERT performs as ex-
pected better, particularly for binary classification
(Hate Speech and IMDB) with an F1-score of up
to 94.1%. However, DistilBERT also leaves room
for improvements still being away from a top F1-
score around 99%. The results show that across all
experiments the explicit modeling of uncertainty
only has a small effect compared to the F1-scores
of the Baselines (less than 1%). Only an Ensemble
on CNN and 20NewsGroups (multi label classifi-
cation) attains an improvement of 3.2% reaching
∼90%. MCD performs best on the Hate Speech
dataset whereas an Ensemble performs best on the
20NewsGroups and IMDB datasets. BBB never
reaches the overall highest F1-score.

The confidence scores reveal that an explicit
modeling of uncertainty implies less overconfident
wrong outputs compared to the Baseline. The un-
certainty modeling does increase the confidence

range between successful and misclassified classifi-
cations. KimCNN provided the least overconfident
wrong outcomes followed by DistilBERT. Our re-
sults also indicate that MCD, BBB, and an Ensem-
ble generally outperform the Baseline in terms of
misclassification detection (AUC-ROC). No spe-
cific technique consistently outperforms the others.

4.2 Moderated Classification

Next, we investigate the overall F1-scores of our
moderated classifier framework. Figure 2 shows
the F1-scores for the Hate Speech, IMDB, and
20NewsGroups datasets. The y-axis plots the F1-
score and the x-axis indicates the corresponding
manual moderation effort. The F1-score considers
artificial classification outcomes as well as the man-
ual labeled examples. In our experiments, manual
labeling is done by picking the ground truth label.
The Least Confident score function5 is used for all
experiments as it reaches the highest F1-score in
most cases and performs most consistently.

The accuracy gains with our framework depicted
in Figure 2 reveal a significant accuracy increase
compared to a random moderation strategy, which
is depicted by the dotted lines. Furthermore, as
expected, the moderation becomes less efficient
with an increasing moderation load, as misclassifi-
cations are more common when a classifier reports
large uncertainty scores.

All studied classifiers show a similar moderation
behavior. All accuracy curves follow the shape of
a saturation curve assumed in Section 2. The high-

5uncLC [y|x,D] := 1−maxc p(y = c|x,D)
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Figure 2: Accuracy gain for the three considered datasets with the proposed moderation using different uncer-
tainty modeling and the Baseline (BL). Dotted-lines illustrate the F1-scores of a random moderation strategy.

Table 2: Top F1-scores and moderation load (in %) achieved using our saturation-based moderation strategy.

Hate Speech IMDB 20NewsGroups

Saturation Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble

Moderation Load 31.7 31.6 31.2 31.8 33.2 32.2 32.9 33.8 28.5 28.6 27.5 27.7

C
N

N

F1-score
98.08
(+7.9)

98.10
(+7.5)

97.94
(+7.6)

98.25
(+7.8)

97.80
(+9.1)

97.77
(+8.8)

97.77
(+8.8)

98.03
(+8.4)

98.10
(+11.2)

98.15
(+11.1)

98.13
(+10.8)

98.46
(+8.3)

Moderation Load 26.6 29.1 28.7 26.2 35.5 33.4 33.1 34.9 27.8 28.2 30.7 27.7

K
.C

N
N

F1-score
97.57
(+6.4)

98.39
(+7.0)

97.77
(+6.5)

97.70
(+6.4)

98.01
(+9.1)

98.13
(+8.5)

98.12
(+8.8)

98.20
(+8.7)

98.00
(+9.8)

98.32
(+9.6)

98.04
(+11.2)

98.24
(+8.8)

Moderation Load 24.5 23.9 - 24.5 25.3 25.1 - 24.6 25.5 25.9 - 25.5

D
.B

E
R

T

F1-score
99.36
(+5.3)

99.37
(+5.3)

-
99.37
(+5.4)

99.03
(+5.4)

99.01
(+5.3)

-
99.04
(+5.1)

98.60
(+8.1)

98.62
(+8.2)

-
98.82
(+7.7)

est variations occur on the 20NewsGroups dataset.
Furthermore, the difference between all approaches
becomes less with an increasing moderation effort.
By moderating more instances manually, more sim-
ilar F1-scores are reached by all classifiers. Over-
all, an Ensemble of homogeneous NNs and MCD
reaches the overall highest F1-score with the least
moderation effort (and BBB slightly less). On av-
erage, the Baseline requires slightly more manual
effort to reach the same F1-score.

As the accuracy gains decrease with an in-
creasing moderation effort, we calculate saturation
points to stop the moderation before it becomes
inefficient. Table 2 lists those saturation points

for the LC score function. The absolute improve-
ment of the F1-score is shown in brackets. The
table shows that our moderation approach is able
to achieve a F1-score of 98 to 99% on all clas-
sification tasks while maintaining an efficient hu-
man moderation. These F1-scores can be achieved
with all evaluated classifiers and uncertainty estima-
tion techniques. Saturation points are reached after
moderating ≤33.1% of the dataset using CNN and
KimCNN and ≤25.5% using DistilBERT. All clas-
sifiers provide a similar trade-off between achieved
F1-score and moderation effort. However, the Base-
line is not optimal since it either saturates with
slightly higher moderation efforts or provides a

1541



lower F1-score compared to MCD, BBB, and an
Ensemble. On IMDB the MCD reaches saturation
with the least moderation effort, while providing
a high level of accuracy. On 20NewsGroups an
Ensemble performs slightly better.

Interestingly, DistilBERT requires the least man-
ual effort while achieving the highest level of ac-
curacy, i.e., a F1-score of 98.6 − 99.37%. The
results also reveal that models with a low initial
F1-score reach higher absolute F1-score improve-
ments. Overall, using our framework, a moderator
has to label up to 73.3% (Hate Speech), 71.0%
(IMDB) and 70.9% (20NewsGroups) less data in-
stances compared to a random moderation strategy.
Based on these results, we conclude the answers to
our research questions:

Answer RQ1 Explicitly modeling uncertainties
of NN classifiers only has a minor impact on the
accuracy compared to the baseline. All techniques
provide similar F1-score improvements when a hu-
man is moderating a certain number of classifica-
tion outcomes. Only on a multi-class classification
problem (20NewsGroups) an Ensemble provides
slightly better (≥1%) F1-scores compared to a tra-
ditional deterministic NN (Baseline). Overall, a
five NN Ensemble and MCD achieves the best ac-
curacy improvements compared to the Baseline and
BBB. The moderated classifiers performed best
with the Least Confident score function.

Answer RQ2 Moderating the outcomes of clas-
sifiers can lead to top F1-scores between 97 and
99% using both rather weak (CNN / KimCNN) and
strong (DistilBERT) classifiers while efficiently
limiting human involvement. Using DistilBERT
an absolute F1-score improvement of +5.3 (Hate
Speech) +5.1 (IMDB) and +7.7% (20NewsGroups)
is reached by moderating ≤25.5% of the data. A
saturation-based moderation saves up-to 73.3%
(Hate Speech) 71.0% (IMDB) and 70.9% (20News-
Groups) of effort compared to a random modera-
tion to reach the same F1-score.

5 Discussion

5.1 Implications

Our results indicate that the mere explicit uncer-
tainty modeling can barely enhance the accuracy
of automatic text classifiers. However, our mod-
eration framework can substantially improve the
accuracy and thus the acceptance of rather weak
(CNN / KimCNN) as well as strong (DistilBERT)

classifiers. Compared to cases where classification
decisions have to be done fully manually when the
accuracy of automatic classifiers is inapplicable in
practice, our semi-automated framework would re-
quire one fourth to one third of the manual effort to
obtain a top accuracy of ∼98-99%. This is a sub-
stantial saving of resources. The major advantage
of the framework is the ending of the moderation
when it becomes inefficient. Further, our results
indicate that the framework also works well with
usual NNs (Baseline). Even if the accuracy im-
provement and effort minimization are not as good
as with explicit uncertainty modeling, the Baseline
reaches similar top F1-scores. Thus, the cost of
implementing and adopting the framework to exist-
ing classifiers is rather limited. Additional costs of
explicit uncertainty modeling should be assessed
against the marginal achievable improvements.

Clearly, the usefulness of our framework de-
pends on the application scenario at hand. In par-
ticular, it is crucial to first investigate:

• Whether a top accuracy, of e.g. 99% is ex-
pected by users or not.

• Whether and how human moderation is appli-
cable, and if the moderation can be trusted.

• Whether the goal of maximizing the accuracy
while minimizing the human effort is desired.

We think that semi-automated approaches are par-
ticularly important in domains with a very large
number of classifications and where classification
mistakes are costly, for instance when user com-
ments need to be moderated in a public debate
space such as comments in news outlets (Loosen
et al., 2018; Boberg et al., 2018) or in Wikipedia
as in the Hate Speech dataset. A pure automated
classification and analysis of inherently ambiguous
text, e.g. reflecting human opinions or outlining
novel ideas will quickly reach its limits. Even hu-
mans might not totally agree on a uniform labeling
of complex texts (Ross et al., 2016). As shown in
our experiments, most documents can accurately
be labeled by a machine and do not require hu-
man effort. However, complex or ambiguous texts
might not be handled appropriately by black-and-
white categorization and machines might be unable
to make reliable classifications. By placing a hu-
man in the loop, human creativity and reasoning
contribute to efficiently solving such difficult tasks.

With moderation, additional data is continuously
collected and can be used to re-train the classifier
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from time to time. Re-training often prevents an
accuracy decay of the underlying classifier over
time (Moreno-Torres et al., 2012) and can (but do
not necessarily) improve its accuracy (Arnt and
Zilberstein, 2003). Our results suggest that the
moderation would benefit from a higher initial ac-
curacy as the amount of human involvement seems
lowest here. Further research is required to bet-
ter understand the interplay between in-operation
moderation and active learning.

5.2 Limitations

Our moderation framework builds on the assump-
tion that a classifier’s expected accuracy curve can
be used to estimate how it would perform in op-
eration. This assumption depends on whether the
dataset used for the evaluation and the derived sat-
uration point represent the real data distribution. In
cases where this assumption is not reasonable and
the real data distribution is significantly different
(e.g. due to particular events), more research would
be needed e.g. to monitor and potentially adjust
the operational data distribution and the saturation
curve accordingly.

In our experiments we assume that human mod-
erators do not commit errors. While a flawless
moderator is generally assumed in the review of
interactive machine learning approaches like active
learning (Burkhardt et al., 2018; Gal et al., 2017;
Houlsby et al., 2011), the assumption does not have
to apply to all real scenarios (Sheng et al., 2008).
Generally, as already discussed above, annotations
from domain experts are seen as more trustful than
machines, especially on difficult tasks such classifi-
cation of ambiguous text. Human annotations are
often considered as the ground truth for classifica-
tion tasks and are used to initially train a classifier
(Lewis and Gale, 1994). Therefore, we assume
that domain experts annotate instances more reli-
ably than machines in real-world domains. This
assumption may have limitations in practice, as
people may make mistakes too.

Interactive ML approaches such as our frame-
work are confronted with the limitation of scalabil-
ity. Even a small fraction of human involvement
can lead to an enormous manual effort when the
data to be classified is very large. Our framework
can limit human involvement to 23.9− 25.4% of
the data assessment in order to reach a top F1-score.
Finally, human moderators have to decide whether
spending these efforts is applicable and desired.

Our approach also faces the limitation that un-
certainty estimation approaches are unable to iden-
tify highly certain classifications which are actu-
ally wrong (unknown-unknowns) (Attenberg et al.,
2011). Thus, it is unrealistic to avoid all misclas-
sifications without manually checking all the data.
However, we have shown that the majority of mis-
classifications can be efficiently identified by our
approach leading to high F1-scores ∼98-99%.

Finally, as for every empirical evaluation, our
results are dependent on the datasets, metrics and
setting used. While we refrain from claiming the
generalizability of the concrete quantitative results,
the diversity of the datasets and classification mod-
els used give us enough confidence on the gen-
eral observed trends for text classification. For
other classification tasks, a replication using other
datasets and model architectures would be required.

6 Related Work

The moderation of classifier outputs can clearly
be considered as an application of the Human-in-
the-Loop (HiL) paradigm (Holzinger, 2016). So
far, most HiL implementations focus on querying
additional labels from humans for the purpose of
training in order to reduce a classifier’s uncertainty,
commonly referred to as active learning (Settles,
2009). In comparison, our framework aims to ef-
ficiently prevent error-prone classifications during
operation and thus to further enhance the accuracy
of an already trained classifier.

Different approaches have been previously dis-
cussed to coordinate human involvement in semi-
automatic text classification. To our best knowl-
edge, we are the first to investigate the human ef-

ficient, moderation of text classifiers. Pavlopou-
los et al. (2017) propose to search for confidence
thresholds which maximize a classifier’s accuracy,
when classification outcomes are moderated manu-
ally. However, this approach requires moderators to
set the amount of data they are willing to moderate.
Assessment of the efficiency is not made. Another
approach to reduce error prone classifications is to
let classifiers abstain when no clear decisions can
be made (Cortes et al., 2016; Ramaswamy et al.,
2018). This can be performed by adding an addi-
tional label to the classification task or by training
a separate and independent classifier. Abstained in-
stances could be, similarly to our approach, passed
to human moderators. Our work focuses on uncer-
tainty modeling using NNs. Geifman and El-Yaniv
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(2017) propose a classification approach with a re-
ject option which additionally allows practitioners
to set a desired level of risk. Similar to our ap-
proach, they aim to ensure a certain classification
performance. In contrast, they do not focus on the
efficiency of human involvement.

Lee et al. (2018) propose an approach to de-
tect whether an instance is out-of the distribution
of the training dataset and thus probably wrongly
classified. However, their approach requires an
auxiliary dataset representing out-of-distribution
samples during training which is difficult to create.
De et al. (2021) introduce a semi-automated ap-
proach which directly optimizes a classifier for dif-
ferent automation levels. However, their approach
is only applicable to convex-margin based classi-
fiers and not to NNs. Xiao et al. (2021) suggest a
self-checking mechanism for NN, where the fea-
tures of the internal layers are used to check the
reliability of predictions. In contrast, our approach
uses predictive uncertainties obtained via a softmax
function, which is rather simple to implement.

Moderating classifiers’ outcomes is also related
to the field of explainable ML, in particular explain-
ing individual classification outcomes (Ribeiro
et al., 2016). Studies indicate that explaining rele-
vant words of a class outcome support human anno-
tation tasks by, e.g., reducing the annotation time
needed per instance and increasing user trust (Švec
et al., 2018; Ribeiro et al., 2016). Our approach is
likely to benefit from explaining artificial decision-
making as well as model uncertainties (Andersen
et al., 2020) during the moderation process.

7 Conclusion

This paper contributes to the Human-in-the-Loop
AI paradigm. We particularly present a rather sim-
ple, semi-automated text classification framework
to efficiently minimize unreliable and error-prone
classification outcomes. Based on explicit uncer-
tainty modeling, the framework seeks to prevent
unconfident classifications by consulting human
moderators. At its core, the framework uses a
saturation-based moderation strategy, which limits
the moderation load and keeps it human-resource-
efficient. We conduct several benchmarking ex-
periments including state-of-the-art classifiers and
public datasets to examine the effectiveness of the
suggested moderated classification.

Our evaluation shows that a moderated classi-
fier can achieve a major increase in accuracy while

limiting the moderation efficiency. With modera-
tion, the F1-score of a convolutional NN for hate
speech detection increases from initially 90.6 to
98.10% limiting the manual effort to 31.6%. Us-
ing DistilBERT, the benefits of a moderated clas-
sifier seems even stronger. Here, our framework
accomplishes an improvement of the absolute F1-
score from 94.1% to 99.37% while only moderat-
ing 23.9% of the data. Across all our experiments,
we increased the F1-score from initially ∼89-94%
to ∼98-99% by manually moderating between a
third to a fourth of the data. Our results indicate
that an uncertainty-based moderated classification
can increase the applicability and reliability of text
classifiers, particularly in domains where a top ac-
curacy of ∼99% is required and a full manual clas-
sification would be more expensive.
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