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Abstract

Recent interest in entity linking has focused in
the zero-shot scenario, where at test time the en-
tity mention to be labelled is never seen during
training, or may belong to a different domain
from the source domain. Current work leverage
pre-trained BERT has the implicit assumption
that BERT bridges the gap between the source
and target domain distributions. However, fine-
tuned BERT has a considerable underperfor-
mance at zero-shot when applied in a different
domain. We solve this problem by proposing a
Transformational Biencoder that incorporates
a transformation into BERT to perform a zero-
shot transfer from the source domain during
training. As like previous work, we rely on
negative entities to encourage our model to dis-
criminate the golden entities during training.
To generate these negative entities, we propose
a simple but effective strategy that takes the do-
main of the golden entity into perspective. Our
experimental results on the benchmark dataset
Zeshel show effectiveness of our approach and
achieve new state-of-the-art.

1 Introduction

Entity Linking (EL) is an important task in Natural
Language Processing (NLP), which seeks to align
entity mentions in a document to their referent en-
tity in a knowledge base such as Wikipedia. EL
has received widespread attention due to its appli-
cation in a variety of tasks, including information
extraction (Lin et al., 2012), knowledge base popu-
lation (Dredze et al., 2010), content analysis (Weng
et al., 2010), etc. There has been great achieve-
ment in building EL systems, however, majority of
proposed works (Ganea and Hofmann, 2017; Cao
et al., 2018) are built on the assumption that the
entity set is shared among the train and test sets. In
many practical cases, however, the train and test
sets may come from different domain distributions.
This potentially creates disjoint entity sets across
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the different domains, highlighting the importance
of zero-shot EL (Sil et al., 2012; Logeswaran et al.,
2019).

Zero-shot EL aims to label mentions in the test
set that have never been seen during training. A
line of works have proposed zero-shot learning
techniques for entity linking (Sil et al., 2012; Wang
et al., 2015). The common paradigm in these works
is to link labelled mentions in a document to enti-
ties in well structured knowledge bases. Despite
their promising successes, labelled data is typically
expensive to produce or are not easily obtained
for some specialized domains such as the legal
domain. To enable research in this problem, Lo-
geswaran et al. (2019) developed the Zeshel dataset
which contains a diverse range of specialized do-
mains, in which mentions and entities have rich
textual content. Without adopting resources (e.g.,
structured knowledge base) or assumptions (e.g.,
labelled mentions, a shared entity set), they expand
the scope of zero-shot EL to promote the generaliz-
ability of EL system on unseen domains.

So far, only few works have been proposed (Wu
et al., 2020; Yao et al., 2020; Zhang and Stratos,
2021; Tang et al., 2021), where BERT (Devlin et al.,
2018) is found to be the notable encoder. Major-
ity of these works are devoted to retrieving can-
didate entities since this is essential to candidate
entity ranking for EL systems. Zhang and Stratos
(2021) achieved state-of-the-art for candidate en-
tity generation by employing the Biencoder (Wu
et al., 2020) to encode mentions and entities, an ex-
pressive Sum-Of-Max (SOM) score function (Khat-
tab and Zaharia, 2020) to compute their relevance
scores, and by optimizing with hard negative enti-
ties. To generate hard negatives, Zhang and Stratos
(2021) use the score function to rank all entities
across domains and select top-k entities.

Although the Biencoder has been successfully
applied, it faces a fundamental weakness which
limits its ability to successfully achieve zero-shot
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transfer for the task. Specifically, the fine-tuned
BERT as used in the Biencoder has been shown to
degrade substantially on zero-shot transfer if there
is a shift between source and target domains (Ma
et al., 2019). Another problem is the high di-
mensionality of entities/mentions which poses a
challenge for complex scorers (e.g., Sum-Of-Max).
SOM requires O(n2) in running time and storage
complexity, which makes it almost infeasible when
sampling hard negatives. As EL systems may have
millions of entities, a more scalable solution is
needed.

In this paper, we overcome the aforementioned
weakness of the Biencoder by integrating it with a
learnable transformation, developing an Transfor-
mational Bi-encoder (T-Biencoder). As the name
suggests, we focus on learning a transformation in
the BERT architecture to achieve zero-shot transfer
from a source domain during training. With regard
to the efficiency of the model and the optimization
strategy, we recognize the performance advantages
of sampling with hard negatives over sampling ran-
domly. Hard negative sampling works because gen-
erated entities are semantically different and close
to the golden entity in the embedding space. This
encourages discrimination between the golden en-
tity and negative entities. We hypothesize that, the
condition of lexical similarity between the entity
and golden entity will lead to harder negatives and
better optimization. That is, we propose to random
(or hard) sample in-domain of the golden entity.
By sampling in-domain, the entity set in which we
sample from is relatively small, making it a more
efficient alternative to sampling across domains.
Extensive experiments show the effectiveness of
our approach as against prior works.

Our contributions can be summarized as follows:

• we propose a Transformational Biencoder,
which incoporates a transformation into the
Biencoder (Wu et al., 2020) to improve gen-
eralization on unseen domains for zero-shot
EL.

• we propose in-domain negative sampling to
encourage our model to discriminate the
golden entity, which in effect improves op-
timization and efficiency.

• we perform extensive experiments to demon-
strate the effectiveness of our approach,
and achieve state-of-the-art on the Zeshel
dataset (Logeswaran et al., 2019).

2 Related Works

To enable progress on the zero-shot entity link-
ing task, Logeswaran et al. (2019) propose to use
the naive baseline method BM25 (Robertson and
Zaragoza, 2009) to measure the relevance score of
mention-entity pairs. Following this work, a num-
ber of methods operating on Zeshel have been pro-
posed (Wu et al., 2020; Yao et al., 2020; Zhang and
Stratos, 2021; Tang et al., 2021), where BERT (De-
vlin et al., 2018) is found to be the notable encoder.
This is not surprising as BERT has shown to pro-
duce state-of-the-art results in several NLP tasks.
Among the existing works, Wu et al. (2020) pro-
pose a Biencoder architecture where two indepen-
dent BERT encoders are employed to encode the
textual descriptions of mentions and entities. A dot
product is used as the scorer, referred to as DUAL
by (Zhang and Stratos, 2021). The Biencoder pro-
vides a strong baseline for the task due to the ex-
pressiveness of BERT. Yao et al. (2020) adapts a
BERT architecture that repeats the position em-
bedding to solve the long-range modeling problem
in entity textual descriptions. Tang et al. (2021)
propose a bidirectional multi-paragraph reading
model that leverages more textual information to
enhance text understanding capability. Zhang and
Stratos (2021) adopt the Biencoder framework but
employ a more expressive Sum-Of-Max score func-
tion (Khattab and Zaharia, 2020) to measure the
relevance between a mention and entity, achieving
state-of-the-art results on the task. The majority of
these works leverage negative entities during opti-
mization. They also have an implicit assumption
that BERT is sufficient for zero-shot transfer.

Unlike previous work, we adapt the BERT en-
coder with a transformation to improve zero-shot
transfer. We also consider to sample negative en-
tities in-domain of the golden entity rather than
across all domains to improve optimization and
efficiency.

3 Methodology

In this section, we describe Transformational Bi-
encoder (T-Biencoder), our proposed method for
zero-shot EL. First, we formally present the task
definition in Section 3.1. Next, in Section 3.2 we
introduce the Biencoder (Wu et al., 2020). Then,
we describe our adaptation of the Biencoder to de-
velop T-Biencoder in Section 3.3. Finally, we close
by discussing our negative sampling strategy in
Section 3.4.
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3.1 Task Definition
The entity linking task is formulated as follows.
Given a mention m in a document and a set of
entities γ = {ei}i=1,...,N , EL aims to identify the
referent entity e ∈ γ corresponding to mention m.
The goal is to obtain an EL model on a train set
of mention-entity pairs DTrain = {(mi, ei)|ei ∈
γ}i=1,...,M , that correctly labels mentions in the
test set DTest. DTrain and DTest are typically as-
sumed to come from the same domain.

In this paper, we focus on the zero-shot EL (Lo-
geswaran et al., 2019), where both DTrain =
{Di

src}i=1,...,Nsrc and DTest = {Di
tgt}i=1,...,Ntgt

are found to contain multiple sub-datasets from
different domains. Note that the entity sets
γ1src, . . . , γ

Nsrc
src , γ1tgt, . . . , γ

Ntgt

tgt corresponding to
the sub-datasets are disjoint, with entities or men-
tions expressed as textual descriptions. Our goal is
to build a model upon DTrain to label mentions in
DTest.

3.2 Biencoder
Our model is built on the Biencoder (Wu et al.,
2020), that independently embeds the mention and
corresponding entity in the same representation
space. As shown in Figure 1, the Biencoder con-
sists of a text encoder Eθm for encoding mentions,
a text encoder Eθe for encoding entities and a score
function f to compute a relevance score of mention-
entity pairs. Eθm and Eθe share the same architec-
ture but have independent parameters, θm and θe.
BERT (Devlin et al., 2018) is employed to model
Eθm and Eθe .

Eθm

Eθe

m

e

Score
Function

f

L(θm, θe)

Hm

He

Figure 1: Architecture of Biencoder

Given the mention-entity pair (m, e), the men-
tion m is characterized by the left context (ctxl)
and right context (ctxr) of the mention as well as
the mention itself. Thus, m is represented as the
BERT input:

m = [CLS] ctxl [Ms]mention [Me] ctxr [SEP]
(1)

Similarly, the entity e is characterized by the
entity name and its textual description.

e = [CLS] name [ENT] description [SEP] (2)

where [CLS], [Ms], [Me], [ENT] and [SEP] are
special tokens to mark the boundaries of the dif-
ferent pieces of information. Let the mention
m = {xm

t }|m|
t=1 with |m| wordpieces, and the

entity description e = {xe
t′}

|e|
t′=1 with |e| word-

pieces. We extract the corresponding representa-
tions Hm ∈ Rd×|m| and He ∈ Rd×|e| as follows:

Hm = Eθm(m)

He = Eθe(e)
(3)

where d denotes the dimension of representations.
Then, the entity linking problem is reduced to

quantifying the similarity between Hm and He

using a score function f , i.e., f(Hm, He). If
the mention-entity pair (m, e) matches, the score
f(Hm, He) should be high, or low if otherwise.
Wu et al. (2020) defines a DUAL score function
that takes the [CLS] representations hm[CLS] ∈ Rd×1

and he[CLS] ∈ Rd×1 of the respective representa-
tions Hm and He to compute the score f(Hm, He).

DUAL:

f(Hm, He) = (hm[CLS])
The[CLS] (4)

Recently, Zhang and Stratos (2021) followed the
architecture of Wu et al. (2020) and showed that the
Sum-Of-Max (SOM) scorer (Khattab and Zaharia,
2020) yields better results in comparison to DUAL.
SOM computes f(Hm, He) as follows.

SOM:

f(Hm, He) =

|m|∑
t=1

|e|
max
t′=1

(hmt )Thet′ (5)

However, it is worth to note that the SOM scorer
comes at the expense of increased computational
cost due to the consideration of all hidden states of
Hm and He in the scorer.

Finally, the model is trained to encourage dis-
crimination between golden mention-entity pairs
and negative mention-entity pairs. We minimize
a standard loss function L based on the empirical
estimate of the NCE loss (Gutmann and Hyvärinen,
2010),

L(θm, θe) =

− 1

M

M∑
i=1

log
exp(f(Eθm(mi), Eθe(ei,1)))∑C
j=1 exp(f(Eθm(mi), Eθe(ei,j)))

(6)
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where {(mi, ei,1)}i=1,...,M are golden mention-
entity pairs in the training set, and {ei,2, ..., ei,C}
are C − 1 negative entities for the i-th mention.

Regarding model training, two main strategies
have been considered in previous work to construct
negative mention-entity pairs: (1) Random Cross-
Domain (Random-CD): negative entities for a
given mention are randomly sampled from the en-
tity set. (2) Hard Cross-Domain (Hard-CD): In
a training epoch, all entities are first ranked with
the current trained model and the top-k entities
are taken as hard negative entities. Both strate-
gies sample negatives across all domains. While
Random-CD aim to select negative entities that are
semantically different from the golden entity, Hard-
CD additionally aims to select negatives close to
the golden entity in the representation space.

3.3 Transformational Biencoder
We found that the Biencoder assumes that leverag-
ing the common knowledge in BERT is sufficient
to achieve zero-shot transfer from source to tar-
get domain. However, while fine-tuned BERT in-
domain can achieve state-of-the-art performance,
its zero-shot performance on the target domain can
deteriorate substantially (Ma et al., 2019). As a
solution, we add a learnable transformation into
the Biencoder to achieve zero-shot transfer in the
training process. Otherwise, the training proceeds
in the standard way and learns the parameters of
Eθm and Eθe . We refer to this modified Biencoder
as an Transformational Biencoder (T-Biencoder).

We present the architecture of T-Biencoder in
Figure 2. Eθ1m

and Eθ2m
are the respective early and

later transformer layers of the BERT architecture
Eθm , where θm = {θ1m, θ2m}. We use the parallel
notations Eθ1e

and Eθ2e
for the BERT architecture

Eθe , where θm = {θ1e , θ2e}. The encoders Eθ1m
and Eθ1e

aim to map the respective mention m and
entity e into a common space Z. Since the common
space Z that best fit our model is unknown, the
number of layers of Eθ1m

and Eθ1e
is taken as a

hyper-parameter K. This is also the K-th layer
of Eθm and Eθe . Now, Zm and Ze, the respective
representations of m and e in the common space Z
are computed as follows:

Zm = Eθ1m
(m)

Ze = Eθ1e
(e)

(7)

where Zm ∈ Rd×|m| and Ze ∈ Rd×|e|. In the
common space we assume relatedness between

Eθm

Eθe

m

e

Score
Function

f

L(θm, θe)

Hm

He

Eθ1m

Eθ1e

Eθ2m

Eθ2e

Score
Function

f

L′(θm, θe, Am, Ae)

Zm

Ze

∗

∗

+

+

H ′
m

H ′
e

Am

Ae

Zm

Ze

Z ′
m

Z ′
e

Figure 2: Architecture of T-Biencoder

source and target domains to achieve zero-shot
transfer. Hence, there exist at least one transforma-
tion Ām (or Āe) to transform the mention (or entity)
pair in the source domain distribution S to the tar-
get domain distribution T . Let Am and Ae be the
learnable transformation matrices which aims to
approximate Ām and Āe respectively. The repre-
sentations Zm ∼ S and Ze ∼ S are transformed
into the representations Z ′

m ∼ T and Z ′
e ∼ T :

Z ′
m = Zm +AmZm

Z ′
e = Ze +AeZe

(8)

The final representations H ′
m and H ′

e are then
constructed by feeding Z ′

m and Z ′
e into the en-

coders Eθ2m
and Eθ2e

.

H ′
m = Eθ2m

(Z ′
m)

H ′
e = Eθ2e

(Z ′
e)

(9)

Finally, we feed H ′
m and H ′

e into the score func-
tion f and calculate the loss L′(θm, θe, Am, Ae).
The total loss Ltotal of our model is formulated as

Ltotal = min
θm,θe

[L(θm, θe)+

max
||Am||,||Ae||≤ϵ

L′(θm, θe, Am, Ae)]
(10)

where L is the standard loss function. L′ is a
transformational loss function which follows the
same definition as L. The hyper-parameter ϵ quan-
tifies the supremum of shift between source and
target distributions. Besides learning θm and θe,
the second term in Ltotal aims to find transforma-
tions Am and Ae that maximizes L′ conditioned
by ||Am||, ||Ae|| ≤ ϵ. Specifically, we find the
worst Am and Ae such that L′(θm, θe, Ām, Āe) ≤
L′(θm, θe, Am, Ae) given ϵ. The idea is that, if the
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encoders Eθm and Eθe can work for representations
obtained through Am and Ae, they can also work
for representations obtained through the ground-
truth transformations Ām and Āe. Note, the trans-
formations only serve to shift the source to the
target distribution. Hence, at inference time the en-
tities and mentions are fed directly to the encoders
Eθe and Eθm without being transformed by Am

and Ae. We experiment with the DUAL and SOM
scorers in our work.

3.4 Negative Sampling In-Domain
We point out that carefully constructing negatives
is crucial to performance. By leveraging Hard-CD,
Zhang and Stratos (2021) improves upon the task,
indicating its benefit over Random-CD.

While these sampling strategies have shown its
benefit, they disregard the domain of the golden
entity. We posit that negatives that are lexically
similar to the golden entity should be additionally
considered to obtain harder negatives. That is, neg-
atives that are lexically similar, semantically differ-
ent and close to the representation of the golden
entity are harder. We therefore propose two nega-
tive samplig strategies: (1) Random In-Domain
(Random-ID): randomly samples negative enti-
ties in-domain of the golden entity. (2) Hard
In-Domain (Hard-ID): all entities in-domain of
golden entity are ranked in a training epoch, and the
top-k entities are taken as hard negatives. We will
demonstrate through extensive experiments to show
the effectiveness of negative sampling in-domain.

4 Experiments

4.1 Dataset
We follow the recent works (Logeswaran et al.,
2019; Wu et al., 2020; Tang et al., 2021; Zhang
and Stratos, 2021) and evaluate on the Zeshel
dataset (Logeswaran et al., 2019),1 which is a pre-
vailing benchmark dataset for zero-shot entity link-
ing. Zeshel contains 16 specialized domains from
Wikia,2 partitioned into 8 domains for training, and
4 domains each for validation and testing. Table 4
shows the dataset statistics, including the number
of entities and mentions.

4.2 Evaluation Protocol
EL systems typically follow a two-stage pipeline:
(1) a candidate generation stage, where an entity

1https://github.com/lajanugen/zeshel
23 https://www.wikia.com

Domains Entities Mentions
Train Evaluation

Training
American Football 31929 3898 743

Doctor Who 40281 8334 1521
Fallout 16992 3286 593

Final Fantasy 14044 6041 1156
Military 104520 13063 2764

Pro Wrestling 10133 1392 262
Star Wars 87056 11824 2706

World of Warcraft 27677 1437 255
Validation

Coronation Street 17809 0 1464
Muppets 21344 0 2028

Ice Hockey 28684 0 2233
Elder Scrolls 21712 0 4275

Testing
Forgotten Realms 15603 0 1200

Lego 10076 0 1199
Star Trek 34430 0 4227
YuGiOh 10031 0 3374

Table 1: Statistic of the Zeshel dataset.

retriever is trained to select top-k candidates for
each given mention, (2) a candidate ranking stage,
where a ranker is trained to identify the golden en-
tity among selected candidates for a given mention.
The candidate generation is essential to the perfor-
mance of candidate ranking because if the golden
entity is not retrieved in the top-k candidates, the
model can never recover the golden entity during
candidate ranking. We therefore follow the evalua-
tion protocol of previous work (Logeswaran et al.,
2019; Wu et al., 2020; Zhang and Stratos, 2021)
and evaluate at the candidate generation stage. We
report micro-averaged top-64 recall for models on
the validation set and testing set. Thus, we consider
a mention’s prediction to be correct if its golden
entity is included in the top-64 candidates. Average
results over 3 runs are reported for our models.

4.3 Implementation Details

To fairly compare with recent work (Wu et al.,
2020), we use the BERT-base-uncased (Devlin
et al., 2018) as the text encoder, where the em-
bedding layer is kept frozen and the layers are
fine-tuned during training. We directly use the pre-
processed dataset provided by (Wu et al., 2020),3

where mentions/entities are represented by n =
128 wordpiece tokens, i.e., n = |m| = |e|. Num-
ber of negative entities for each mention is 15. We
employ AdamW (Loshchilov and Hutter, 2017) op-
timizer with a learning rate (lr = 1e−5) warm-up
schedule to smoothen the training process. We train

3https://github.com/facebookresearch/BLINK
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Model Scorer Negatives Evaluation Time
Validation Testing

(Logeswaran et al., 2019) BM25 - 76.22 69.13 -
Biencoder (Wu et al., 2020) DUAL Random-CD 91.44 82.06 12
Biencoder (Zhang and Stratos, 2021) DUAL Random-CD 91.08 81.80 12
Biencoder (Zhang and Stratos, 2021) DUAL Hard-CD 91.99 84.87 110
Biencoder (Zhang and Stratos, 2021) SOM Random-CD 92.51 87.62 13
Biencoder (Zhang and Stratos, 2021) SOM Hard-CD 94.66 89.62 2306
T-Biencoder (Ours) DUAL Random-ID 92.43±0.19 85.72±0.11 21

DUAL Hard-ID 93.03±0.10 86.35±0.15 131
SOM Random-ID 94.56±0.32 90.68±0.21 23
SOM Hard-ID 95.49±0.23 91.16±0.14 625

Table 2: Results of compared models are retrieved from their original papers. Models’ efficiency is the time cost per
epoch in minutes. Results of our models are the average over 3 runs using different random seeds.

our models for 5 epochs using a batch size of 64
for mention-entity pairs. We perform a grid search
to select the best set of hyper-parameters: ϵ in
[1e−3, 1e−2, 1e−1, 1.0, 10, 20, . . . , 100] and K in
[0, 1, 4, 8]. Best hyperparameter values are shown
in Table 3. All models are trained in parallel on
four NVIDIA V100 32GB.

Scorer Negative ϵ K
DUAL Random-ID 32 1
DUAL Hard-ID 42 1
SOM Random-ID 20 1
SOM Hard-ID 40 1

Table 3: Best observed hyper-parameter configurations
of T-Biencoder on the validation set.

4.4 Performance Comparison

In this section we compare our model against re-
cent work (Wu et al., 2020; Zhang and Stratos,
2021) for candidate generation. These works em-
ploy the Biencoder and generate negative entities
for optimization. DUAL and SOM scorers are used
in this work. As a baseline we include the work
by Logeswaran et al. (2019) which uses the BM25.
Note, the following works (Tang et al., 2021; Yao
et al., 2020) are excluded since they evaluate at
the candidate ranking stage, making their results
uncomparable with ours.

4.4.1 Main Results
Results of compared models are shown in Table 2.
BM25 shows poor performance due to the empha-
sis on lexical similarity between mention and candi-
date entity tokens. In contrast, methods (Wu et al.,
2020; Zhang and Stratos, 2021) that generate se-
mantic representations have shown to be effective,
with an improvement of at least 12.93% on the test
set. First, we compare the performance of these
models with respect to the DUAL scorer on the

test set. We find that T-Biencoder outperforms the
Biencoder (Zhang and Stratos, 2021) by 3.92% for
random sampling, and by 1.48% for hard sampling.
With respect to the SOM scorer, we observe that
T-Biencoder outperforms Biencoder by 3.06% for
random sampling, and by 1.54% for hard sampling.
These results indicate the effectiveness of our sam-
pling strategies (i.e., Random-ID and Hard-ID) as
well as the transformation approach. We also find
that SOM yields better results over DUAL while
hard sampling leads to better optimization. How-
ever, leveraging SOM and hard sampling increases
computational cost by orders of magnitude, as we
examine its efficiency in Section 4.4.3.

Interestingly, we find that by using Random-ID
for either SOM or DUAL, we achieve better per-
formance in comparison to Hard-CD, indicating
the effectiveness and efficiency of our model. T-
Biencoder achieves state-of-the-art results for ei-
ther DUAL and SOM scorers, and additionally
shows stability given the low standard deviations.

4.4.2 Domain Zero-Shot Performance
Our main results show that we achieve state-of-the-
art on both validation and testing sets. To show that
this improvement is true for all validation/test do-
mains and not as a result of a specific validation/test
domain, we show more fine-grained results. Specif-
ically, we report the domain zero-shot performance
for Biencoder and T-Biencoder using the Random-
ID sampling strategy. Table 4 shows the results for
the different validation and testing domains.

Due to the degree of dissimilarity between the
train and validation/test domains, naive zero-shot
transfer by the Biencoder produces unsatisfac-
tory results. By learning the transformation, T-
Biencoder outperforms Biencoder. We found that
the test domain “YuGiOh” is closely related to the
train domains “Star Wars” and “Final Fantansy” in

1454



the sense that they belong to the super-domain of
comics. By exploiting the relatedness of these do-
mains, we achieve impressive results on “YuGiOh”.
Specifically, “YuGiOh” improves by 2.37% for
DUAL and 2.48% for SOM using the T-Biencoder.

Domains Biencoder T-Biencoder
DUAL SOM DUAL SOM

Validation
Coronation Street 88.87 92.28 89.07 92.76
Muppets 88.51 91.62 89.89 92.75
Ice Hockey 92.03 92.07 92.39 93.42
Elder Scrolls 94.32 96.05 94.85 96.28
Testing
Forgotten Realms 93.83 97.00 94.25 97.17
Lego 92.16 94.50 92.83 95.58
Star Trek 85.78 89.05 86.56 89.64
YuGiOh 77.12 85.66 79.49 88.14

Table 4: Zero-shot Performance on Different Domains
under Random-ID

4.4.3 Efficiency Analysis

We dive into the efficiency of compared models.
Table 2 shows the cost per epoch, measured in min-
utes (last column). In spite of the performance
advantages of using SOM and hard sampling, the
computational and memory requirements is expen-
sive. We draw this conclusion from the complexity
of the SOM scorer and the mechanism behind hard
sampling.

Given a mention-entity (m, e) pair in the train
set, where n is the length of the mention/entity.
DUAL has a complexity O(1) (see (4)) while SOM
has a complexity O(n2) (see (5)) to analyze (m, e).
This means DUAL is bounded by a constant while
SOM scales quadratically in computation and mem-
ory storage with the length of the mention or entity.
On the other hand, hard sampling requires that the
set of entities are ranked by the scorer before select-
ing the top-k negative entities. Random sampling
requires no scorer. Taking these two factors (i.e.,
scorer’s complexity and sampling technique) into
consideration, it is not surprising to see (1) the time
cost of hard sampling to be significantly higher
than random sampling, (2) the time cost of SOM
with hard sampling to be larger than that of DUAL
with hard sampling. However, it is interesting to
see that T-Biencoder with Hard-ID trains about 3.7
(2306/625) times faster than the Biencoder with
Hard-CD for the SOM scorer. We attribute this
efficiency to sampling in-domain, where the in-
domain’s entity set is significantly smaller than the
entity set of all domains in the train set.

4.5 Ablation Study
Given the difference between the Biencoder (Zhang
and Stratos, 2021) and T-Biencoder, our perfor-
mance can be attributed to the learned transforma-
tion or/and our negative sampling strategy. In this
section, we investigate the contribution of the dif-
ferent model components through ablation studies.
We experiment with the negative sampling strate-
gies using the DUAL and SOM scorers. Due to the
computational cost constraints, we do not report re-
sults for SOM using Hard strategies. Table 5 shows
the results of this experiment.

Model Scorer Negatives Evaluation
Validation Testing

Biencoder DUAL Random-CD 91.03 81.88
Biencoder DUAL Random-ID 92.08 84.82
T-Biencoder DUAL Random-ID 92.43 85.72
Biencoder DUAL Hard-CD 92.03 84.97
Biencoder DUAL Hard-ID 92.70 85.50
T-Biencoder DUAL Hard-ID 93.03 86.35
Biencoder SOM Random-CD 92.18 87.82
Biencoder SOM Random-ID 93.81 89.46
T-Biencoder SOM Random-ID 94.56 90.68

Table 5: Ablation Study: Model Performance by sam-
pling negatives in-domain or across-domains of the
golden entity.

We fix the negative sampling used, in order to de-
termine the contribution of the learned transforma-
tion. Using Random-ID (or Hard-ID) and DUAL,
we find that T-Biencoder outperforms the Bien-
coder by 0.9% (or 0.85%) on the test set. Using
Random-ID and SOM, we find that T-Biencoder
outperforms the Biencoder by 1.22% on the test
set. We see similar performance situations on the
validation set. These results demonstrate that the
learned transformation leads to improvement irre-
spective of the score function or negative sampling
strategy used.

We also demonstrate the effectiveness of in-
domain sampling by comparing against cross-
domain sampling. With the DUAL scorer, we
find that the Biencoder achieves gains of 2.94%
(or 0.53%) on the test set with Random-ID (or
Hard-ID) as against using Random-CD (or Hard-
CD). With the SOM scorer, we find that the Bien-
coder achieves gains of 1.64% on the test set with
Random-ID as against using Random-CD. We see
similar performance situations on the validation set.
These results indicate that our in-domain negative
sampling strategy produces harder negatives, re-
sulting in strong gradient signals for optimization.
By leveraging both in-domain negative sampling as
well as transformation learning, we achieve state-
of-the-art performance.
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4.6 Impact of ϵ and K

In this section, we investigate the sensitivity of
T-Biencoder in terms of the hyper-parameters ϵ
and K. Recall, K indicates the layer in which we
apply a transformation on its output during training.
Suppose K = 0, a transformation is applied on
the output of the embedding layer. ϵ on the other
hand represents the upper bound for the norm of
transformation in (10). We perform this experiment
on the test set under Random-ID using our best
hyper-parameter values. Figure 3 shows the Recall-
64 curve for different values of ϵ, with K = 1.
Table 6 also shows the performance for different
values of K, with ϵ = 32 on DUAL and ϵ = 20 on
SOM.
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Figure 3: Recall-64 curves for different ϵ under Random-
ID for T-Biencoder

.

Scorer K = 0 K = 1 K = 4 K = 8
DUAL 85.45 85.72 85.12 84.36
SOM 90.23 90.68 90.05 88.69

Table 6: Recall-64 performance for different K under
Random-ID for T-Biencoder.

In Table 6, we find that DUAL achieves the
best performance in the early layers, i.e., K = 1.
Meanwhile, with increasing K, the performance
deteriorates. Since representations for source and
target domains tend to share a low-level linguis-
tic representation space in early transformer layers
while reserving higher layers for the task or domain
specific knowledge (Jawahar et al., 2019; Durrani
et al., 2021), we believe a transformation easily
bridges the domain gap in such layers to achieve
performance. With regard to the impact of ϵ, Fig-
ure 3 shows that the performance of T-Biencoder
increases with increasing values of ϵ up to a cer-
tain point, achieving scores of 85.72 on DUAL and
90.68 on SOM. After this point the performance
becomes unstable and deteriorates, indicating the
importance of controlling ϵ.

4.7 Analyzing the Importance of L

The loss functions L and L′ both tune the pa-
rameters of the encoder. But L′ additionally fo-
cuses on mitigating the domain shift problem at
the same time. In this section, we wish to answer
the question: Can we produce good mention-entity
representations through only L′? To answer this
question, we ablate T-Biencoder by removing the
standard loss L, constructing the ablated model T-
BiencoderwoL. We consider both DUAL and SOM
under the Random-ID strategy. We use the best
hyper-parameter values for ablated models. Table 7
shows the results of our experiments. The last two
columns is the performance on the held-out men-
tions in the training set. (see Table 4). We find
that the ablated model deteriorates for both DUAL
and SOM, indicating that we cannot obtain good
sentence representations by minimizing only L′.

Model Scorer Testing Training
Seen Unseen

Biencoder DUAL 84.82 95.65 94.97
T-Biencoder DUAL 85.72 96.07 95.52
T-BiencoderwoL DUAL 82.11 91.97 91.52
Biencoder SOM 89.46 96.30 96.12
T-Biencoder SOM 90.68 96.68 96.56
T-BiencoderwoL SOM 86.68 94.64 94.38

Table 7: Importance of L: Performance of different
models, including the ablated model T-BiencoderwoL.

5 Conclusion

We introduced a Transformational Biencoder (T-
Biencoder) that builds upon the recent proposed
Biencoder (Wu et al., 2020) to solve the problem
of zero-shot entity linking. Our work shows how
to explicitly improve the zero-shot transfer capabil-
ity of the Biencoder for EL. We hypothesized that
negative samples drawn in-domain of the golden-
entity results in better optimization. Our experi-
mental analysis demonstrates that this assumption
holds, where we see the benefits of our negative
sampling strategy as well as the learned transforma-
tion. Our results show strong improvements for the
task, in both effectiveness and efficiency. We envi-
sion that the T-Biencoder can further be improved
by learning a transformation for each domain in
the train set, since a single transformation may not
effectively capture the relationship among different
specialized domains. We leave this for future work.
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