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Abstract

Long-document summarization has been re-
cently recognized as one of the most impor-
tant natural language processing (NLP) tasks,
yet one of the least solved ones. Extractive ap-
proaches attempt to choose salient sentences
via understanding the whole document, but
long documents cover numerous subjects with
varying details and will not ease content un-
derstanding. Instead, abstractive approaches
elaborate to generate related tokens while suf-
fering from truncating the source document due
to their input sizes. To this end, we propose a
Simple yet Effective HYbrid approach, which
we call SEHY, that exploits the discourse in-
formation of a document to select salient sec-
tions instead sentences for summary genera-
tion. On the one hand, SEHY avoids the full-
text understanding; on the other hand, it retains
salient information given the length limit. In
particular, we design two simple strategies for
training the extractor: extracting sections incre-
mentally and based on salience-analysis. Then,
we use strong abstractive models to generate
the final summary. We evaluate our approach
on a large-scale scientific paper dataset: arXiv.
Further, we discuss how the disciplinary class
(e.g., computer science, math or physics) of
a scientific paper affects the performance of
SEHY as its writing style indicates, which is
unexplored yet in existing works. Experimental
results show the effectiveness of our approach
and interesting findings on arXiv and its subsets
generated in this paper.

1 Introduction

Long-document tasks (e.g., scientific papers sum-
marization (Cohan et al., 2018) and long-text read-
ing comprehension (Wen et al., 2021)) have be-
come one of long-term challenging tasks in Natural
Language Processing (NLP) because long docu-
ments cover numerous subjects with varying de-
tails and will not ease content understanding. For
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example, scientific papers, whose abstracts can be
used as ground-truth summaries, is a representative
type of long documents with discourse informa-
tion showing the hierarchical structure composed
of tokens, sentences, paragraphs, and sections (K
and Mathew, 2020). Extractive summarization ap-
proaches select important units such as phrases
or sentences from the original text, but long docu-
ments cover numerous subjects with varying details
and will not ease content understanding (Nallapati
et al., 2017; Xiao and Carenini, 2020). Instead,
abstractive summarization approaches concisely
paraphrase the information content while suffering
from truncating the source document due to their
input sizes (Rohde et al., 2021; Guo et al., 2021).

Hybrid models exhibit a combination solution
via first extracting salient sentences with an ex-
tractive model (i.e., extractor) and then generating
a summary based on extracted sentences with an
abstractive model (i.e., generator) (Gidiotis and
Tsoumakas, 2020; Pilault et al., 2020). However,
on the one hand, training an extractive model may
be expensive due to the complex salience analysis;
on the other hand, an abstractive model may gener-
ate inappropriate summary words due to the depen-
dence on extracted sentences. Thus, pipeline-style
errors can be propagated and accumulated, lead-
ing to hybrid models perform worse than current
state-of-the-art (SoTA) abstractive models (Rohde
et al., 2021; Guo et al., 2021). This suggests that ex-
ploring simple yet effective extractive approaches
is crucial to improve the overall performance and
decrease the training cost of a hybrid model.

Recently, the success of pre-trained language
models (PTMs) such as Transformer (Vaswani
et al., 2017) in NLP brings great gain for ab-
stractive models in the summarization task. How-
ever, Transformer-based models usually suffer
from the quadratic dependency on the sequence
length due to their full attention mechanism. Some-
times, the model’s performance is mainly con-
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strained by its limitation on the sequence length.
For instance, the average document length on
arXiv (Cohan et al., 2018) is more than 6000 to-
kens while BART (Lewis et al., 2020), which com-
bines BERT (Devlin et al., 2019) and GPT (Rad-
ford and Narasimhan, 2018), has a comparatively
smaller length limit, 1024 tokens. Besides, for a hy-
brid model, extracted sentences from its extractive
model are often difficult to maintain the coherence
of the source document, thus leading to the poor
semantic representations by its abstractive model
(Cai et al., 2019).

To alleviate these issues, we propose a novel
Simple yet Effective HYbrid approach, which we
call SEHY, that exploits the discourse informa-
tion of a document to select salient sections in-
stead sentences for summary generation. We use
simple strategies for choosing sections, not only
for decreasing the training cost of the extractor,
but also for enhancing the input-sequence’s coher-
ence to the generator. Motivated by (Gidiotis and
Tsoumakas, 2020), which identifies and selects spe-
cific sections that are more informative, we propose
two strategies: choosing specific sections (e.g., In-
troduction or Conclusion) based on the salience
analysis and using the beginning sections without
concerning the salience. After this, we use strong
abstractive models to generate the final summary.

To demonstrate the effectiveness of SEHY, we
answer the following questions in this paper:

• Q1: which strategy is better?

• Q2: how do different abstractive models affect
the overall performance of SEHY?

• Q3: can we have the equivalent result when
summarizing different scientific papers?

As the contents indicate, Q1 is used to evaluate
the two section-extraction strategies, Q2 is used
to measure different abstractive models which are
responsible to generate the final summary, and Q3
is used to estimate writing styles of scientific pa-
pers in different disciplines. The joint of Q1 and
Q2 acts as ablation studies on the proposed hybrid
model SEHY. While, Q3 is not explored yet in ex-
isting works where all scientific papers on arXiv
are summarized without distinguishing their dis-
ciplinary properties (e.g., computer science, math
or physics). For instance, a well-written computer
science paper usually presents summary sentences
in the Introduction or Conclusion section, but no
experimental work has ever confirmed this.

2 Related Work

Automatic text summarization is the task of produc-
ing a concise and fluent summary while preserving
key information content and overall meaning. It
aims to transform lengthy documents into short-
ened versions, something which could be difficult
and costly to undertake if done manually. In this
section, we focus on recent summarization models.
For more text summarization technologies, we re-
fer interested readers to a survey on this (Allahyari
et al., 2017).

2.1 Extractive Models

Extractive methods select important sentences and
rearrange them as the summary, instead of generat-
ing summary tokens. LexRank (Erkan and Radev,
2011) is an early extractive model, which com-
putes sentence importance based on the concept of
eigenvector centrality in a graph representation of
sentences. SummaRuNNer (Nallapati et al., 2017)
is a Recurrent Neural Network (RNN) based se-
quence model for extractive summarization of doc-
uments. It has the additional advantage of being
interpretable, since it allows visualization of its
predictions broken up by abstract features, such as
information content, salience, and novelty. Xiao
et al. (Xiao and Carenini, 2020) found that redun-
dancy is a very serious problem when summarizing
long documents. They proposed ExtSum-LG+Rd,
which achieved high ROUGE scores, while reduc-
ing redundancy significantly.

2.2 Abstractive Models

Early abstractive models include Pointer-Generator
Networks (PGN) (See et al., 2017), which aug-
ments two shortcomings: inaccuracy and repeti-
tion, via copying words from the source text and
using coverage to keep track of what has been sum-
marized. Cohan et al. (Cohan et al., 2018) built
two large-scale scientific-paper datasets: arXiv and
Pubmed. They also proposed Discourse composed
of a hierarchical encoder that models the discourse
structure of a document and an attentive discourse-
aware decoder that generates the summary. PEGA-
SUS (Zhang et al., 2020) is a Transformer-based
encoder-decoder model trained on massive text cor-
pora with a new self-supervised objective.

Recent works improve the performance of
Transformer-based models by increasing the in-
put length or the model size. BigBird (Zaheer
et al., 2020) exhibits a sparse attention mecha-
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nism that reduced the quadratic dependency to
linear. DeepPyramidion (Pietruszka et al., 2022)
proposes representation pooling as a method to
sparsify attention in Transformer by learning to
select the most-informative token representations
during the training process. HAT-BART (Rohde
et al., 2021) proposes a new Hierarchical Atten-
tion Transformer-based architecture into the de-
noising auto-encoder BART (Lewis et al., 2020).
LongT5 (Guo et al., 2021) attempts to increase both
at the same time. Specifically, it integrates attention
ideas from long-form transformer (Beltagy et al.,
2020a), and adopts pretraining strategies from PE-
GASUS into the scalable T5 architecture (Raffel
et al., 2020a). Top Down Transformer (Pang et al.,
2022) updates token representations in a bottom-up
and top-down manner: token representations are
first inferred in the bottom-up pass and then up-
dated in the top-down pass to capture long-range
dependency.

Even though Top Down Transformer is at the top
of the arXiv leaderboard1 while LongT5 takes the
second place, the authors of Top Down Transformer
did not release their model or code yet. Thus, we
regard LongT5 as the current SoTA with respect to
all open-sourced document summarization models.

2.3 Hybrid Models

A hybrid approach takes advantage of extractive
and abstractive approaches. DANCER (Gidio-
tis and Tsoumakas, 2020) proposes a divide-and-
conquer algorithm, which breaks a long document
and its summary into multiple source-target pairs
and uses them for training a model that learned to
summarize each part of the document. TLM-I+E
(Pilault et al., 2020) performs a simple extractive
step, which is used to condition the transformer
language model on relevant information before be-
ing tasked with generating a summary. Although
mostly follows the abstractive approach, Top Down
Transformer connects to the hybrid models via
learning and assigning importance weight with the
importance tagger resembles an extractive step.

2.4 Paper Abstract Generation

Scientific papers are representatives of long doc-
uments with discourse information, where their
abstracts can be used as ground-truth summaries.
Wang et al. (Wang et al., 2018) presented a paper
abstract writing system based on an attentive neural

1https://paperswithcode.com/dataset/arxiv

Figure 1: The distribution of summary sentences per sec-
tion type, cited from (Gidiotis and Tsoumakas, 2020).

sequence-to-sequence model that can take a title as
input and automatically generate an abstract. They
designed a novel Writing-editing Network that can
attend to both the title and the previously generated
abstract drafts and then iteratively revise and polish
the abstract. Next year, they further developed a
Paper-Robot (Wang et al., 2019) which performs
as an automatic research assistant by incrementally
writing some key elements of a new paper based on
memory-attention networks. Demir et al. (Demir
et al., 2019) proposed a dataset with LaTeX source
files on recent open-source computer vision pa-
pers and experimented with recent methods such as
Transformer and Transformer-XL (Dai et al., 2019)
to generate consistent LaTeX code.

3 Method

In this section, we first present two strategies to im-
plement our extractive model (for answering Q1),
then describe multiple paired abstractive models
(for answering Q2), and finally explain how to gen-
erate data subsets with regard to disciplinary cate-
gories of scientific papers (for answering Q3).

3.1 Two Extraction Strategies
Long documents introduce a lot of noise to the
summarization process. Indeed, one of the major
difficulties in summarizing a long document is that
large parts of the document are not really key to
its narrative and thus should be ignored. Follow-
ing DANCER (Gidiotis and Tsoumakas, 2020),
we identify and select specific sections that are
more informative. This reduces the noise and the
computational cost in processing a long document.
Figure 1 demonstrates the distribution of summary
sentences per section type. We observe that the ma-
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jority of summary sentences, for the arXiv dataset,
are assigned to the introduction section followed by
the methods and conclusion sections. Based on that
observation, we select and use only the sections
that are classified introduction, methods, and con-
clusion ignoring the others. This simple method
very effectively allows us to filter out parts of the
article that are less important for the summary and
leads to summaries that are more focused. Another
benefit of selecting sections instead of sentences is
that, the number of sections is much smaller than
that of sentences, which decreases the number of
combinations dramatically.

In particular, we use the following two strategies
for selecting sections. Formally, supposing there
are N sections in a source document Doc:

• Psal(Sec): using all the sections included
in Sec = {sec1, sec2, ..., sec|Sec|} where
|Sec| ≤ N ;

• Pinc(k): only using the first k sections where
1 ≤ k ≤ N is a positive integer.

We sequentially concatenate selected sections
from the beginning of a document as the above
strategies indicate. If exceeding the length limit,
the concatenated sequence will be truncated; oth-
erwise, it will be padded with zero. All section
headings can be conveniently identified from the
LaTeX source files. On the one hand, to simplify
the salience analysis of Psal(Sec), we focus on the
first section (i.e., Head Section), the last section
(i.e., Tail Section), and the combination of these
two (i.e., Head+Tail Section), for the target of deter-
mining Sec. On the other hand, we can set k > 1
for Pinc(k) to cover introduction and methods as
shown in Figure 1. However, the actual values of
k are usually no more than the relative ratio of the
length limit divided by the average section-length
on experimental datasets, because larger k values
will not bring greater gain due to the truncation
mechanism of the abstractive model.

Obviously, one weakness of this method is that,
although these section categories are meaningful
when working on academic articles, if the proposed
method is extended to different domains (e.g. fi-
nancial documents), then a new categorization of
sections would be required. Thus, exploring more
sophisticated methods that use machine learning to
identify the type of each section should be explored
in future work.

Table 1: Examples of the head and tail section names of
scientific papers on arXiv.

Head Section Name Tail Section Name
Introduction Conclusion
Related Works Conclusions
Introduction and related work Discussion
Motivation Future Work
Background and Introduction Further Work
Motivation and Background Observations
Motivating Work Concluding remarks

3.2 Tested Abstractive Model
We test five strong abstractive models introduced in
the Related Work section, whose actual parameter
settings are shown in Table 7.

• T5 (Raffel et al., 2020b). T5 introduces a uni-
fied framework that converts all text-based lan-
guage problems into a text-to-text format and
combines the insights from the exploration
with scale and the new corpus.

• BART (Lewis et al., 2020). BART is a denois-
ing auto-encoder for pre-training sequence-to-
sequence models. It is trained by corrupting
text with an arbitrary noising function, and
learning a model to reconstruct the original
text.

• LED (Beltagy et al., 2020b). LED is a Long-
former (Beltagy et al., 2020a) variant for sup-
porting long document generative tasks. The
Longformer’s attention mechanism scales lin-
early with sequence length, making it easy to
process super-long documents.

• BigBird (Zaheer et al., 2020). Bigbird intro-
duces a sparse attention mechanism that re-
duces the quadratic dependency to linear. It
reveals some benefits of having global tokens
(e.g., CLS), that attend to the entire sequence
as part of the sparse attention mechanism.

• PEGASUS (Zhang et al., 2020). Pegasus is a
pre-training large Transformer-based encoder-
decoder models on massive text corpora with a
new self-supervised objective. Important sen-
tences are removed or masked from an input
document and generated together as one out-
put sequence from the remaining sentences.

3.3 Data Subset Generation
Academic papers of the arXiv dataset are collected
from the scientific repository arXiv.org and are writ-
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Table 2: The number of disciplinary papers for the
Train/Dev/Test split.

Discipline
Split1

Train Dev Test

Physics 146628 5145 5193
Mathematics 19146 296 257
Computer Science 9600 361 339
Statistics 2354 80 77
Quantitative Biology 1492 54 60
Quantitative Finance 612 19 25
E.E.S.S. 259 5 10
Economics 14 1 2
Total (the full arXiv) 203038 6437 6640

1 E.E.S.S. is shorthand for Electrical Engineering and Systems Science.

Table 3: The average length of Abstract, Head Section
and Tail Section on arXiv and its subsets.

Dataset
Section1

Abstract Head Tail
Full (the full arXiv) 151 748 724
CS (Computer Science) 158 857 537
Math (Mathematics) 122 1036 1059
Phy (Physics) 154 645 720

1 Head and Tail indicate Head Section and Tail Section, respectively.

ten in LaTeX2. Following previous work (Cohan
et al., 2018; Demir et al., 2019), we extract the
top-level section headings from the LaTeX source
files using Pandoc3. We collect various section
heading names and classify them into equivalent
categories. For instance, names of Head Section
and Tail Section are shown in Table 1.

The arXiv dataset covers various disciplines, in-
cluding physics, mathematics, computer science,
quantitative biology, and economics, etc. We statis-
tics the paper numbers of different disciplines fol-
lowing the train/dev/test split of (Cohan et al.,
2018), as shown in Table 2. It shows that the
arXiv papers are primarily collected from three
disciplines: Physics, Mathematics and Computer
Science. Thus, to answer Q3, we generate three
subsets of the full arXiv dataset4: CS (Computer
Science), Math (Mathematics) and Phy (Physics).
For the convenience of writing, we use “Full” to in-
dicate the full arXiv dataset in this paper. To better
determine the super-parameters of Psal(Sec) and
Pinc(k), we calculate the average lengths of Head
Section (H) and Tail Section (T) of Full, CS, Math,
Phy, as shown in Table 3.

2https://www.latex-project.org/
3https://pandoc.org
4We use the article ID extracted from the LaTeX file of a

scientific paper to determine its discipline class. Specifically,
we search the article ID on arXiv and get the “class” field of
the returned result page as the discipline class.

4 Experiment

4.1 Settings
We conduct all experiments on a local machine
(Windows 10 + GTX 1060 3GB) and a workstation
(Ubuntu18.04, a NVIDIA Tesla V100 36G GPU,
and a Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz
CPU). Our code is written in Python 3.7. The
deep learning platform is Pytorch 1.8.0. We use
the huggingface-transformers5 for pre-training and
fine-tuning summary models. The actual parameter
settings of all tested models are shown in Table 7.

We evaluate multiple variants of our approach
on the largest-scale scientific-paper dataset: arXiv,
with ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004) as the measure-
ment metric. We report the F1 scores of ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L), us-
ing the pyrouge package6. ROUGE is suitable for
summarization of scientific papers, whose human-
written abstracts can be used as ground-truth sum-
maries. We do not include human evaluation, fol-
lowing the previous works such as LongT5 (Guo
et al., 2021), BigBird (Zaheer et al., 2020) and
PEGASUS (Zhang et al., 2020), etc. It is quite
challenging to run human evaluations for scientific
papers, as it requires participants to possess sophis-
ticated domain-specific background knowledge.

4.2 Results and Analysis
In this section, we exhibit the evaluation results of
multiple variants of our approach SEHY equipped
with different section-selection strategies and differ-
ent summary-generation models. We also answer
the mentioned-above three questions (Q1, Q2, and
Q3) to reveal interesting experimental findings.

Evaluation results of Psal(Sec). We report the
ROUGE scores of SEHY using Psal(Sec) paired
with three base models (Table 4) and three large
models (Table 5) on arXiv (DFull) and its three
disciplinary subsets (DCS , DMath and DPhy), re-
spectively.

In Table 4, we find that: (1) all tested base mod-
els paired with Psal(H + T ) obtain the highest
scores, showing the advantage of using both of
Head Section and Tail Section against using only
one of them; (2) most tested base models paired
with Psal(H) perform better than the same models
paired with Psal(T ), demonstrating that Head Sec-
tion (usually introduction) contributes more than

5https://github.com/huggingface/transformers
6https://pypi.org/project/pyrouge
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Table 4: Evaluation results of SEHY using the policy Psal paired with base abstractive models on arXiv and its
subsets. ROUGE scores (%) are reported. Best results in each group are in bold.

Dataset+Policy1
Model T5-base LED-base BART-base

R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
DFull + Psal(H) 38.75 / 13.93 / 34.50 43.67 / 16.87 / 39.29 43.48 / 16.25 / 38.86
DFull + Psal(T ) 39.71 / 14.86 / 35.53 42.02 / 15.81 / 37.80 42.85 / 16.13 / 38.42
DFull + Psal(H + T ) 47.09 / 19.84 / 42.30 47.55 / 19.99 / 42.88 44.84 / 17.37 / 40.11
DCS + Psal(H) 43.00 / 15.90 / 38.69 43.23 / 16.14 / 39.54 44.53 / 16.57 / 40.65
DCS + Psal(T ) 40.22 / 14.71 / 36.13 40.91 / 15.04 / 37.18 41.93 / 16.08 / 38.10
DCS + Psal(H + T ) 47.58 / 19.91 / 43.11 46.67 / 18.86 / 42.93 45.46 / 17.32 / 41.59
DMath + Psal(H) 39.93 / 15.62 / 36.06 41.28 / 16.75 / 37.67 40.83 / 15.41 / 36.69
DMath + Psal(T ) 30.81 / 9.31 / 27.71 33.44 / 10.60 / 30.38 34.37 / 11.90 / 30.86
DMath + Psal(H + T ) 44.05 / 18.77 / 39.68 43.18 / 18.15 / 39.25 41.82 / 15.83 / 37.63
DPhy + Psal(H) 38.22 / 13.57 / 33.96 41.04 / 15.03 / 36.69 43.10 / 16.11 / 24.83
DPhy + Psal(T ) 39.88 / 15.00 / 35.64 42.39 / 16.11 / 38.11 43.44 / 16.40 / 38.89
DPhy + Psal(H + T ) 46.76 / 19.75 / 41.93 47.20 / 19.88 / 42.52 44.39 / 17.14 / 39.59

1 “Full” indicates the full arXiv dataset. CS, Math and Phy are shorthand for Computer Science, Mathematics and Physics, respectively. H
and T are shorthand for Head Section and Tail Section. “H+T” indicates the concatenation of H and T.

Table 5: Evaluation results of SEHY using the policy Psal paired with large abstractive models on arXiv and its
subsets. ROUGE scores (%) are reported. Best results in each group are in bold.

Dataset+Policy
Model1 BART-large BigBird-large PEGASUS-large

R-1 / R-2 / R-L R-1 / R-2 / R-L R-1 / R-2 / R-L
DFull + Psal(H) 45.06 / 17.18 / 40.38 35.95 / 12.01 / 30.69 43.28 / 16.50 / 38.57
DFull + Psal(T ) 47.34 / 19.24 / 42.47 28.49 / 7.75 / 24.58 40.43 / 14.88 / 35.73
DFull + Psal(H + T ) 46.84 / 18.56 / 42.01 47.33 / 19.57 / 39.97 45.23 / 18.22 / 40.42
DCS + Psal(H) 47.78 / 18.66 / 43.68 46.31 / 19.11 / 40.84 46.05 / 18.65 / 42.12
DCS + Psal(T ) 46.78 / 18.63 / 42.70 40.67 / 14.49 / 35.27 41.63 / 15.51 / 36.99
DCS + Psal(H + T ) 48.22 / 19.19 / 44.14 49.37 / 20.69 / 42.99 47.71 / 19.62 / 43.52
DMath + Psal(H) 44.52 / 16.79 / 40.21 43.20 / 18.03 / 37.65 43.85 / 18.27 / 39.73
DMath + Psal(T ) 42.54 / 15.33 / 38.04 32.91 / 10.50 / 28.17 32.79 / 10.62 / 28.77
DMath + Psal(H + T ) 44.53 / 16.97 / 40.49 46.05 / 19.67 / 39.48 44.62 / 18.84 / 39.94
DPhy + Psal(H) 45.23 / 17.05 / 40.25 42.92 / 16.15 / 36.19 43.14 / 16.37 / 38.33
DPhy + Psal(T ) 47.83 / 19.12 / 42.80 28.80 / 7.94 / 24.77 40.92 / 15.18 / 36.12
DPhy + Psal(H + T ) 45.20 / 17.42 / 40.20 47.42 / 19.66 / 39.93 45.25 / 18.32 / 40.37

1 Both of Bigbird-Pegasus-large (Zaheer et al., 2020) and Pegasus-large (Zhang et al., 2020) have been fine-tuned on arXiv, quoted from
their original literature.

Table 6: Comparisons between SEHY and other summarization approaches on the full arXiv dataset DFull. ROUGE
scores (%) are reported. The three highest scores are in bold.

Type Approach1 R-1 / R-2 / R-L2

Abstractive

PGN∗∗ (See et al., 2017) 32.06 / 9.04 / 25.16
Discourse∗ (Cohan et al., 2018) 35.80 / 11.05 / 31.80
PEGASUS∗ (Zhang et al., 2020) 44.67 / 16.95 / 38.83
BigBird∗ (Zaheer et al., 2020) 46.63 / 19.02 / 41.77
HAT-BART∗ (Rohde et al., 2021) 46.68 / 19.07 / 42.17
DeepPyramidion∗(Pietruszka et al., 2022)3 47.15 / 19.99†† / -
LongT5∗ (Guo et al., 2021)4 48.35† / 21.92† / 44.27†

Extractive
LexRank∗∗ (Erkan and Radev, 2011) 33.85 / 10.73 / 28.99
SummaRuNNer∗∗ (Nallapati et al., 2017) 42.81 / 16.52 / 28.23
ExtSum-LG+Rd∗ (Xiao and Carenini, 2020) 44.01 / 17.79 / 39.09

Hybrid DANCER∗ (Gidiotis and Tsoumakas, 2020) 45.01 / 17.60 / 40.56
TLM-I+E∗ (Pilault et al., 2020) 41.62 / 14.69 / 38.03

Ours
SEHY:DFull + Psal(H + T )+T5-base 47.09 / 19.84††† / 42.30
SEHY:DFull + Psal(H + T )+LED-base 47.55†† / 19.99†† / 42.88††

SEHY:DFull + Psal(H + T )+BART-base 44.84 / 17.37 / 40.11
SEHY:DFull + Psal(T )+BART-large 47.34††† / 19.24 / 42.47†††

SEHY:DFull + Psal(H + T )+BigBird-large 47.33 / 19.57 / 39.97
SEHY:DFull + Psal(H + T )+PEGASUS-large 45.23 / 18.22 / 40.42

1 ∗ indicates the results are from leaderboard (https://paperswithcode.com/dataset/arxiv). ∗∗ indicates the results are from their original papers.
2 The †, †† and ††† indicate the highest, the second high and the third high score, respectively.
3 DeepPyramidion only reported the R-1 and R-2 scores in its original paper (Pietruszka et al., 2022), so far on leaderboard.
4 LongT5 is the current state of the art (SoTA) among all open-source summarization models.
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Table 7: Parameter settings of abstractive models.

Parameter
Model T5 BART LED BigBird PEGASUS

Version base base base large large
Batch 8 6 7 6 6
Layer 12 6 6 16 16
Epoch 3 3 3 1 1
Min Loss1 1.84 2.29 1.96 - -
Length_limit - 1024 16384 4096 1024

1 We fine-tuned all base models on DFull and reported the final loss.

Tail Section (usually conclusion) on summarizing
well-organized scientific papers; (3) there is a slight
difference of performances between different mod-
els, but no model dominates all the others. For
instance, LED-base performs better than T5-base
on DFull and DPhy while T5-base performs better
than LED-base on DCS and DMath.

In Table 5, equivalent results can be found when
using large models. Generally, given the same
model, the large version obtains higher scores than
the base version, showing the stronger ability of
addressing this task due to the model size. Par-
ticularly, BigBird-large performs best in this part,
probably because of its comparatively larger input
length (4096, see Table 7) derived by the sparse
attention mechanism. However, one exception is
BART-large, which behaves consistently with oth-
ers on DCS and DMath but doing best by using
Psal(T ) on DFull and DPhy.

For answering Q3, we focus on evaluation results
on DCS , DMath and DPhy in Table 4 and 5. We
find that Psal(H +T ) almost obtains higher scores
than either Psal(H) or Psal(T ) on DCS , DMath

and DPhy, no matter that which abstractive model
is used. Further, it is encouraging that SEHY using
Psal(H +T ) paired with BigBird-large obtains the
highest score (49.37 / 20.69 / 42.99) on DCS (Table
5) in our experiments, showing that, comparatively
speaking, the policy Psal(Sec) is most suitable for
scientific papers in Computer Science.

Besides, we exhibit the fine-tuning time of base
models on all experimental datasets in Table 8. We
did not do these for the large models because they
have been fine-tuned on arXiv, quoted from their
original papers. It is found that training our hybrid
model SEHY, even though leveraging simple ex-
traction strategies, is still time-expensive because
arXiv is super large-scale. The training time in-
creases dramatically with the growth of the dataset
size, especially on DFull.

Table 10 shows examples of summaries gener-
ated by our models by using Psal(H + T ), paired

Table 8: The fine-tuning time (hours) of base models on
datesets.

Dataset+Policy
Model T5-

base
LED-
base

BART-
base

DFull + Psal(H) 23.27 40.15 11.40
DFull + Psal(T ) 22.53 21.56 11.62
DFull +Psal(H +T ) 58.58 41.78 12.29
DCS + Psal(H) 1.07 1.00 0.54
DCS + Psal(T ) 1.04 0.98 0.51
DCS + Psal(H + T ) 2.64 2.00 0.55
DMath + Psal(H) 2.16 1.96 1.06
DMath + Psal(T ) 2.10 1.96 1.05
DMath+Psal(H+T ) 5.59 3.88 1.08
DPhy + Psal(H) 16.21 15.43 8.05
DPhy + Psal(T ) 16.50 15.49 8.01
DPhy +Psal(H + T ) 41.63 30.02 8.41

Table 9: Evaluation results of SEHY using Pinc(k)
paired with BigBird. Best results in each group are
in bold.

Dataset+Policy
Model BigBird–large

R-1 / R-2 / R-L
DFull + Pinc(1) 35.95 / 12.01 / 30.69
DFull + Pinc(2) 44.52 / 17.31 / 37.45
DFull + Pinc(3) 44.73 / 17.42 / 37.45
DFull + Pinc(4) 44.80 / 17.56 / 37.48
DCS + Pinc(1) 46.31 / 19.11 / 40.84
DCS + Pinc(2) 47.47 / 19.68 / 41.70
DCS + Pinc(3) 48.33 / 20.52 / 42.36
DCS + Pinc(4) 48.52 / 20.67 / 42.45
DMath + Pinc(1) 43.20 / 18.03 / 37.65
DMath + Pinc(2) 45.31 / 19.75 / 39.28
DMath + Pinc(3) 45.59 / 19.95 / 39.02
DMath + Pinc(4) 45.71 / 19.95 / 39.27
DPhy + Pinc(1) 42.92 / 16.15 / 36.19
DPhy + Pinc(2) 44.33 / 17.18 / 37.16
DPhy + Pinc(3) 44.56 / 17.27 / 37.19
DPhy + Pinc(4) 44.60 / 17.40 / 37.18

with the above base and large models.
Evaluation results of Pinc(k). We measure

Pinc(k) on DFull, DCS , DMath and DPhy. This
strategy can validate the contributions of middle
sections such as methods (Figure 1) on the gener-
ated summary. We conduct this part of experiments
by only using BigBird-large because it performs
best in above experiments. We set the largest value
of k to 4 because the length limit of BigBird-large
is 4096 and the average section-length on DFull,
DCS , DMath is more than 1000 (see Table 3). Eval-
uation results of Pinc(k) are reported in Table 9,
showing that the ROUGE scores are increased with
the growth of k values (i.e., more first sections are
used). However, e.g., on DFull, the best result of
Pinc(k) (44.80 / 17.56 / 37.48) is much worse than
that of Psal(Sec) (47.55 / 19.99 / 42.88).

Comparison of Psal(Sec) and Pinc(k). For
answering Q1, we compare Psal(Sec) and Pinc(k)
with regard to all experimental options. Results are
shown in Figure 2, 3 and 4. Obviously, Psal(Sec)
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Figure 2: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset DCS .
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Figure 3: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset DMath.

performs better than Pinc(k). Besides, from Table
4 and 5, we find that different pre-trained models
do not significantly affect the performance of our
approach for answering Q2.

Comparisons of SEHY with other approaches.
We collect the best results of SEHY by using
Psal(Sec) from Table 4 and 5 and compare them
with those of other 12 summarization models (in-
cluding 7 abstractive models, 3 extractive mod-
els and 2 hybrid models) on the full arXiv dataset
DFull. Evaluation results are presented in Table
6. Experimental findings are as follows: (1) even
though not exceeding LongT5 (the current open-
source SoTA), multiple variants of SEHY obtain
competitive scores, i.e., the second and third high-
est scores on Learderboard. (2) all variants of
SEHY except for the one paired with BART-base
perform better than DANCER, which is the most
related work to ours due to using section-selection
strategies and training a hybrid model. (3) Apart
from LongT5, SEHY obtains better results than the
other compared models, demonstrating the effec-
tiveness of our approach.
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Figure 4: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset DPhy .

5 Conclusion

Long documents introduce a lot of noise to the
summarization process and large parts of the doc-
ument are not really key to its narrative and thus
should be ignored. In this paper, we propose a
simple yet effective hybrid model called SEHY for
summarizing long scientific documents. In partic-
ular, we design two simple strategies for selecting
sections: Psal(Sec) and Pinc(k), and use strong ab-
stractive models for generating the final summary.
We conduct excessive experiments with multiple
variants of SEHY on the full arXiv dataset pub-
licly available and three disciplinary sub-datasets
generated by ourselves. Experimental results show
that Psal(Sec) is more effective than Pinc(k) and
our best models obtain the competitive results with
regard to the current SoTA on arXiv.

Future works are as follows. First, we will eval-
uate the generalization of our approach on other
academic-paper datasets such as ScisummNet (Ya-
sunaga et al., 2019), which is a large-scale sci-
entific paper summarization dataset with citation
networks. Second, we will develop more flexible
and sophisticated extraction strategies such as us-
ing reinforce learning (Chali and Mahmud, 2021),
to further improve our approach’s performance.
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Ground-truth summary We study a novel class of numerical integrators, the adapted nested force-gradient schemes, used
within the molecular dynamics step of the hybrid monte carlo (hmc) algorithm. We test these
methods in the schwinger model on the lattice, a well-known benchmark problem. We derive
the analytical basis of nested force-gradient type methods and demonstrate the advantage of
the proposed approach, namely reduced computational costs compared with other numerical
integration schemes in hmc.

Summary generated by
T5-base

We present a novel class of numerical time integration schemes for the hybrid monte carlo
algorithm (hmc), often used to study quantum chromodynamics (qcd) on the lattice. The adapted
nested-force-gradient approach is applied to the model problem of quantum electrodynamics
(qed) in two dimensions, the schwinger model. We compare the behavior of the adapted nested-
force-gradient approach and the adapted version introduced in @xcite. We investigate the
computational costs needed to perform numerical calculations, as well as the effort required to
achieve a satisfactory acceptance rate during the hmc evolution. We compare the behavior of the
nested-force-gradient approach and the adapted version introduced in @xcite.

Summary generated by
BART-base

We consider the hybrid monte carlo algorithm (hmc), often used to study quantum chromodynam-
ics (qcd) on the lattice. We compare the behavior of numerical time integration schemes currently
used for hmc with the nested force-gradient integrator and the adapted version introduced in
@xcite. We investigate the computational costs needed to perform numerical calculations, as
well as the effort required to achieve a satisfactory acceptance rate during the hmc evolution.
Our goal is to find a numerical scheme which would provide a sufficiently high acceptance rate
while not drastically increasing the simulation time.

Summary generated by
LED-base

We present the nested force - gradient approach and its adapted version applied to a model
problem in quantum field theory, the schwinger model. We investigate the computational costs
needed to perform numerical calculations, as well as the effort required to achieve a satisfactory
acceptance rate during the hmc evolution. We also compare the behavior of the adapted force-
gradient scheme with the existing ones and propose a novel class of numerical schemes which
would provide a sufficiently high acceptance rate while not drastically increasing the simulation
time.

Summary generated by
Pegasus-large

The hybrid monte carlo algorithm (hmc), often used to study quantum chromodynamics (qcd) on
the lattice, has proved to be an efficient numerical time integration scheme. Omelyan integration
schemes of a force - gradient type have proved to be an efficient choice, since it is easy to obtain
higher order schemes that demand a small additional computational effort. These schemes use
higher - order information from force-gradient terms to both increase the convergence of the
method and decrease the size of the leading error coefficient.

Summary generated by
BigBird-large

We present a new class of numerical time integration schemes for the hybrid monte carlo
algorithm, which are based on the idea of the nested force-gradient method. We compare the
behavior of these new schemes with the standard hybrid monte carlo algorithm and discuss
which scheme is most suitable for the simulation of the two-dimensional lattice schwinger model.
Hybrid monte carlo algorithm, numerical time integration, nested force-gradient method.

Summary generated by
BART-large

In this paper we present a new class of numerical schemes for the hybrid monte carlo algorithm
(hmc), often used to study quantum chromodynamics (qcd) on the lattice, which are optimal
in terms of computational costs per trajectory for a given acceptance rate. We compare the
behavior of numerical time integration schemes currently used for hmc with the adapted nested
force-gradient integrator and the adapted version introduced in @xcite. Our goal is to find a
numerical scheme for the hmc algorithm which would provide a sufficiently high acceptance rate
while not drastically increasing the simulation time. We chose the model problem of quantum
electrodynamics (qed) in two dimensions, the schwinger model, since it is well-suited as a test
case for new concepts and ideas which can be subsequently applied to more computationally
demanding problems. As a lattice quantum field theory, it has many of the properties of more
sophisticated models such as qcd, for example the numerical cost is still dominated by the
fermion part of the action. The fact that this model, with far fewer degrees of freedom makes it
the perfect choice for testing purposes.

Table 10: Examples of summaries generated by our models by using Psal(H + T ). For the limitation of space, the
original paper is omitted.
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