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Abstract
Code switching (CS) refers to the phenomenon
of interchangeably using words and phrases
from different languages. CS can pose sig-
nificant accuracy challenges to NLP, due to
the often monolingual nature of the underly-
ing systems. In this work, we focus on CS in
the context of English/Spanish conversations
for the task of speech translation (ST), gener-
ating and evaluating both transcript and trans-
lation. To evaluate model performance on this
task, we create a novel ST corpus derived from
existing public data sets.1 We explore vari-
ous ST architectures across two dimensions:
cascaded (transcribe then translate) vs end-to-
end (jointly transcribe and translate) and uni-
directional (source → target) vs bidirectional
(source ↔ target). We show that our ST ar-
chitectures, and especially our bidirectional
end-to-end architecture, perform well on CS
speech, even when no CS training data is used.

1 Introduction

Over half of the world’s population is estimated to
be bilingual. 2 Those that know multiple languages
are prone to code switch, i.e., to interchangeably
use words and phrases from two (or more) lan-
guages in situations such as casual dialog, while
traveling abroad, or simply to use a word they find
more fitting (Myers-Scotton and Ury, 1977; Here-
dia and Altarriba, 2001). In CS, the base language
is referred to as the matrix language while the con-
tributing language is called the embedded language
(Myers-Scotton, 1995), where speakers often use
the matrix language the majority of the time.

Code switched language is challenging to both
automatic speech recognition (ASR) and machine
translation (MT) - and therefore also to the com-
posite task of speech translation (ST). While a rich

1We make instructions and extra data needed to construct
our CS data set available at https://github.com/apple/ml-code-
switched-speech-translation

2BBC: https://bbc.in/3jgwzZ2
* Work done as an intern.

Transcript (CS)

Translation (En)

Acá te tiene como 
constantemente escribiendo 
papers y reviews no cierto
Here they're like constantly 
writing papers  and reviews
 right

Audio

Figure 1: An example instance of the joint speech
recognition and translation task for code-switching
(CS). Red indicates English words in the transcript and
their corresponding words in the translation, whereas
blue indicates Spanish words in the transcript and their
corresponding translation.

amount of prior works exist on CS in the context of
ASR (Lyu et al., 2006; Ahmed and Tan, 2012; Vu
et al., 2012; Johnson et al., 2017; Yue et al., 2019)
and MT (Sinha and Thakur, 2005; Winata et al.,
2021; Zhang et al., 2021; Yang et al., 2020), there
is little prior work in the context of ST.

The aforementioned challenges to ASR, MT and
ST arise largely due to the lack of CS data as well
as the often monolingual nature of ASR systems,
and of encoders of MT and ST systems. The lack
of CS data is often addressed via synthetic data,
e.g. as seen in Xu and Yvon (2021); Nakayama
et al. (2019). Instead, in this work we derive two
novel natural CS datasets from existing public cor-
pora. CS is also difficult for modeling due to its
mixed multilingual nature. In order to support mul-
tiple languages on the utterance level, automatic
language identification (LID) is often performed
before applying monolingual systems on a per utter-
ance basis. However, this does not address within-
utterance CS, where embedded foreign words and
phrases result in recognition errors for monolin-
gual ASR systems, making multilingual models an
attractive alternative. Furthermore, CS increases
speech recognition errors, significantly increasing
the problem of error propagation (Ruiz and Fed-
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erico, 2014) in cascaded ST systems, where MT
is then performed on the erroneous ASR output.
Thus, multilingual end-to-end (E2E) ST systems
may be especially appropriate to tackle CS speech.

As both the transcript and translation are impor-
tant in many CS ST use cases, we focus on the
joint transcription and translation ST setting (Anas-
tasopoulos and Chiang, 2018; Weller et al., 2021),
extending it to CS data. We follow the methodology
of these previous works and focus on the triangle
E2E ST model to jointly generate both a transcript
of the CS utterance and a translation of that utter-
ance into text containing only one language (c.f.
Figure 1 for an illustration). We perform a com-
parison along two axes: (1) comparing this E2E
model to the standard cascaded ST systems, and
(2) exploring the difference between bilingual sys-
tems and primarily monolingual systems gated by
utterance-level LID. Following recent work that
has shown the effectiveness of pre-trained models
for ST (Li et al., 2020; Gállego et al., 2021), we use
Wav2Vec 2.0 (Baevski et al., 2020) as our encoder
model and the multilingual mBART 50-50 (Tang
et al., 2020) as our decoder model.

We also make several modeling contributions
in order to use these pre-trained models for
joint transcription and translation. For the E2E
ST model, we extend Li et al. (2020) to adapt
the mBART decoder to jointly produce both
transcription and translation. Furthermore, we
introduce a triangle E2E ST model with a shared
bilingual decoder and show that this improves
transcription and translation accuracy. Our model
analysis shows a surprising amount of robustness
to CS speech, with the amount (or proportion)
of CS words in a sentence not affecting model
accuracy. Overall, we observe strong accuracy
scores (WER, BLEU) on the CS task, both without
CS training data and in the low-resource setting.
We believe this opens the door to new and exciting
progress in this area.

2 Related Work

Code-switching in NLP has seen a rise of interest
in recent years, including a dedicated workshop
starting in 2014 (Diab et al., 2014) and still ongo-
ing (Solorio et al., 2021). CS in machine transla-
tion also has a long history (Le Féal, 1990; Climent
et al., 2003; Sinha and Thakur, 2005; Johnson et al.,
2017; Elmadany et al., 2021; Xu and Yvon, 2021),

but has seen a rise of interest with the advent of
large multilingual models such as mBART (Liu
et al., 2020) or mT5 (Xue et al., 2020; Gautam
et al., 2021; Jawahar et al., 2021). Due to the lack of
available CS data and the ease of single-word trans-
lation, most of these recent related MT works have
synthetically created CS data for either training or
testing by translating one or more of the words in a
sentence (Song et al., 2019; Nakayama et al., 2019;
Xu and Yvon, 2021; Yang et al., 2020). We differ
from those works by using naturally occurring CS
data (Section 3) which models the real-world CS
distribution rather than arbitrary language mixing.

For spoken input, as present in ASR and ST,
synthetically creating realistic CS data is more
challenging than it is for MT. However, dedicated
ASR corpora that contain natural CS exist, in-
cluding the Bangor Miami (Deuchar et al., 2014),
SEAME (Zeng et al., 2018), and the recent large-
scale ASRU 2019 task (Shi et al., 2020). These
corpora generally do not contain translations of the
ASR annotations, since they were designed for the
ASR task only. However, there exist two excep-
tions, which we leverage to derive our ST CS data
set, described in Section 3.

There also exists a wide range of prior model-
ing work on CS in ASR models, for a variety of
strategies (Lyu et al., 2006; Ahmed and Tan, 2012;
Seki et al., 2018; Luo et al., 2018; Lu et al., 2020;
Du et al., 2021; Zhang et al., 2021). However, the
recently introduced large multilingual models for
speech, such as Wav2Vec, Wav2Vec 2.0, Schneider
et al. (2019); Baevski et al. (2020) and HuBERT
(Hsu et al., 2021), are still underexplored with re-
gards to their CS performance.

Handling mixed languages also requires under-
standing what languages are being spoken. Sys-
tems that support mixed language input therefore
require some form of automatic LID – either as
an explicit component on the utterance (Mabokela
et al., 2014; Xu and Yvon, 2021) or word-level
(Lyu and Lyu, 2008a; Nakayama et al., 2019), or
implicitly learned by the underlying model(s) via
a multi-task learning setup (Lyu and Lyu, 2008b;
Watanabe et al., 2017; Hou et al., 2020). In our
work, we leverage both, exploring utterance-level
LID components as well as implicit learning of
utterance and word level LID.

In both MT and ASR, prior publications have
also included the study of intra-word mixing of
languages (Yılmaz et al., 2018; Mager et al., 2019),
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a phenomenon we do not explore in our work.
Finally, our work builds off of advances made by

Gállego et al. (2021); Li et al. (2020) that show that
combining large multilingual speech and text mod-
els provide consistent improvements. We differ
however, by exploring ST in the novel CS setting.

3 Task Description & Data Used

3.1 Task Description

We investigate systems suitable for bilingual En-
glish/Spanish conversational scenarios where some
of the English and Spanish utterances may include
some amount of words and phrases of the respec-
tive other language. That is, we are focusing
on ST systems that can automatically and seam-
lessly handle utterances that are either purely En-
glish, purely Spanish, English with some Spanish
words/phrases embedded or Spanish with some En-
glish words/phrases embedded. For transcription,
we aim for models to generate the exact mixed-
language transcript with each word written in its
original spoken language. For translation, we aim
to generate purely monolingual translations. See
Figure 1 for an example. The experiments and re-
sults presented in this paper focus on translating
into monolingual English only due to data availabil-
ity, although we expect similar results for Spanish
translations, due the bidirectional model training
on standard ST data (Appendix D). We will leave it
to future work to more closely examine translation
into Spanish – or even a third language not present
in the original utterance.

It must be noted that word-level language cat-
egorization is sometimes ambiguous. A word in
one language may also be considered part of a
different language. That is for example true for
loan words (Baugh, 1935), e.g., e-mail in many
non-English languages such as German. This issue
can be further complicated by attempting to cate-
gorize what language named entities fall under: is
a Spanish speaker saying Joe Biden or New York
code-switching? Although we acknowledge the
complexity of separating words between languages,
our work, following previous work (Modipa et al.,
2013; Nakayama et al., 2018), uses data annotated
by crowd-sourced workers, counting any sentence
annotated as having a least one foreign word as
being CS. This approach also makes intuitive sense
for speech, as the CS words (classified as foreign)
will have phonemes that will align more with the
embedded language, while the non-CS phonemes

will align more with the matrix language.

3.2 Code-Switched Speech Datasets

We use the Fisher (Cieri et al., 2004) and Bangor
Miami3 (Deuchar et al., 2014) corpora for CS data,
as they are the only publicly available corpora we
are aware of that contains both annotated CS ASR
transcripts, as well as translations of those tran-
scripts (Table 1). Although these corpora contain
the translations, to our knowledge they have not
been used to study CS translation before.

The Miami corpus was collected for linguis-
tic code-switching analysis and gathered from
recorded conversations between bilingual En-
glish/Spanish speakers in casual settings, primarily
in Miami, Florida. These conversations include a
high proportion of naturally occurring CS speech.
However, in order to collect these naturally occur-
ring conversations, the participants were recorded
throughout their day using a small digital recorder
worn on belts and lapels. Due to this, the Miami
audio contains lower audio quality and much noiser
background conditions than standard ASR datasets.

The Fisher dataset was collected for ASR and
was gathered by pairing sets of Spanish speak-
ers, located in the U.S. and Canada, to each other
through phone calls. Although the Fisher dataset is
not a CS focused dataset, we found that it contains
a large amount of (annotated) CS utterances, due
to the speakers being situated in English-speaking
contexts. The recording method (phone recordings
in 2004) makes this a noisy ASR dataset, although
significantly less so than Miami.

To prepare the data for the joint ST CS task, we
separate the data with CS utterances (utterances
that contain at least one word annotated as CS)
from those with none, creating a CS set and a
monolingual set for each dataset. We note that
for the Miami dataset the monolingual split con-
tains both English-only and Spanish-only mono-
lingual audio. As the Miami corpus was also an-
notated with both ambiguous and unambiguous
code-switching, we only include utterances in the
CS set if the annotations were tagged as unambigu-
ously code-switched (i.e. excluding words such
as ok, aha, and named entities). The Fisher CS
dataset consists of majority (matrix4) Spanish 77%
of the time, English-majority 17%, and 6% evenly

3Online audio files can be found at https://biling.
talkbank.org/access/Bangor/Miami.html

4For simplicity, we use the terms majority/matrix language
and minority/embedded language interchangeably.
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Dataset Raw Transcript Clean Transcript

Fisher un <foreign lang=”English”> show <\foreign>, a mi me
gusta ver mucho estos <foreign lang=”English”> shows
<\foreign> de la medicina forense

un show, a mi me gusta ver
mucho estos shows de la
medicina forense

Miami hay una [/] una que dice (.) it’s@s:eng five@s:eng
o’clock@s:eng somewhere@s:eng

hay una una que dice it’s
five o’clock somewhere

Table 1: Examples of the raw and clean data for Miami and Fisher. Text in red indicates English text while blue
text indicates Spanish. The Miami dataset uses the CHAT annotation format (MacWhinney and Snow, 1990).

Figure 2: Histogram of the proportions of code-switched words in a sentence for the CS test sets (Fisher on the
left, Miami on the right). For example, 0.2 means that 20% of the words in the sentence are CS.

Dataset Split Type Hours Instances

Miami
Train Mono 3.60 6,489

Test CS 2.82 3,296
Mono 3.61 6,490

Fisher

Train CS 13.28 7,398
Mono 157.3 130,600

Dev CS 1.45 821

Test CS 1.63 986
Mono 12.15 10,595

Table 2: Dataset Statistics. CS stands for Code-
Switched and Mono for Monolingual.

split between English/Spanish. For the Miami CS
dataset the languages are more evenly distributed,
with 51% majority-Spanish, 35% majority-English,
and 9% evenly split.5

The Fisher data consists of three evaluation
sets (Dev/Dev2/Test) that together contain approxi-
mately a thousand instances of CS with correspond-
ing translations in monolingual English. We com-

5To make these CS datasets reproducible for the broader
ST community, we provide a file with instructions for gather-
ing the data (as Fisher is part of the LDC library) as well as
files containing a mapping between the original dataset indices
to the CS data splits.

bine them into a Fisher CS Test set. The Fisher
dataset also contains a large amount of CS utter-
ances in the training set (appx. 8k or 15 hrs) which
we use as fine-tuning (90%) and validation data
(10%). As the Miami dataset contains no splits, we
use all CS data for the test set and split the monolin-
gual data into even train/test sets. We include basic
summary statistics in Table 2. Note that when com-
pared to standard ST datasets, these CS ST datasets
would be considered low-resource settings.

In Figure 2, we see the proportion of CS words
in a sentence for the CS test sets. We note that
there are no sentences with more than 50% of the
words CS since the minority language cannot be
more than 50% by definition. For instances that are
exactly 50% code switched their language identifi-
cation was chosen by randomly selecting either En-
glish or Spanish. We see that for the Fisher dataset
there are more sentences with less than 15% CS
with a small uptick around 50%. For Miami it is
more uniform, with a large amount of sentences
being approximately 25% CS.

To prepare our models for Spanish-English CS,
we use the CoVoST (Wang et al., 2020a,b) and
MuST-C (Cattoni et al., 2019) datasets for standard
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C) CASCADE BIDIRECT (1.1B)

G) E2E BIDIRECT 
SHARED (0.6B)

F) E2E BIDIRECT
BY TASK (1.1B) 

A) CASCADE UNIDIRECT (2.4B)

Transcript

Translation

Transcript

Translation

E) E2E BIDIRECT BY LANG (1.1B)

LID Classifier

Wav2Vec2 a Wav2Vec2 b

mBARTb mBARTd

D) E2E UNIDIRECT (2.2B)

LID Classifier

Wav2Vec2 a

mBARTa

mBARTb

Transcript

Translation

Wav2Vec2 b

mBARTc

mBARTd

Translation

Transcript

Transcript

Translation

Wav2Vec2 a

mBARTb

Wav2Vec2 a

mBARTa

mBARTb

Transcript

Translation

LID Classifier

Wav2Vec2 a

mBARTa

mBARTb

Transcript

Translation

Wav2Vec2 a

mBARTb

mBARTa

Translation

Transcript

B) CASCADE UNI
SHARED ENC (1.8B)

Transcript

Translation

Transcript

Translation

LID Classifier

Wav2Vec2 a Wav2Vec2 a

mBARTb mBARTd

Wav2Vec2 a

mBARTa

mBARTa

Transcript

Translation

More 
Shared 

Parameters

Fewer 
Shared 

Parameters

mBARTa mBARTc mBARTa mBARTc mBARTa

Figure 3: Illustration of model architectures, with cascaded architectures on the top and E2E architectures on the
bottom. Left to right shows the progression of models with the least and the most amount of shared parameters
respectively. Subscripts are present to indicate shared modules within each model. Dotted lines indicate a decision
where only one path is chosen using the LID. Note that there is no cascade equivalent to the BIDIRECTIONAL E2E
SHARED model, as the cascaded model by definition generates transcript then translation separately. The numbers
in parentheses stands for the number of model parameters in billions.

ST training, as CoVoST contains only Es−→En and
MuST-C contains only En−→Es. Although high
scores on these datasets are not our primary target,
we note that our scores come close to or improve
the state of the art (SoTA) on these tasks (see Ap-
pendix A, Table 9) albeit with different data used
in training, showing that our base ST models are
representative of current SoTA techniques.

4 Experimental Settings

4.1 Models
Joint Transcript/Translation Models Many
different types of E2E models exist for joint tran-
script/translation ST (Sperber and Paulik, 2020).
Here, we focus on the triangle E2E architecture
due to its strong performance in previous work
(Anastasopoulos and Chiang, 2018; Sperber et al.,
2020). Following recent work (Gállego et al., 2021;
Li et al., 2020) we use pre-trained modules as a
starting place for our ST model, using a Wav2Vec
2.0 (Baevski et al., 2020) encoder and a mBART
50-50 (Liu et al., 2020; Tang et al., 2020) decoder.

Because our task involves joint ASR and ST,
we need to adapt the pre-trained decoder to work
with the E2E triangle architecture. Specifically, the
triangle model’s second decoder computes cross
attention separately over both the first decoder and
the encoder states. We place an additional cross-
attention layer after each encoder-attention layer
in mBARTs decoder blocks, initializing them with
the pre-trained encoder-attention weights. To make
sure these weights converge properly, we freeze
the entire model for approximately the first epoch
while training only the bridge and additional cross
attention layers (c.f. Appendix A).

As described in Section 3, our task involves mod-
eling intra-sentence CS. This means that any model
used for this task must either explicitly or implicitly
learn to model the language of each word in the sen-
tence. Furthermore, as more than one language is
being modeled, each sub-component of the model
can either be unidirectional or bidirectional. We
can thus categorize potential models by how much
information is shared within the parameters: the
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least shared models would be unidirectional and
joined together by explicit LID, whereas the most
shared would be bidirectional models that learn the
LID implicitly. Models and their categorization
along this scale are shown in Figure 3.

For cascade models, the most basic would be
separate unidirectional cascaded models joined by
an LID model. The LID model will explicitly de-
cide what the matrix language is and send the utter-
ance to the model that is best equipped to handle
that language (Figure 3A). Note that this approach
may suffer from error propagation issues due to
incorrect LID. A more parameter-shared version of
this model is to make the cascaded model encoder
shared between both unidirectional models (Fig-
ure 3B). Finally, we can examine a bidirectional
cascade model that shares each component across
both languages. This architecture implicitly learns
to model the language of the input, removing the
need for an explicit LID model (Figure 3C).

We also examine similar analogues for the E2E
triangle model: unidirectional models joined by
LID (Figure 3D) and a bidirectional model with
LID and a shared encoder (Figure 3E). We can also
use the standard triangle model (see Anastasopou-
los and Chiang (2018) for implementation details)
that includes one encoder and two decoders (one
for each sub-task) (Figure 3F). Furthermore, we
propose to alter the standard triangle model and
share both decoder parameters for both languages
with a joint bidirectional decoder (Figure 3G, note
that the cascade model cannot do this due to the
definition of the cascade). By doing so, we hope
to provide an inductive bias for the model to more
easily handle code-switched data, as the weights
of that decoder will already be used to handling
multiple languages for both tasks (compared to
the bidirectional cascade model, which only shares
multilingual parameters for each task of transcript
and translation).

Language Identification Model We train the
language identification (LID) model to identify the
matrix language. For consistency with our other
models (and similar to concurrent work, e.g. Tjan-
dra et al. (2021)), we use a pre-trained Wav2Vec2
along with a classifier layer to predict whether the
utterance is majority Spanish or majority English.
We train the model in the same fashion as the joint
transcription and translation models (Section 4.1
and Appendix A) but train on the LID data instead.

The data for the LID model was gathered by tak-

ing the CS data6 from the training set of the Fisher
corpus and combining it with randomly sampled
data from several different datasets in order to help
the model learn despite the domain of the audio.
We use MuST-C English audio, CoVoST English
audio, CoVoST Spanish audio, and the monolin-
gual Spanish audio from the training sets of Fisher
and Miami. We found that upsampling the CS train-
ing set by 2 and using the same amount of data (2x
the number of the CS set) for CoVoST and MuST-C
provided the best results: 98%+ accuracy on CoV-
oST and MuST-C, 89% on the Fisher CS validation
and test sets, and 72% on the Miami CS test set
(due to the noisy data). As a large proportion of
the CS data is close to 50% code-switched (see
Figure 2), it becomes more difficult for the model
to predict the matrix language correctly.

4.2 Training Process and Evaluation

For all dataset evaluations, we use word error rate
(WER) and character error rate (CER) for the tran-
script and Charcut (CCT) (Lardilleux and Lepage,
2017) and sacreBLEU (Post, 2018) for the trans-
lation. However, we found that there was no dif-
ference in conclusions between each of the two
metrics (WER vs CER and BLEU vs Charcut) and
thus we only report BLEU/WER in the main text
(see Appendix A for implementation details). For
tables showing all metrics, see Appendix E.

We evaluate our models on the Fisher and Miami
test sets (with both CS-only and monolingual-only
test sets) in two different settings: (1) without fine-
tuning them on CS data (No-FT) and (2) after fine-
tuning the already trained ST models on the Fisher
CS Training set (FT). For models consisting of two
monolingual sub-models we fine-tune both on the
CS data. During fine-tuning we employ the same
hyperparameters as in the original experiment, but
perform early stopping on the Fisher CS Dev set.
We use significance tests to verify the reliability
of our results (Koehn, 2004). We run bootstrap
resampling tests against the best performing model,
using α = 0.05. More training parameters such as
learning rates, etc. can be found in Appendix A.

5 Results

5.1 Scores on Test Sets

In this section, we explore the results of doing ST
for CS data along the two axes of unidirectional vs

6For the No-FT case (Section 4.2), we exclude the CS data
when training the LID model.
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Not Fine-Tuned Fine-Tuned
CS Mono. CS Mono.

Models ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU

CASCADE UNIDIRECT 37.1 22.5 26.6 24.7 33.5 24.6 24.8 25.5
(-0.8) (-0.4) (-3.1) (+0.9) (-0.4) (0.0) (-1.0) (+0.2)

CASCADE UNI SHARED ENC 36.0 21.6 25.6 24.3 31.2 25.4 25.6 24.8
(0.0) (+0.6) (0.0) (+0.5) (+0.1) (+0.2) (-0.3) (+0.1)

E2E UNIDIRECT 36.6 22.3 26.7 25.0 33.4 24.4 25.3 25.5
(-0.9) (-0.1) (-3.5) (+1.0) (-0.2) (+0.1) (-1.4) (+0.4)

E2E BIDIRECT BY LANG 37.0 23.4 27.2 25.0 36.7 22.8 27.3 25.0
(-0.9) (-0.1) (-1.9) (+0.5) (-0.8) (+0.2) (-2.0) (+0.4)

Table 3: Comparison of Oracle vs Predicted LID results on the Fisher dataset. Numbers in parenthesis are the
difference to the corresponding model with oracle LID. Note that the Oracle LID improves upon the Predicted
LID in most cases. Conclusions are similar for the Miami corpus (see Appendix B Table 7)

Not Fine-Tuned Fine-Tuned
CS Mono. CS Mono.

Model ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU

Fi
sh

er

CASCADE UNIDIRECT 37.1 22.5 26.6 24.7 33.5 24.6 24.8 25.5
CASCADE UNI SHARED ENC 36.0 21.6 25.6 24.3 31.2 *25.4 25.6 24.8
CASCADE BIDIRECT 37.2 21.8 26.5 24.1 33.2 23.2 28.1 23.2
E2E UNIDIRECT 36.6 22.3 26.7 25.0 33.4 24.4 25.3 25.5
E2E BIDIRECT BY LANG 37.0 23.4 27.2 25.0 36.7 22.8 27.3 25.0
E2E BIDIRECT BY TASK *34.1 *23.0 23.6 26.0 *30.1 25.6 *24.3 25.6
E2E BIDIRECT SHARED 33.8 *23.3 23.2 26.2 30.0 *25.4 24.1 26.1

M
ia

m
i

CASCADE UNIDIRECT 65.2 8.8 52.3 16.8 64.8 10.8 51.5 16.8
CASCADE UNI SHARED ENC 60.2 9.7 53.8 15.7 55.0 14.7 55.6 15.3
CASCADE BIDIRECT 61.4 9.3 54.0 14.8 57.4 10.6 58.2 14.0
E2E UNIDIRECT 65.6 10.1 53.0 17.2 65.1 11.7 *51.4 17.6
E2E BIDIRECT BY LANG 69.5 12.4 55.2 16.5 69.3 11.5 54.5 16.6
E2E BIDIRECT BY TASK 59.9 11.0 *50.0 *18.1 *53.6 *13.8 52.6 *17.5
E2E BIDIRECT SHARED 58.9 *11.8 49.9 18.3 53.0 *14.1 52.1 *17.4

Table 4: Test set scores, with results from the Fisher corpus on the top half and the Miami corpus on the bottom
half. Bold scores indicate the best score in the column, while asterisks indicate results that are statistically similar
to the best score in the column group using a bootstrap resampling test with α = 0.05.

bidirectional and end-to-end vs cascade.

We see results for models using explicit LID pre-
diction in Table 3, showing that models that use the
predicted LID perform worse than those that
use Oracle LID (e.g. 36.6 vs 35.7 WER for the
E2E UNIDIRECT). This provides a slight advan-
tage for the bidirectional models that learn LID
implicitly. However, the predicted LID case is the
realistic setting, and thus we use it for the remain-
der of our experiments.

When we examine the models along the scale of
unidirectional to bidirectional, we see that higher
amounts of shared parameters are correlated
with higher scores, e.g. bidirectional is better. We
see that on all datasets and evaluation settings (Ta-
ble 4) that the E2E BIDIRECT SHARED model is
either statistically similar or outperforms all other
models, except for the Miami Monolingual FT case,
where it comes in 3rd. Thus, the inductive bias of

Figure 4: Accuracy of the models in generating the CS
spans. Note that this excludes all non-exact matches
and is a lower bound on performance.

sharing the multilingual task parameters provides
a gain of approximately 3.5 WER points (33.8 vs
37.3) and 1.5 BLEU points (23.3 vs 21.9) for the
E2E BIDIRECT SHARED model over the E2E UNI-
DIRECT model on the Fisher dataset, with similar
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Model Transcript Translation
Reference si entonces volvı́ aquı́ a la casa si el fall break yes so I returned here to the house yes the fall break
Cascade si entonces volvı́ aquı́ a la casa si es folvereak yes then I returned here at home yes its folvereak
E2E si entonces volvı́ aquı́ a la casa si es fallbreak yes so I came back to the house yes its fallbreak

Table 5: Example generated output from the CASCADE BIDIRECT and E2E BIDIRECT SHARED models. Note the
error propagation in the cascade model.

performance on the Miami dataset.
We can also examine Table 4 to see how the

cascade models compare to the E2E models. The
results show that the cascaded models perform
the same or worse than the E2E models they
compare to w.r.t. parameter sharing, with the best
overall model being the E2E BIDIRECT SHARED,
beating the CASCADE BIDIRECT (e.g. 33.8 vs 37.2
WER or 23.3 vs 21.8 BLEU on Fisher No-FT).

Table 4 also illustrates that fine-tuning models
on CS data improves scores on CS test sets (33.8
vs 30.0 WER for the E2E BIDIRECT SHARED

on Fisher, 58.9 vs 53.0 for Miami). These gains
are consistent for the Fisher dataset, which is the
domain of the CS training set, however there are
still gains for the out-of-domain Miami CS data.
These results suggest that additional pre-training on
natural or synthetic data (in both audio/text modal-
ities) would likely be fruitful future work. When
we examine how fine-tuning on CS data changes
the model’s monolingual scores, we find that they
generally improve the monolingual results for the
unidirectional models, but tend to make bidirec-
tional models slightly worse, perhaps due to in-
terference between the languages and tasks in the
same weights. However, overall we find that fine-
tuning provides large gains for CS with only minor
decreases in monolingual performance.

5.2 Model Analysis

We also provide further analysis of the CS out-
put of the best model and its cascaded counter-
part (BIDIRECT CASCADE and E2E BIDIRECT

SHARED). We perform three analyses: (1) com-
paring utterance level scores vs the proportion of
CS words in the utterance, (2) computing the exact
match accuracy of the CS spans in the model’s out-
put, and (3) qualitatively examining model output.

We check the correlation between the propor-
tion of CS words in a sentence and the model’s
score, using a linear model to find the R2 values.
We found that surprisingly, there was no correla-
tion between the proportion of CS words and
the models score for any of the different models

or metrics (R2 < 0.025 for all models and metrics).
A graphical depiction of the model’s scores over
CS proportions is in the Appendix, Figure 5. We
note that this finding was the same for comparing
the number of CS words instead of the proportion.
This finding implies that the models are surpris-
ingly robust to the amount of CS in a sentence.

Although BLEU and WER scores show how
well the models do on the CS data, we can further
isolate the performance of these models on only the
code-switched parts of the utterances. To do so, we
isolate all CS spans in the sentences and check to
see if the model’s output contains the exact-match
of those spans. We note that this metric does not
take into account synonyms or different tenses of
the same word, making it a stricter metric serving
as a lower bound of absolute performance. We see
in Figure 4 that the E2E model still outperforms
the cascade on CS spans, with Fisher No-FT scores
around 20-30% and Fisher FT scores around 45%.

Finally, we can also examine the model’s out-
puts. We inspected 200 output sentences for the
monolingual subsets and found that both models
generated the correct language in every case, indi-
cating that they correctly learned the implicit LID.
However, we can see that the cascade model does
struggle with error propagation (especially so in
the CS setting, Table 5), likely causing part of the
difference between the E2E and cascade models.

Although the CS WER and BLEU scores are not
as high as they are on cleaner monolingual datasets
such as CoVoST (Appendix A), their performance
is competitive with their respective monolingual
performance on Miami and Fisher, even in the No-
FT setting. We believe that with additional data and
improvements ST models will be well-equipped to
handle CS in practical situations and that overall,
models show strong CS performance.

6 Conclusion

In this work, we expand the ST literature to explore
code-switching, contributing a new task framework
for ST that extends the joint transcription and trans-
lation setup. To further progress, we built and open-
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sourced a new ST corpus for CS from existing
public datasets. We evaluated a range of models,
showing that using bilingual joint decoders pro-
vides gains over using separate task decoders. We
also showed that E2E systems provide better per-
formance than their cascading counterparts on the
CS task. Overall, our work shows that ST models
can perform well on CS applications with both no
fine-tuning and in low-resource settings, opening
the door to new and exciting areas of future work.
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Manuel Mager, Özlem Çetinoğlu, and Katharina Kann.
2019. Subword-level language identification for
intra-word code-switching. In arXiv preprint
arXiv:1904.01989.

Thipe Modipa, Marelie Hattingh Davel, and F. D. Wet.
2013. Implications of sepedi/english code switching
for asr systems. In researchgate.

Carol Myers-Scotton. 1995. Social motivations for
codeswitching: Evidence from Africa. Oxford Uni-
versity Press.

Carol Myers-Scotton and William Ury. 1977. Bilingual
strategies: The social functions of code-switching.
International journal of the sociology of language,
pages 5–20.

Sahoko Nakayama, Takatomo Kano, Andros Tjandra,
S. Sakti, and Satoshi Nakamura. 2019. Recognition
and translation of code-switching speech utterances.
2019 22nd Conference of the Oriental COCOSDA
International Committee for the Co-ordination and
Standardisation of Speech Databases and Assess-
ment Techniques (O-COCOSDA), pages 1–6.

Sahoko Nakayama, Andros Tjandra, S. Sakti, and
Satoshi Nakamura. 2018. Speech chain for
semi-supervised learning of japanese-english code-
switching asr and tts. 2018 IEEE Spoken Language
Technology Workshop (SLT), pages 182–189.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Nicholas Ruiz and Marcello Federico. 2014. Assess-
ing the impact of speech recognition errors on ma-
chine translation quality. In 11th Conference of the
Association for Machine Translation in the Americas
(AMTA), Vancouver, BC, Canada.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint
arXiv:1904.05862.

Hiroshi Seki, Shinji Watanabe, Takaaki Hori,
Jonathan Le Roux, and J. Hershey. 2018. An
end-to-end language-tracking speech recognizer
for mixed-language speech. 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4919–4923.

Xian Shi, Qiangze Feng, and Lei Xie. 2020. The
asru 2019 mandarin-english code-switching speech
recognition challenge: Open datasets, tracks, meth-
ods and results. arXiv preprint arXiv:2007.05916.

R Mahesh K Sinha and Anil Thakur. 2005. Machine
translation of bi-lingual hindi-english (hinglish) text.
10th Machine Translation summit (MT Summit X),
Phuket, Thailand, pages 149–156.

Thamar Solorio, Shuguang Chen, Alan W. Black,
Mona Diab, Sunayana Sitaram, Victor Soto, Emre
Yilmaz, and Anirudh Srinivasan, editors. 2021. Pro-
ceedings of the Fifth Workshop on Computational
Approaches to Linguistic Code-Switching. Associa-
tion for Computational Linguistics, Online.

1444

https://www.aclweb.org/anthology/W04-3250.pdf
https://www.aclweb.org/anthology/W04-3250.pdf


Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and M. Zhang. 2019. Code-switching for
enhancing nmt with pre-specified translation. In
NAACL.

Matthias Sperber and Matthias Paulik. 2020. Speech
Translation and the End-to-End Promise: Taking
Stock of Where We Are. In Association for Com-
putational Linguistic (ACL), Seattle, USA.

Matthias Sperber, Hendra Setiawan, Christian Gollan,
Udhyakumar Nallasamy, and Matthias Paulik. 2020.
Consistent Transcription and Translation of Speech.
Transactions of the Association for Computational
Linguistics (TACL).

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Andros Tjandra, Diptanu Gon Choudhury, Frank
Zhang, Kritika Singh, Alexei Baevski, Assaf
Sela, Yatharth Saraf, and Michael Auli. 2021.
Improved language identification through cross-
lingual self-supervised learning. arXiv preprint
arXiv:2107.04082.

Ngoc Thang Vu, Dau-Cheng Lyu, Jochen Weiner, Do-
minic Telaar, Tim Schlippe, Fabian Blaicher, Eng-
Siong Chng, Tanja Schultz, and Haizhou Li. 2012.
A first speech recognition system for mandarin-
english code-switch conversational speech. In
2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
4889–4892. IEEE.

Changhan Wang, Juan Pino, Anne Wu, and Jiatao
Gu. 2020a. Covost: A diverse multilingual
speech-to-text translation corpus. arXiv preprint
arXiv:2002.01320.

Changhan Wang, Anne Wu, and Juan Pino. 2020b.
Covost 2 and massively multilingual speech-to-text
translation. arXiv preprint arXiv:2007.10310.

Shinji Watanabe, Takaaki Hori, and John R Hershey.
2017. Language independent end-to-end architec-
ture for joint language identification and speech
recognition. In 2017 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
265–271. IEEE.

Orion Weller, Matthias Sperber, Christian Gollan, and
Joris Kluivers. 2021. Streaming models for joint
speech recognition and translation. arXiv preprint
arXiv:2101.09149.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2021. Are multilingual models effective in code-
switching? ArXiv, abs/2103.13309.

Jitao Xu and François Yvon. 2021. Can you traducir
this? machine translation for code-switched input.
arXiv preprint arXiv:2105.04846.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020. Csp: Code-switching pre-training for
neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2624–2636.

Emre Yılmaz, Astik Biswas, Ewald van der West-
huizen, Febe de Wet, and Thomas Niesler. 2018.
Building a unified code-switching asr system
for south african languages. arXiv preprint
arXiv:1807.10949.

Xianghu Yue, Grandee Lee, Emre Yılmaz, Fang Deng,
and Haizhou Li. 2019. End-to-end code-switching
asr for low-resourced language pairs. In 2019 IEEE
Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 972–979. IEEE.

Zhiping Zeng, Yerbolat Khassanov, Van Tung Pham,
Haihua Xu, Eng Siong Chng, and Haizhou Li.
2018. On the end-to-end solution to mandarin-
english code-switching speech recognition. arXiv
preprint arXiv:1811.00241.

Shuai Zhang, Jiangyan Yi, Zhengkun Tian, Jianhua
Tao, and Ye Bai. 2021. Rnn-transducer with lan-
guage bias for end-to-end mandarin-english code-
switching speech recognition. In 2021 12th Inter-
national Symposium on Chinese Spoken Language
Processing (ISCSLP), pages 1–5. IEEE.

1445



CS Mono.
Models ↓ WER ↑ BLEU ↓ WER ↑ BLEU

Random Init 69.6 11.0 59.6 13.2
Pre-trained 33.8 23.3 23.2 26.2

Table 6: Comparison of the E2E bidirectional shared
model with pre-training vs random initialization on the
Fisher code-switched test sets.

A Training and Evaluation Details

We follow Gállego et al. (2021); Li et al. (2020)
and use a triangular learning rate, adapting the step
count to depend on the batch size (as not all models
could fit the same batch size) with (64 / batch size)
* 500 warm up steps, (64 / batch size) * 500 hold
steps, (64 / batch size) * 3000 decay steps, a beta
of 0.9, and a beta2 of 0.98. The learning rate was
selected from running a search over {0.01, 0.005,
0.001, 0.0005, 0.0001, 0.0005}. We found that
0.0005 was best for all models, so we examined
learning rates again between 0.0001 to 0.001 (by
0.0001) and found that they all performed similarly,
thus we use 0.0005 in our experiments. For effi-
ciency in batch size while training, we removed
all instances whose audio length was longer than
20 seconds. We freeze the attention layers for the
first 500 * (64 / batch size) steps, which is approxi-
mately the first epoch of training.

We initially trained the models on only CoVoST
and MuST-C and found there was a large domain
shift between these datasets and the comparatively
noisier Fisher and Miami datasets. As domain shift
was not the focus of this paper, we further trained
the models on the Fisher and Miami monolingual
training sets to reduce the effect of domain shift.

As a sanity check of the effectiveness of our
training, we also include scores in Table 9 for
the test sets of CoVoST and MuST-C. We note
that our scores are close to the SoTA scores of Li
et al. (2020) on CoVoST (and they use the large
Wav2Vec2 model while we use the base version)
and our MuST-C scores are higher than that of
Gállego et al. (2021).

We evaluate using word error rate, character er-
ror rate, charcut, and BLEU. As the models learn
different punctuation techniques from a variety of
sources, including MuST-C, CoVoST, Miami, and
Fisher, we remove all punctuation from the out-
put before evaluating on the CS/Mono test sets,
in order to only measure scores on the content.
For BLEU, we use SacreBLEU with parameters

Figure 5: Charcut performance of the E2E BIDIRECT
SHARED model on sentences with various levels of CS
proportions. Note that there is no clear correlation, as
described in Section 5.2. Black lines indicate error bars
of 2 standard deviations while the bar represents the
average.

case.lc+numrefs.1+smooth.4.0+tok.13a.

B More LID Comparisons

We show results for all models that use LID on both
datasets in Table 7. Note the conclusions remain
the same as Table 3.

C Random Initialization Results

We also perform an ablation of these pre-trained
scores (Table 6) for the E2E BIDIRECT SHARED

model, as it is the best performing model overall.
We tried many different setups for training it from
from scratch rather than loading the pre-trained
weights. We found that it was very difficult for
this model to converge, and when it did, the results
were sub-par.

D Training Results

We include the scores of evaluating our models on
the test sets of the ST training data (MuST-C and
CoVoST) in Table 9. We also include the results
of fine-tuning performance on the CS dev set in
Table 8, which roughly mirrors the main results.

E Expanded Results

For brevity, we do not include the CER and Charcut
metrics in the main text. In this section we included
tables with all metrics for all results (Table 10 for
Miami and Table 11 for Fisher). We note however,
that the WER and BLEU scores align with the
CER and Charcut scores, and thus our conclusions
remain the same.
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No Fine-Tuning Fine-Tuned
CS Mono. CS Mono.

Model ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU ↓ WER ↑ BLEU

Fi
sh

er

CASCADE UNIDIRECT 37.1 22.5 26.6 24.7 33.5 24.6 24.8 25.5
(36.3) (22.1) (23.5) (25.6) (33.1) (24.6) (23.8) (25.7)

E2E UNIDIRECT 36.6 22.3 26.7 25.0 33.4 24.4 25.3 25.5
(35.7) (22.2) (23.2) (26.0) (33.2) (24.5) (23.9) (25.9)

CASCADE UNI SHARED ENC 36.0 21.6 25.6 24.3 31.2 25.4 25.6 24.8
(36.0) (22.2) (25.6) (24.8) (31.3) (25.6) (25.3) (24.9)

E2E BIDIRECT BY LANG 37.0 23.4 27.2 25.0 36.7 22.8 27.3 25.0
(36.1) (23.3) (25.3) (25.5) (35.9) (23.0) (25.3) (25.4)

M
ia

m
i

CASCADE UNIDIRECT 65.2 8.8 52.3 16.8 64.8 10.8 51.5 16.8
(61.4) (8.3) (50.0) (17.3) (64.4) (10.8) (50.9) (16.9)

E2E UNIDIRECT 65.6 10.1 53.0 17.2 65.1 11.7 51.4 17.6
(63.1) (9.4) (51.2) (17.7) (65.6) (11.7) (50.7) (17.7)

CASCADE UNI SHARED ENC 60.2 9.7 53.8 15.7 55.0 14.7 55.6 15.3
(60.2) (8.8) (53.8) (16.0) (56.0) (14.4) (55.5) (15.3)

E2E BIDIRECT BY LANG 69.5 12.4 55.2 16.5 69.3 11.5 54.5 16.6
(69.7) (10.7) (53.4) (16.7) (69.7) (10.4) (53.2) (16.6)

Table 7: Scores on the code-switched test sets for the models using LID, with results from zero CS training on the
left and results after fine-tuning on the right.

Fisher CS Dev Set
Models ↓WER ↓ CER ↓ CCT ↑ BLEU

CASCADE UNIDIRECT 34.2 19.3 38.4 26.4
E2E UNIDIRECT 33.0 18.9 37.3 27.8
CASCADE UNI SHARED ENC 32.3 17.9 38.4 24.9
E2E BIDIRECT BY LANG 36.3 23.0 39.3 26.3
E2E BIDIRECT BY TASK 31.1 17.0 35.1 29.0
CASCADE BIDIRECT 35.1 19.2 39.7 23.8
E2E BIDIRECT SHARED 31.7 17.5 35.2 28.3

Table 8: Scores on the Fisher CS Dev set. CCT stands for Charcut. Note that this mirrors the main results in
Table 4.

MuST-C Test Set CoVoST Test Set
Models ↓ WER ↓ CER ↓ CCT ↑ BLEU ↓ WER ↓ CER ↓ CCT ↑ BLEU
CASCADE UNIDIRECT 11.2 7.6 36.3 29.4 17.2 5.8 35.6 26.9
E2E UNIDIRECT 13.0 8.9 37.3 27.8 18.6 6.4 36.0 26.2
CASCADE UNI SHARED ENC 12.0 8.1 37.7 26.9 22.9 7.3 36.2 26.0
E2E BIDIRECT BY LANG 11.6 7.8 36.6 28.6 19.7 7.7 37.1 25.4
E2E BIDIRECT BY TASK 11.4 7.6 36.6 28.4 17.9 6.0 35.3 26.8
CASCADE BIDIRECT 13.6 9.5 39.7 24.5 22.9 7.3 38.8 22.8
E2E BIDIRECT SHARED 11.6 7.7 36.6 28.5 18.1 6.2 35.0 27.4

Table 9: Scores on the MustC and CovoST datasets. CCT stands for Charcut.
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Miami
CS Test Set Monolingual Test Set

Models ↓ WER ↓ CER ↓ CCT ↑ BLEU ↓ WER ↓ CER ↓ CCT ↑ BLEU

N
ot

Fi
ne

-T
un

ed

CASCADE UNIDIRECT 63.6 43.3 65.2 8.7 52.3 34.1 51.9 17.0
CASCADE UNIDIRECT ORA. 61.4 41.6 67.4 8.3 50.0 32.4 50.9 17.3
E2E UNIDIRECT 64.0 43.0 64.0 9.9 53.0 34.6 51.0 17.4
E2E UNIDIRECT ORA. 63.1 42.2 66.5 9.4 51.2 33.1 50.1 17.7
CASCADE UNI SHARED ENC 60.2 39.7 63.7 9.3 53.8 34.1 52.7 15.9
CASCADE UNI SHARED ENC ORA. 60.2 39.7 66.1 8.8 53.8 34.1 52.2 16.0
E2E BIDIRECT BY LANG 68.8 48.4 61.2 11.5 54.6 37.3 52.0 16.7
E2E BIDIRECT BY LANG ORA. 69.7 49.4 63.6 10.7 53.4 36.3 51.5 16.7
E2E BIDIRECT BY TASK 59.9 39.6 59.4 11.0 50.0 32.6 49.7 18.1
CASCADE BIDIRECT 61.4 39.8 62.2 9.3 54.0 34.1 53.1 14.8
E2E BIDIRECT SHARED 58.9 39.1 58.5 11.8 49.9 32.2 49.3 18.3

Fi
ne

-T
un

ed

CASCADE UNIDIRECT 64.8 42.0 56.5 10.8 51.5 33.4 51.1 16.8
CASCADE UNIDIRECT ORA. 64.4 41.8 56.4 10.8 50.9 32.9 50.6 16.9
E2E UNIDIRECT 65.1 43.0 56.9 11.7 51.4 33.7 50.4 17.6
E2E UNIDIRECT ORA. 65.6 43.1 57.0 11.7 50.7 33.2 49.9 17.7
CASCADE UNI SHARED ENC 55.0 35.2 51.4 14.7 55.6 35.9 52.9 15.3
CASCADE UNI SHARED ENC ORA. 56.0 35.7 51.7 14.4 55.5 35.9 52.7 15.3
E2E BIDIRECT BY LANG 69.3 48.6 61.3 11.5 54.5 37.2 52.1 16.6
E2E BIDIRECT BY LANG ORA. 69.7 49.5 63.8 10.4 53.2 36.1 51.5 16.6
E2E BIDIRECT BY TASK 53.6 35.0 53.3 13.8 52.6 34.4 50.5 17.5
CASCADE BIDIRECT 57.4 36.3 58.8 10.6 58.2 36.6 55.1 14.0
E2E BIDIRECT SHARED 53.0 35.0 54.4 14.1 52.1 33.9 50.4 17.4

Table 10: Scores on the Miami dataset. CCT stands for Charcut. Results from zero CS training are on the top half
and results after fine-tuning are on the bottom half. Ora stands for Oracle.

Fisher
CS Test Set Monolingual Test Set

Models ↓ WER ↓ CER ↓ CCT ↑ BLEU ↓ WER ↓ CER ↓ CCT ↑ BLEU

N
ot

Fi
ne

-T
un

ed

CASCADE UNIDIRECT 37.3 22.2 45.6 21.9 28.0 15.3 40.0 24.4
CASCADE UNIDIRECT ORA. 36.3 21.5 45.0 22.1 23.5 12.0 38.0 25.6
E2E UNIDIRECT 36.9 22.0 45.1 21.8 28.2 15.6 39.7 24.7
E2E UNIDIRECT ORA. 35.7 21.3 44.4 22.2 23.2 12.0 37.6 26.0
CASCADE UNI SHARED ENC 36.0 20.5 44.7 21.9 25.6 13.0 39.8 24.3
CASCADE UNI SHARED ENC ORA. 36.0 20.5 44.2 22.2 25.6 13.0 38.8 24.8
E2E BIDIRECT BY LANG 36.9 23.6 43.0 23.2 27.2 15.5 39.2 25.1
E2E BIDIRECT BY LANG ORA. 36.1 22.9 42.6 23.3 25.3 14.0 38.4 25.5
E2E BIDIRECT BY TASK 34.1 19.4 42.3 23.0 23.6 11.9 37.4 26.0
CASCADE BIDIRECT 37.2 21.3 43.8 21.8 26.5 13.3 39.5 24.1
E2E BIDIRECT SHARED 33.8 19.3 41.5 23.3 23.2 11.8 37.1 26.2

Fi
ne

-T
un

ed

CASCADE UNIDIRECT 33.5 18.5 39.6 24.6 24.8 12.9 38.2 25.5
CASCADE UNIDIRECT ORA. 33.1 18.4 39.4 24.6 23.8 12.1 37.7 25.7
E2E UNIDIRECT 33.4 19.1 40.0 24.4 25.3 13.3 38.3 25.5
E2E UNIDIRECT ORA. 33.2 19.0 39.9 24.5 23.9 12.2 37.7 25.9
CASCADE UNI SHARED ENC 31.2 17.1 38.4 25.4 25.6 13.0 38.7 24.8
CASCADE UNI SHARED ENC ORA. 31.3 17.1 38.2 25.6 25.3 12.8 38.5 24.9
E2E BIDIRECT BY LANG 36.7 23.3 42.9 22.8 27.3 15.5 39.3 25.0
E2E BIDIRECT BY LANG ORA. 35.9 22.7 42.5 23.0 25.3 14.0 38.4 25.4
E2E BIDIRECT BY TASK 30.1 16.2 38.3 25.6 24.3 12.3 37.8 25.6
CASCADE BIDIRECT 33.2 18.3 41.0 23.2 28.1 14.3 40.1 23.2
E2E BIDIRECT SHARED 30.0 16.4 38.0 25.4 24.1 12.2 37.3 26.1

Table 11: Scores on the Fisher dataset. CCT stands for Charcut. Results from zero CS training are on the top half
and results after fine-tuning are on the bottom half. Ora stands for Oracle.
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