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Abstract

Medical code prediction from clinical notes
aims at automatically associating medical
codes with the clinical notes. Rare code prob-
lem, the medical codes with low occurrences, is
prominent in medical code prediction. Recent
studies employ deep neural networks and the
external knowledge to tackle it. However, such
approaches lack interpretability which is a vital
issue in medical application. Moreover, due
to the lengthy and noisy clinical notes, such
approaches fail to achieve satisfactory results.
Therefore, in this paper, we propose a novel
framework based on medical concept driven
attention to incorporate external knowledge for
explainable medical code prediction. In spe-
cific, both the clinical notes and Wikipedia doc-
uments are aligned into topic space to extract
medical concepts using topic modeling. Then,
the medical concept-driven attention mecha-
nism is applied to uncover the medical code
related concepts which provide explanations
for medical code prediction. Experimental re-
sults on the benchmark dataset show the supe-
riority of the proposed framework over several
state-of-the-art baselines.

1 Introduction

Medical codes, also known as ICD codes, are or-
ganized by International Classification of Diseases
(ICD, recent versions are ICD-9 and ICD-10) tax-
onomies. Each medical code corresponds to a dis-
ease, procedure or sign, and so on. Medical codes
can abstract away fine details of free-text clinical
notes, which provide great convenience for ana-
lyzing clinical data directly (Shull, 2019; Bai and
Vucetic, 2019). It is time consuming, costly and
error-prone for manual medical coding due to the
large menu of options (over 15,000 codes in ICD-
9) and the complex lengthy clinical notes (Adams
et al., 2002; Lang, 2007). Medical code predic-
tion aims at automatically associating the relevant
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Figure 1: An example of a clinical note annotated
with 3-digit ICD-9 code “250” and the corresponding
Wikipedia document, where words in red are medical
concept-indicative words which can be employed as ev-
idences to infer medical codes.

medical codes with the clinical notes.
Treating medical code prediction as a multi-label

text classification problem, many machine learning
based approaches have been proposed including
Bayesian-based (Larkey and Croft, 1995) and Sup-
port Vector Machine based (Lita et al., 2008; Per-
otte et al., 2014). With the success of deep learning,
many researchers propose neural networks with at-
tention mechanism (Mullenbach et al., 2018; Li
and Yu, 2020; Vu et al., 2020) to identify represen-
tative words in clinical notes and those with large
weights serve as evidence for prediction. Li and
Yu (2020) utilize convolutional neural networks
with several fixed window sizes to capture various
medical patterns, then identify representative ones
through label attention mechanism.

Rare code problem, the medical codes with low
occurrences, is prominent in medical code predic-
tion. It was pointed out in (Bai and Vucetic,
2019) that among 942 3-digit ICD-9 codes oc-
curring in the MIMIC-III database (the largest
publicly-available medical database), the least com-
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mon 437 codes account for only 1% of code oc-
currences. To tackle the rare code problem, Cao et
al. (2020) leverage the code hierarchy and code co-
occurrences information to aid predict rare codes.
Vu et al. (2020) introduce a hierarchical joint learn-
ing architecture using the hierarchical relationships
among codes to alleviate the rare code problem.
Bai and Vucetic (2019) incorporate the external
Wikipedia knowledge to enhance semantic informa-
tion of the rare codes. The matching score between
a clinical note and a medical code is calculated
based on the code’s related Wikipedia document.

However, most of the approaches mentioned
above lack interpretability, which is vital for
medical-related tasks. Moreover, most of these
approaches fail to achieve satisfactory results be-
cause of the noisy and lengthy clinical notes (con-
taining an average of 1,596 words). To address
these challenges, we propose to explore latent med-
ical concepts (including signs, symptoms, treat-
ments, etc.) related to diseases, hidden in the clini-
cal notes and Wikipedia knowledge. As shown in
Figure 1, we can identify the informative medical
concepts related to ‘diabetes mellitus’, including
signs ‘high blood sugar’ and ‘not enough insulin’,
typical symptoms ‘frequent urination, increased
thirst, increased hunger’, and typical treatments
‘insulin injection’ and ‘insulin sensitizer’ based on
the Wikipedia document describing ICD-9 code
“250”. Obviously, medical concepts mentioned
above in clinical notes provide the effective evi-
dences to infer disease ‘diabetes mellitus’. More-
over, based on the extracted medical concepts, the
lengthy and noisy clinical notes can be alleviated.

Therefore, in this paper, we propose a novel
framework based on medical concept driven at-
tention (MCDA) to predict medical codes. Specif-
ically, both the clinical notes and Wikipedia doc-
uments are fed as a whole corpus into the topic
model to extract medical concepts. Both the
Wikipedia documents and the clinical notes are
represented as the distributions over the hidden top-
ics (medical concepts) instead of the lengthy texts.
Then, the medical concept-driven attention mech-
anism is applied, consisting of note-specific and
label-specific concept-driven attention. On the one
hand, the note-specific concept-driven attentions
capture the salient medical concepts hidden in a
specific clinical note. On the other hand, the label-
specific concept-driven attentions focus on relevant
medical concepts in a clinical note for each medical

code. Experimental results show that the proposed
framework outperforms a number of state-of-the-
art models on a benchmark dataset.

The main contributions of this paper are listed
as follows:

• A novel framework based on medical concept
driven attention (MCDA) is proposed to pre-
dict medical codes. Moreover, the medical
concept-driven attention mechanism, consist-
ing of note-specific and label-specific concept-
driven attention, is proposed to uncover the
medical code related concepts hidden in the
lengthy and noisy clinical notes. To the best of
our knowledge, our work is the first attempt to
explore latent medical concepts hidden in both
the clinical notes and the external knowledge
for explainable medical code prediction.

• Experimental results show that the proposed
framework significantly outperforms several
state-of-the-art models in all evaluation met-
rics. Moreover, it outperforms several state-
of-the-art frameworks incorporating external
knowledge in most evaluation metrics on the
benchmark dataset.

2 Related work

Medical code prediction, also known as automatic
ICD coding, is a challenging and important task in
the limelight of medical informatics community.

Many traditional machine learning methods have
been proposed including Bayesian-based (Larkey
and Croft, 1995) and Support Vector Machine
based (Lita et al., 2008; Perotte et al., 2014). Fueled
by deep learning, many researchers have proven
the effectiveness of convolutional neural network
(CNN) and long short-term memory (LSTM) for
medical code prediction. For example, Baumel et
al. (2018) apply hierarchical attention networks for
predicting medical codes. Mullenbach et al. (2018)
propose a CNN with attention mechanism to cap-
ture relevant information in source text for each
code. To find the specific evidence in the lengthy
and noisy text for predicting accurately, researchers
use CNN and variants (including multi-filter con-
volution, dilated convolution) with label attention
mechanism to capture codes’ relevant text patterns
(i.e. n-grams) in clinical notes (Mullenbach et al.,
2018; Li and Yu, 2020; Ji et al., 2020). Vu et
al. (2020) focus on label-specific words in notes via
LSTM with customized label attention mechanism.
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To tackle the rare code problem, different
kinds of knowledge, such as label structure, la-
bel co-occurrence statistics, label descriptions and
Wikipedia are employed. For example, the hier-
archical tree structure of ICD-9 ontology is firstly
exploited by (Perotte et al., 2014). Xie et al. (2019)
employ graph convolutional network (GCN) to cap-
ture the hierarchical relationships among medical
codes. Cao et al. (2020) construct a co-graph to
incoporate code co-occurrence prior.

Instead of employing internal knowledge such
label structure and label co-occurrence, some ex-
ternal knowledge are incorporated. Regarding la-
bel descriptions, Shi et al. (2017) apply character-
aware neural network to match medical codes and
clinical notes. Xie and Xing (2018) develop tree
LSTM to use label descriptions. Zhou et al. (2021)
train a teacher network with label descriptions and
model the code co-occurrence through interactive
shared attention. Regarding Wikipedia, Bai and
Vucetic (2019) propose Knowledge Source Inte-
gration (KSI) framework to integrate Wikipedia
documents describing medical codes during train-
ing of any baseline models. Compared with other
external knowledge, Wikipedia knowledge is more
informative and accessible.

Regarding incorporating the Wikipedia knowl-
edge, the proposed approach is similar to KSI (Bai
and Vucetic, 2019), but with the following signifi-
cant differences: (1) we propose medical concept-
driven attention to find note-specific and label-
specific medical concepts in clinical notes as ex-
plainable evidences. While KSI simply calculates
the matching score between a clinical note and a
medical code’s related Wikipedia document, un-
able to locate evidences in the context of clinical
notes; (2) we make the most of Wikipedia knowl-
edge through medical concepts, while KSI only
considers the intersection of words in a clinical
note and a Wikipedia document when predicting
the corresponding medical code.

3 Methodology

3.1 Problem Setting

Given a collection of Q clinical notes denoted as
D = {d1, d2, . . . , dQ}. Each clinical note dj con-
sists of a sequence of words and is accompanied
with a set of associated medical codes. We denote
the size of medical code set L = {l1, l2, . . . , l|L|}
as |L|. In addition, we construct an external knowl-
edge source Z = {z1, z2, . . . , z|L|} which consists

of Wikipedia documents describing the medical
codes. Each unique medical code li corresponds to
a Wikipedia document zi. Given a clinical note dj ,
the goal is to predict the associated medical codes
via the external knowledge source Z , which can be
treated as a multi-label text classification problem.
Therefore, in the rest of the paper, medical codes
are called labels for simplicity.

3.2 The Framework

The overall architecture of the proposed framework
(MCDA) is shown in Figure 2, which consists of
five parts:

(1) Medical Concept Extraction Module which
extracts medical concepts from the clinical notes
and Wikipedia documents; (2) Embedding Layer
which includes word embeddings, medical con-
cept embeddings and label embeddings; (3) En-
coder Layer which includes backbone encoder and
concept encoder; (4) Concept-Driven Attention
Layer which calculates the note-specific and label-
specific attention scores with the aid of medical
concepts; (5) Output Layer which predicts the med-
ical codes.

3.2.1 Medical Concept Extraction Module

The medical concepts are extracted via Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).

At first, as the focuses and writing styles of
Wikipedia documents and clinical notes are dif-
ferent, we pre-process both the Wikipedia docu-
ments and clinical notes. Words appearing in both
the Wikipedia documents and clinical notes are
retained.

Then, we feed the pre-processed D and Z as a
whole corpus with vocabulary size V c, into LDA
to generate medical concepts. The granularity of
the extracted medical concepts is controlled by the
predefined K, the number of medical concepts.

Based on LDA, we obtain overall medical
concept-word distribution matrix C ∈ RK×|V c|.
For the single clinical note dj , the note-concept
distribution pj = (pj1, pj2, . . . , pjK) represents
the probability of the clinical note over each med-
ical concept. Likewise, for a single Wikipedia
document zi (corresponding to label li), the label-
concept distribution wi = (wi1, wi2, . . . , wiK)
represents the probability of the label over each
medical concept. Thereby, the labels-concept dis-
tribution matrix is represented as W ∈ R|L|×K .
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Figure 2: The architecture of the proposed MCDA Framework. Z and D denote the Wikipedia knowledge source
and clinical notes set respectively. Label-Specific CDA represents label-specific concept-driven attention, and
Note-Specific CDA represents note-specific concept-driven attention. It is worth noting that Backbone Encoder can
be any neural encoders.

3.2.2 Embedding Layer
Embedding layer contains word embeddings, med-
ical concept embeddings and label embeddings.

As for word embeddings, a clinical note
dj with Nj words is represented as dj ={
xj1, xj2, . . . , xjNj

}
using pre-trained word em-

beddings.
As for medical concept embeddings, the kth

medical concept’s embedding ck can be obtained
from the overall medical concept-word distribution
matrix C.

With respect to the label embeddings matrix
U ∈ R|L|×K , we use the labels-concept distribu-
tion matrix W as the initialization of U since LDA
can capture the medical concepts information hid-
den in labels and implicitly model correlations be-
tween labels and clinical notes by projecting them
into the same feature space.

3.2.3 Encoder Layer
Encoder layer contains both the backbone encoder
and the concept encoder.

As for the backbone encoder, theoretically
it can be any neural encoders, such as CNN
based encoders, RNN based encoders or Trans-
former (Vaswani et al., 2017) based encoders.
Given the clinical note dj = {xj1, xj2, · · · , xjNj},
the hidden state of each word is generated by the
backbone encoder. Thereby, the clinical note dj
can be encoded as hj = (hj1, hj2, . . . , hjNj )

⊤ ∈
RNj×t, where t is the dimension of the hidden
state.

As for the concept encoder, concept represen-
tations are produced by a fully connected layer

followed by ReLU activation function taking the
medical concept-word distribution matrix C as in-
puts. Hence, each concept representation sk ∈ Rt

is obtained according to the medical concept em-
bedding ck, k ∈ {1, 2, 3, . . . ,K}.

3.2.4 Concept-Driven Attention Layer
Not all words in the clinical note contribute equally
to the decision of medical diagnosis. Moreover, not
all medical concepts hidden in the clinical note con-
tribute equally for medical code prediction. There-
fore, attention weights are utilized to enhance clin-
ical note representations according to both word
representations and concept representations. We
aggregate the representations of medical concepts-
indicative words to form the clinical note represen-
tation.

Given the kth concept representation sk, we can
measure the interaction of words in the clinical note
dj and the medical concept by an attention weight
vector mjk, which can be computed as the inner
product of sk and φj as follows,

φj = tanh (hjW
c + bc)

mjk = φj sk
(1)

where hj =
(
hj1, hj2, . . . , hjNj

)⊤ stands for the
combination of all hidden states of words in the
clinical note dj , W c ∈ Rt×t and bc ∈ Rt are train-
able parameters, φj = (φj1, φj2, . . . , φjNj ) refers
to hj . The attention weight vector mjk indicates
how much attention the kth medical concept pays
to each word of the clinical note dj .

Then, we propose two kinds of attention mecha-
nisms including Note-Specific Concept-Driven At-
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tention and Label-Specific Concept-Driven Atten-
tion based on mjk in (1).
Note-Specific Concept-Driven Attention:

The note-specific concept-driven attention mech-
anism is employed to attend to note-specific med-
ical concept words distributed in the clinical note.
It leverages the note-specific medical concept in-
formation based on the note-concept distribution
pj = (pj1, pj2, . . . , pjK) with each dimension rep-
resenting the level of prominence of the correspond-
ing medical concept occurred in the clinical note dj .
Then, it leverages the label-concept distribution ma-
trix W ∈ R|L|×K to generate an attention weight
vector for each label. Given the clinical note dj ,
for the ith label, the note-specific concept-driven
attention is calculated as follows,

ac
ji = softmax

( K∑
k=1

mjkpjkW ik

)
rcji =

(
ac
ji

)⊤
hj

(2)

for the ith label, ac
ji stands for the attention weight

after incorporating the note-concept distribution
pj along with the label-concept distribution W i,
to discover medical concept keywords that a sin-
gle clinical note concerns for the specific label.
The final note-specific concept-driven clinical note
representation matrix Rc

j =
(
rcj1; r

c
j2; . . . ; r

c
j|L|

)
is constructed with the sum of hidden states hj

weighted by Ac
j =

(
ac
j1,a

c
j2, . . . ,a

c
j|L|

)
. Each

ith row rcji of the matrix Rc
j is the note-specific

clinical note representation regarding the ith label.
Label-Specific Concept-Driven Attention:

The label-specific concept-driven attention
mechanism is proposed to capture label relevant
medical concept words hidden in clinical notes us-
ing label embeddings. Given the clinical note dj ,
for the ith label, label-specific concept-driven at-
tention is calculated as follows,

al
ji = softmax

( K∑
k=1

mjkU ik

)
rlji =

(
al
ji

)⊤
hj

(3)

We construct the label-specific clinical note repre-
sentation matrix Rl

j =
(
rlj1; r

l
j2; . . . ; r

l
j|L|

)
with

the sum of hidden states hj weighted by Al
j =(

al
j1,a

l
j2, . . . ,a

l
j|L|

)
.

Frequency Number of Percentage of
range medical codes code occurrences
1-10 80 0.1%
11-50 73 0.6%
51-100 25 0.6%
101-500 82 6.7%

>500 84 92.0%

Table 1: Label frequency distribution

3.2.5 Output Layer
At last, we concatenate both representations calcu-
lated by note-specific and label-specific concept-
driven attention to obtain final representation ma-
trix Rj = [Rc

j ,R
l
j ] of clinical note dj . Rj is then

fed to a multi-layer perceptron (MLP) followed
by the Sigmoid activation function for predicting
all associated medical codes. This process can be
formalized as follow,

ỹ = Sigmoid(MLP (Rj)) (4)

The training objective is to minimize the binary
cross entropy loss between the prediction score ỹ
and the target y:

Loss = −
|L|∑
i=1

{yi log (ỹi) + (1− yi) log (1− ỹi)}

(5)

4 Experiments

In this section, we describe the datasets, evalua-
tion metrics, baselines and implementation details,
before discussing the experimental results.

4.1 Dataset
The dataset is constructed based on clinical notes
in MIMIC-III dataset and Wikipedia documents of
ICD-9 diagnosis codes following the same way1

in (Bai and Vucetic, 2019). There are 52,722 con-
densed clinical notes in MIMIC-III (Johnson et al.,
2016) dataset. On average, each note has 1,596
words. All medical codes are grouped by their first
three digits. A subset of 344 medical codes is kept
where each medical code has the corresponding
Wikipedia document. On average, each Wikipedia
document has 1,058 words. The whole word vocab-
ulary contains 60,968 unique words, out of which
only 12,173 can be found in clinical notes. It can
be deduced that both the clinic notes and Wikipedia

1https://github.com/tiantiantu/KSI
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documents share significantly different word distri-
butions.

4.2 Evaluation Metrics

We evaluate the proposed method using micro and
macro AUC, F1 metrics and Top-10 recall follow-
ing the same way in (Bai and Vucetic, 2019). As
shown in Table 1, medical codes in the dataset is
highly imbalanced, the most common 84 codes ac-
count for 92% of all code occurrences. We employ
macro metrics to emphasize on rare code predic-
tion.

4.3 Baselines

We choose four state-of-the-art models as the base-
lines, which employ the label attention mechanism
over neural word encoders. Moreover, for fair com-
parison, all the baselines (as backbone encoder) are
combined with KSI framework (Bai and Vucetic,
2019) and the proposed framework (MCDA) re-
spectively to incorporate Wikipedia knowledge.
Details of the baselines are described as follows:
KSI: Bai and Vucetic (2019) proposed the Knowl-
edge Source Integration framework to integrate the
Wikipedia knowledge. It can be combined with
some medical code prediction baselines.
CAML: Mullenbach et al. (2018) proposed the
convolutional attention network, which learns at-
tention distribution for each medical code.
MultiResCNN: Li and Yu (2020) utilized the multi-
filter convolutional layer to capture variable medi-
cal patterns and residual block to enlarge model’s
receptive field, incorporating the label attention
mechanism to generate label-aware representa-
tions.
DCAN: Ji et al. (2020) integrated dilated convolu-
tions and residual connections to capture complex
medical patterns and also incorporated label atten-
tion mechanism.
LAAT: Vu et al. (2020) proposed the customized
label attention model to learn attention distributions
over BiLSTM encoding hidden states for each med-
ical code.

4.4 Implementation Details

We use word2vec (Mikolov et al., 2013) to pre-train
word embeddings with the size of 100 from clinical
notes. The number of extracted medical concepts
K is set to 100. We utilized default Adam opti-
mizer (Kingma and Ba, 2014) to minimize the loss
function. Regarding the training of the baseline

models, we perform a grid search over hyperparam-
eters according to their default parameter setting.

4.5 Results

Table 2 shows the performance comparisons among
baselines and their counterparts under KSI frame-
work and the proposed MCDA framework.

Overall, it can be observed that by employing
the KSI or MCDA framework, the performances of
all the baseline models are improved, which shows
the effectiveness and necessity of incorporating
the Wikipedia knowledge for medical codes. It is
worth noting that, compared with KSI, MCDA im-
proves baselines more significantly in most metrics.
The great improvement of top-10 recall demon-
strates the effectiveness of the proposed framework
in recommending relevant medical codes for clin-
icians. It is noteworthy that MCDA outperforms
most baselines with a larger margin than KSI (ex-
cept MultiResCNN) on the macro metric. As the
performance on the macro metric shows how well
the rare codes problem is handled, we can deduce
that MCDA captures precisely the representations
of labels and notes based on the medical concept
from the external Wikipedia documents, which is
crucial for rare codes.

To further validate this deduction, we divide
medical codes into 5 groups based on their fre-
quencies in the dataset as shown in Table 1: [1,
10], [11, 50], [51, 100], [101, 500] and [500, +∞).
We calculate macro-averaged AUC of each medical
code group for all baselines and their counterparts
under KSI framework and our MCDA framework.
The results are summarized in Figure 3. It can be
observed that both KSI and MCDA bring major
improvements of AUC on the least common [1-10]
and [11-50] group. For DCAN and CAML, MCDA
improves much more than KSI on [1-10] group,
7.8% of DCAN and 2.8% of CAML. For the best
baseline LAAT, MCDA improves 5.1% on [1-10]
group and 2.1% on [11-50] group, which is better
than 2.6% and 1.4% of KSI. The results demon-
strate the benefit of incorporating medical concept
driven attention than KSI in handling rare codes.

For MultiResCNN, though MCDA brings im-
provements on [1-10] group, it performs worse on
[11-50], [51-100] group and the overall dataset.
The possible reason is that, MultiResCNN concate-
nates outputs from 6 kernels with different sizes to
generate hidden state hi. Therefore, hi is the sim-
ple concatenation of 6 n-grams’ hidden states, not
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Model
AUC F1

Top-10 recall
Macro Micro Macro Micro

CAML (Mullenbach et al., 2018) 0.855 0.978 0.257 0.656 0.806
+KSI (Bai and Vucetic, 2019) 0.891 0.980 0.285 0.659 0.814
+MCDA (ours) 0.894 ± 0.004 0.982 ± 0.001 0.300 ± 0.010 0.679 ± 0.001 0.828 ± 0.001
MultiResCNN (Li and Yu, 2020) 0.864 ± 0.008 0.980 ± 0.001 0.301 ± 0.011 0.673 ± 0.002 0.823 ± 0.001
+KSI (Bai and Vucetic, 2019) 0.892 ± 0.005 0.982 ± 0.001 0.320 ± 0.010 0.682 ± 0.002 0.830 ± 0.001
+MCDA (ours) 0.883 ± 0.005 0.982 ± 0.001 0.284 ± 0.008 0.684 ± 0.004 0.827 ± 0.002
DCAN (Ji et al., 2020) 0.847 ± 0.008 0.980 ± 0.001 0.260 ± 0.008 0.665 ± 0.002 0.822 ± 0.001
+KSI (Bai and Vucetic, 2019) 0.880 ± 0.005 0.981 ± 0.002 0.302 ± 0.011 0.679 ± 0.003 0.831 ± 0.002
+MCDA (ours) 0.898 ± 0.006 0.982 ± 0.001 0.311 ± 0.008 0.684 ± 0.001 0.831 ± 0.001
LAAT (Vu et al., 2020) 0.899 ± 0.006 0.983 ± 0.001 0.342 ± 0.010 0.687 ± 0.003 0.835 ± 0.002
+KSI (Bai and Vucetic, 2019) 0.908 ± 0.003 0.984 ± 0.001 0.352 ± 0.010 0.690 ± 0.003 0.837 ± 0.001
+MCDA (ours) 0.918 ± 0.006 0.984 ± 0.001 0.362 ± 0.008 0.702 ± 0.003 0.844 ± 0.002

Table 2: Performance comparisons among several baselines and their counterparts under KSI framework and the
proposed MCDA framework. We run all approaches 10 times with the same hyper-parameters using different
random seeds except CAML and CAML+KSI, statistics of which are from the source paper. We report the
mean± standard deviation for each approach.

Figure 3: Macro-averaged AUC by label frequency group for CAML, MultiResCNN, DCAN and LAAT. x-axis
denotes the label frequency group and y-axis denotes the macro-averaged AUC for each group.

Model
AUC F1

Top-10 recall
Macro Micro Macro Micro

LAAT+MCDA 0.918 0.984 0.362 0.702 0.844
w/o medical concept 0.899 0.983 0.342 0.687 0.835

w/o label-specific 0.872 0.974 0.223 0.630 0.772
w/o note-specific 0.904 0.983 0.342 0.686 0.833
w/o note-concept 0.915 0.983 0.350 0.698 0.842
w/o label-concept 0.912 0.984 0.345 0.698 0.843

Table 3: Ablation results.

the hidden state of the ith word (or n-gram) in other
baselines. Actually when the number of kernels
decrease to 1, MultiResCNN degrades to CAML.
It performs better on macro metrics which indi-
cates that MultiResCNN is unsuitable for MCDA
framework.

In addition, we also try Transformer (Vaswani
et al., 2017) and pre-trained BERT (Devlin et al.,
2018) as backbone encoder. However, no Trans-
former based models work well in this task mainly
due to excessively long text. This conclusion is
also reported in (Li and Yu, 2020), (Ji et al., 2020)
and (Pascual et al., 2021).

4.6 Ablation Study

To further evaluate the effectiveness of each com-
ponent, we conduct some ablation experiments on
LAAT+MCDAM. The ablation results are shown
in Table 3. It can be observed that:
Effectiveness of Medical Concept Without medi-
cal concept (w/o medical concept in Table 3), med-
ical concept-driven attention degrades to the label
attention mechanism proposed in LAAT. The per-
formance drops on all metrics, especially on macro
metrics, indicating a significant reduction in the
ability to predict rare codes.
Effectiveness of Label-Specific Concept-Driven
Attention When discarding the label-specific
concept-driven attention (w/o label-specific in Ta-
ble 3), the performance drops dramatically on all
metrics, especially on F1 metric. It shows the effec-
tiveness of label-specific concept driven attention
in capturing desired labels’ relevant information in
lengthy and noisy clinical notes.
Effectiveness of Note-Specific Concept-Driven
Attention When discarding the note-specific
concept-driven attention (w/o note-specific in Ta-
ble 3), the performance drops obviously. To further
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Figure 4: Word clouds of some medical concepts.

investigate the contribution of note-concept distri-
bution pj and labels-concept distribution matrix W ,
we remove them separately. Both the performances
drop slightly. It can be concluded that they both are
complementary for note-specific concept-driven at-
tention.

5 Discussion

Medical Concept Visualization
We randomly select two medical concepts with
their top-20 weighted words. The corresponding
word clouds are shown in Figure 4, where the size
of a word is proportional to its assigned weight.
Concept (a) is a medical concept about disease
‘diarrhea’ accompanied with symptoms including
‘vomiting’, ‘nausea’, ‘chills’, ‘pain’, etc. Concept
(b) is diseases of ‘biliary and pancreatic’ which also
includes ‘pancreatitis’, ‘ercp’ (a medical test tech-
nique), ‘bile duct’ (organ), etc. These medical con-
cepts can aggregate medical information including
diseases, symptoms, diseased organs, treatments
and so on, which can be used to describe clinical
notes concisely and provide interpretability.

Case Study of Interpretability
To further explore interpretability of the proposed
approach, the attention distribution visualization
over a clinical note for LAAT and its counterparts
under KSI and our MCDA is shown in Figure 5.

It can be observed that LAAT (Vu et al., 2020)
with customized label attention mechanism only
captures scattered label-related words like ‘stone’
and ‘cholecystectomy’ for inferring ‘gallstone’,
while it fails to find valid relevant evidence for in-
ferring ‘anemia’. KSI (Bai and Vucetic, 2019) can
additionally aid LAAT to find out keywords rele-
vant to the medical codes in the intersection of the
corresponding Wikipedia document and the clini-
cal note. However, KSI represents the intersection
as a binary vector encoding the presence of words,
which inevitably causes a great loss of information
in the clinical note, and is unable to aid LAAT lo-
cate evidence in the context of the clinical notes for
predicting corresponding medical code.

Figure 5: The attention distribution visualization over a
clinical note with two medical codes for LAAT and its
counterparts under KSI and MCDA framework. Regard-
ing LAAT, the words in bold represent highly weighted
ones by its label attention. Regarding KSI, the bold
words are extracted keywords in the intersection with
high attention weights. Regarding MCDA, the words
in bold represent highly weighted ones by note-specific
attention, while the words with underlines are highly
weighted ones by label-specific attention.

In contrast, MCDA’s label-specific concept-
driven attention guides LAAT discover the sign
‘stone’ in ‘bile duct’ which directly leads to ‘gall-
stone’. Moreover, based on note-specific concept-
driven attention, some important medical concepts
are retrieved and focused, such as ‘ERCP’ (a med-
ical test technique) and ‘sphincterotomy’ (a spe-
cific surgery) which are strongly related to ‘gall-
stone’. Regarding medical code ‘anemia’, based
on label-specific concept-driven attention, medical
concepts ‘bleed’ and ‘hematocrit’ related to ‘ane-
mia’ are captured, and the medical sign ‘hema-
tocrit fell’ and treatment ‘transfusion’ which
can infer disease ‘anemia’ are found based on
note-specific concept-driven attention. Therefore,
through medical concept-driven attention mecha-
nism, different kinds of medical concepts are fo-
cused which provide more interpretability.

6 Conclusions

We have presented a novel framework based on
medical concept driven attention for explainable
medical code prediction from clinical notes. To the
best of our knowledge, our work is the first attempt
to uncover and explore latent medical concepts
guided by the external knowledge while medical
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concept-indicative words serve as the evidences
for explainable medical code prediction. Experi-
mental results show that MCDA improves signifi-
cantly several state-of-the-art models in most eval-
uation metrics on the benchmark dataset. In future,
more Wikipedia documents will be incorporated
and other ways of incorporating will be explored
to promote medical code prediction task.
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