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Introduction

Welcome to the Third Workshop on Evaluation and Comparison of NLP Systems (Eval4NLP 2022).

Fair evaluations and comparisons are essential for tracking development and identifying issues of NLP
systems. In particular, recent NLP research has become increasingly dependent on fine-tuning pre-
trained language models to perform downstream tasks, which has resulted in a considerable increase in
the number of published state-of-the-art results. Such findings would be meaningless or even detrimental
to the community without appropriate evaluation of all research aspects, including, but not limited to me-
thodologies, datasets, metrics, and setups. To address these challenges, the Eval4NLP workshop series
takes a broad and unifying perspective on the subject matter. The third edition of Eval4NLP workshop
collocated with AACL 2022 continues to offer a forum for showcasing and discussing the most recent
developments in NLP evaluation methods and resources.

Our workshop has attracted a lot of attention from the community with 20 research papers being sub-
mitted. After thorough consideration by the program committee and the workshop organizers, 11 papers
were selected for presentation. This year’s program covers a variety of topics in NLP evaluation and
comparison, including new evaluation metrics (e.g., resource-performance tradeoff, summarization); sy-
stematic analyses over existing NLP models and techniques (e.g., GPT-2, stance classification baselines,
data augmentation); new benchmark datasets for tasks like word segmentation, part-of-speech tagging,
chat translation error detection, and multilingual referring expression generation; and critical analyses
over existing evaluation benchmarks (e.g., STS) and metrics (e.g., SMATCH); and a novel adversarial
example generation method.

We would like to thank all of the authors for their contributions, the program committee for their thought-
ful reviews, the keynote speakers for sharing their perspectives, and all the attendees for their participa-
tion. We believe that all of these will contribute to a lively and successful workshop. Looking forward to
meeting you all (virtually) at Eval4NLP 2022!

Eval4NLP 2022 Organization Team,
Daniel Deutsch, Can Udomcharoenchaikit, Juri Opitz,Yang Gao, Marina Fomicheva, Steffen Eger
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Keynote Talk: SMART: Sentences as Basic Units for Text
Evaluation

Reinald Kim Amplayo
Google

Abstract: Widely used evaluation metrics for text generation do not work well with longer multi-
sentence texts. In this talk, I will introduce a new metric called SMART to mitigate such limitations.
SMART treats sentences as basic units of matching instead of tokens, and uses a sentence matching
function to soft-match candidate and reference sentences. Candidate sentences are also compared to
sentences in the source documents to allow grounding (e.g., factuality) evaluation. Results show that
system-level correlations of our proposed metric with a model-based matching function outperforms all
competing metrics on the SummEval summarization meta-evaluation dataset, while the same metric with
a string-based matching function is competitive with current model-based metrics. The latter does not
use any neural model, which is useful during model development phases where resources can be limited
and fast evaluation is required. SMART also outperforms all factuality evaluation metrics on the TRUE
benchmark. Finally, extensive analyses show that our proposed metrics work well with longer summaries
and are less biased towards specific models.

Bio: Reinald is a research scientist at Google working on text generation. Prior to that, he was a PhD
student at the University of Edinburgh working with Mirella Lapata on opinion summarization. He was
also affiliated with Yonsei University and Ateneo de Davao University.
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Keynote Talk: Questioning Implicit Assumptions in our
Evaluation Methodologies

Maxime Peyrard
EPFL

Abstract: Research in NLP/ML is driven by evaluation results, with attention and resources being fo-
cused on methods identified as state-of-the-art. The proper design of evaluation methodologies is thus
crucial to ensure progress in the field. In this talk, we will discuss and review several assumptions impli-
citly made by our standard evaluation methodology and show that these assumptions may not be justified
and have a significant impact on which systems are promoted to SotA.

Bio: Maxime Peyrard is a Post-Doc at EPFL in the data science lab. He is working at the intersection
between NLP, and data science with a particular focus on methodological aspects like “how to obtain
valid causal answers from data?” and “how to properly evaluate machine learning models?”
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Abstract
We present a Japanese morphological corpus
of sentences from 27 specialized domains for
the two tasks of word segmentation and part-
of-speech tagging. Experiments on the corpus
demonstrated that recent neural models with do-
main adaptation techniques and pretrained lan-
guage models achieved accurate performance
for the two tasks for many specialized domains.

1 Introduction

Because the Japanese language has no explicit
word delimiters, word segmentation (WS) and part-
of-speech (POS) tagging are fundamental and im-
portant steps for downstream natural language pro-
cessing (NLP) tasks, such as linguistic analysis
and text mining. In previous studies, researchers
devoted much effort to developing WS and POS
tagging systems (Kudo et al., 2004; Neubig et al.,
2011; Tolmachev et al., 2020), often as Japanese
morphological analysis, which simultaneously per-
forms WS, POS tagging, and lemmatization. How-
ever, the majority of existing systems were eval-
uated on general domains, such as news and the
web.

Although researchers constructed morpholog-
ically annotated corpora of specialized domain
text, the domains in publicly available corpora
are limited, for example, Mori et al. (2014, 2016);
Harashima and Hiramatsu (2020). Moreover, re-
searchers proposed domain-specific or domain-
independent adaptation methods (Tsuboi et al.,
2008; Fujita et al., 2014; Sudoh et al., 2014;
Kameko et al., 2015; Higashiyama et al., 2020);
however, they evaluated their systems on one or a
few specialized domains. Therefore, a benchmark
corpus that includes text for many specialized do-
mains is beneficial for conducting comprehensive
system evaluation and developing robust adaptation
methods for many domains.

In this paper, we present a Japanese Corpus of
Many Specialized Domains (JCMS) for WS and

POS tagging. The corpus consists of 32,310 sen-
tences annotated with word boundary and POS tag
information for 27 specialized domains. Using our
corpus, we evaluated existing morphological analy-
sis and WS systems, including popular non-neural
systems and recent neural cross-domain systems.
Our experiments demonstrated that (1) most sys-
tems trained with general source domain resources
resulted in degraded performance for specialized
target domains; however, (2) domain adaptation
(DA) techniques and pretrained language models
(PLMs) contributed to robust performance without
annotated text for target domains.1

2 Construction of the JCMS

2.1 Data Sources and Domains

To construct a multi-domain corpus with public
availability and domain diversity, we extracted raw
sentences from several publicly available corpora
with their sentence segmentation.

To include various science and engineering
text (SCI) in our corpus, we used the ASPEC2

(Nakazawa et al., 2016), NITCIR-9 PatentMT
test collection3 (Fujii et al., 2010), and NTCIR-
11 MedNLP-2 test collection4 (Aramaki et al.,
2014). The ASPEC is a parallel corpus of paper ab-
stracts in various scientific fields; we extracted 24K
Japanese sentences for 20 domains (from AGR
to TRA, as shown in Table 1). The PatentMT
data form a parallel corpus of patent documents
(PAT); we extracted 1K sentences. The MedNLP-2
data consist of pseudo electronic medical records
(EMR); we used all 1.4K unique sentences.

To include other domain text, we used the BC-

1The JCMS will be available at https://github.
com/shigashiyama/jcms.

2https://jipsti.jst.go.jp/aspec/
3http://research.nii.ac.jp/ntcir/

permission/ntcir-9/perm-en-PatentMT.html
4https://research.nii.ac.jp/ntcir/

permission/ntcir-11/perm-en-MedNLP.html
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Group Domain Sent. Word

SCI

AGR agriculture, forestry, fisheries 900 19.3k
BIO biology 1,000 20.2k
CHE-B basic chemistry 1,700 38.3k
CHE-E chemical eng. 750 18.2k
CHE-I chemical industry 950 18.7k
CON construction eng. 1,700 39.0k
ELC electrical eng. 2,000 39.3k
ENE energy eng. 1,360 37.5k
ENV environmental eng. 870 19.0k
ETH earth and space science 800 19.2k
INF information eng. 900 18.9k
MAN eng. management 1,500 36.8k
MEC mechanical eng. 1,750 38.3k
MED medicine 1,300 20.0k
MIN mining eng. 640 19.1k
NUC nuclear eng. 800 18.6k
PHY physics 1,000 17.8k
SYS system control eng. 1,500 36.8k
THM thermal eng. 1,500 38.3k
TRA traffic and transportation eng. 1,430 37.7k
PAT patent 1,000 19.1k
EMR electronic medical record 1,362 28.7k

GOV
LAW law 1,060 37.9k
DIE diet minute 650 36.3k
PRM PR magazine 1,238 19.1k

OTH TBK textbook 1,650 17.7k
VRS verse 1,000 15.9k
Total 32,310 726k

Table 1: Statistics of the JCMS SUW data. Scientific
(SCI), government document (GOV), and other (OTH)
domains are grouped.

CWJ5 (Maekawa et al., 2014) non-core data and
extracted 3K sentences from three government doc-
uments (GOV): letter of the law (LAW), minutes
of the national diet (DIE), and public relations
magazines of local governments (PRM). Addition-
ally, we extracted 2.7K sentences from two other
domains (OTH): textbooks (TBK)6 and Japanese
verse (VRS).

As shown in Table 1, the JCMS included 27
domains and 16–40K words per domain. We regard
PAT and TBK data as single domains, although they
include text in multiple academic or industry fields.

2.2 Segmentation Criteria and POS Tag Sets

Regarding the word boundary and POS tag an-
notation, we adopted two WS criteria (and corre-
sponding POS tag sets). One is the short unit word
(SUW). The SUW was designed by the National
Institute for Japanese Language and Linguistics
(NINJAL) to achieve consistent WS and has been
adopted in various NINJAL corpora (Oka et al.,
2020). Additionally, we defined a new criterion,
SUW-SC, by separating conjugate words (verb, ad-
jective, verbal/adjectival suffix, and auxiliary verb)
into stems and conjugation endings, similar to EDR

5https://clrd.ninjal.ac.jp/bccwj/en/
index.html

6The BCCWJ compiles textbooks on ten subjects for ele-
mentary, middle, and high schools. The JCMS used sentences
from Japanese textbooks for elementary schools.

(2001) and Mori et al. (2014).7 This criterion has
the advantage that different conjugation forms of
(regular) conjugate words (e.g.,読-む yo-mu ‘read’,
読-ま yo-ma, and読-み yo-mi) can be treated as
the same stem token (e.g.,読 yo) without an addi-
tional lemmatization process. The SUW-SC POS
tags that differ from the SUW POS tags are shown
in Appendix A.

2.3 Annotation and Checking Process

Using auto-analyzed sentences with SUW-SC in-
formation, five experienced annotators at an an-
notation company annotated sentences with word
boundaries and POS tags, following the SUW-SC
criterion and the BCCWJ annotation guidelines
(Ogura et al., 2011a,b).8 After the annotation, the
annotators performed (1) unknown word checks
to detect erroneous out-of-dictionary words and
(2) full-sentence checks to detect any erroneous
words, and then fixed annotation errors. Finally,
we automatically converted SUW-SC information
to SUW information by merging adjacent conju-
gate word stems and conjugation endings.9 As a
result, we obtained 32,310 sentences with 726k
SUW tokens (771k SUW-SC tokens), as shown in
Table 1, of which 10,520 sentences included one or
more words modified by the annotators.

Through the annotation process, we also found
approximately 350 character errors in the original
sentences, which may have been caused by, for ex-
ample, OCR and typographic errors,10 and replaced
them with the correct strings, while retaining the
original strings as meta information.

To assess the quality of SUW-SC annotation, the
first author randomly sampled and checked 200
annotated sentences comprising 4,928 words. The
author found 15 erroneous (multi-) word spans.
The F1 scores of the annotators’ annotation were
99.75 (WS), 99.64 (top-level POS), and 99.56 (full
POS)11 when the annotation refined by the author

7We did not separate words with irregular conjugations,
such asする suru ‘do;’ we treated them as single words.

8We ignored word attributes, such as the base forms of
conjugate words because of the high annotation cost.

9If conjugation type and form information are available,
SUW annotation can also be converted to SUW-SC annotation
using several simple rules. We will publish the conversion
script together with the JCMS data.

10For example, we foundヌクレチド andフログラム but
correct forms were assumed to beヌクレオチド ‘nucleotide’
andプログラム ‘program.’

11This check was done on the manually annotated sentences.
This means that the reported F1 scores were not inter-annotator
agreement on the auto-analyzed sentences.
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System GEN SCI Avg. GOV Avg.
Seg POS Seg POS Seg POS

MeCab Ds 99.6 99.0 97.9 97.2 98.0 97.6

KyTea Ds 99.1 98.4 98.5 96.8 97.5 96.6
Ds, Dt 99.1 98.4 98.6 97.1 97.5 96.7

BiLSTM – 98.7 98.1 98.0 97.2 97.6 96.9

BiLSTM-LF Ds 99.4 98.8 98.1 97.3 97.9 97.3
Ds, Dt 99.4 98.8 98.1 97.3 97.9 97.3

BiLSTM-LWP Ds, Dt, Ut 98.9 98.3 98.9 98.1 97.7 97.1
BERT – 99.4 99.1 99.3 98.7 98.1 97.6

BERT-WM – 99.4 – 99.3 – 98.0 –
Ut 99.4 – 99.3 – 98.0 –

Table 2: System performance on the BCCWJ test (GEN), and the JCMS SCI and GOV domain data.

was regarded as the gold standard.

3 Experiments

3.1 Systems and Language Resources
In this section, we report the experimental results
for the JCMS data with the SUW annotation. See
Appendix F for the results for the SUW-SC data.

We evaluated popular morphological analysis
systems and recent neural WS models: MeCab ver-
sion 0.99612 (Kudo et al., 2004), KyTea version
0.4.713 (Neubig et al., 2011), BiLSTM, BiLSTM
with Lexicon Features (LF) (Higashiyama et al.,
2020), and BERT (Devlin et al., 2019). Addition-
ally, we evaluated two domain-adaptable neural
models proposed for Japanese and Chinese WS:
BiLSTM with Lexicon Word Prediction (LWP)
(Higashiyama et al., 2020) and BERT with Word-
hood Memory (WM)14 (Tian et al., 2020). We
used the off-the-shelf MeCab model based on Uni-
Dic,15 “unidic-cwj-3.1.0” (Den, 2009), and trained
the other systems on the corpora and lexicons de-
scribed later. We used a pretrained Japanese BERT
model16 with character-level tokenization for the
BERT-based models. The detailed settings are de-
scribed in Appendix B.

As source domain labeled data, we split the BC-
CWJ core data into 51K/6K/3K sentences and used
them as training, development, and test data, re-
spectively, for the above systems. As target domain
test data, we used all the sentences in each JCMS
domain.

For lexicon-enhanced models, we used entries
in UniDic as the source domain lexicon Ds and en-

12https://taku910.github.io/mecab/
13http://www.phontron.com/kytea/
14https://github.com/SVAIGBA/WMSeg
15https://clrd.ninjal.ac.jp/unidic/

back_number.html
16https://huggingface.co/cl-tohoku/

bert-base-japanese-char-v2

tries in the MeCab-IPADIC user dictionaries for sci-
ence and technology terms17 as the target domain
lexicon Dt.18 As target domain unlabeled data for
BiLSTM-LWP and BERT-WM, we used 0.98M
Japanese sentences in the ASPEC extracted from
20+ domains as single unlabeled data Ut shared for
scientific target domains. Using these resources,
we trained single domain-adapted model instances
for SCI domains. We used no additional resources
for the GOV and OTH domains.

3.2 Overall Results

Table 2 shows the WS and POS tagging (top-level
POS) F1 scores for each system on the BCCWJ
test data (GEN), and the JCMS SCI and GOV do-
main data; the scores in the SCI and GOV rows are
the macro average F1 scores for 22 SCI domains
and three GOV domains, respectively. The neural
model scores are the mean F1 scores of three runs
with random initialization.

For the GEN domain, MeCab, BiLSTM-LF, and
BERT-based models achieved high performance:
≥99.4% and ≥98.8% F1 scores for WS and POS
tagging, respectively.19 For the SCI domains, for
the two tasks, the systems with only source domain
resources (except BERT) had a 0.6–1.8 F1 point
degradation from the scores for the GEN domains.
Training with target domain resources contributed
to robust performance; for example, BiLSTM-LWP
achieved a 0.9 F1 point improvement over BiLSTM
for each task. BERT achieved the best performance

17https://dbarchive.biosciencedbc.jp/
en/mecab/download.html

18Because the dictionaries included many compound words,
we split the original entries into substrings at the positions
before and after continuous Japanese characters, continuous
Latin characters, continuous Arabic numerals, and each sym-
bol character, as preprocessing.

19Notably, the MeCab model was trained on the BCCWJ
core data and other corpora (Den, 2009; Oka, 2017), which
may have included the GEN test sentences.
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Dom.
Unknown MeCab BL-LWP BERT
Tok/Type Ds Ds, Dt, Ut –

Ratio Seg POS Seg POS Seg POS
GEN 2.7 / 16.1 99.6 99.0 98.9 98.3 99.4 99.1
ENE 2.5 / 15.4 99.3 98.9 99.6 99.2 99.7 99.4
TRA 3.0 / 18.2 98.8 98.4 99.4 98.9 99.6 99.2
ENV 3.2 / 15.1 98.8 98.1 99.3 98.7 99.5 99.2
MAN 3.3 / 19.5 98.6 98.2 99.4 99.0 99.6 99.3
CON 3.5 / 19.5 98.9 98.1 99.2 98.6 99.5 99.1
AGR 4.5 / 21.0 98.5 98.0 99.0 98.4 99.4 99.0
THM 4.5 / 24.0 98.4 97.7 99.1 98.3 99.4 98.8
INF 4.7 / 22.6 97.9 97.5 99.1 98.5 99.5 99.1
MEC 5.0 / 25.3 98.4 97.8 99.3 98.7 99.5 99.1
NUC 5.3 / 20.2 98.1 97.3 98.9 98.0 99.4 98.9
CHE-I 5.5 / 23.7 97.9 97.3 99.0 98.3 99.5 99.0
ETH 5.5 / 24.5 98.5 97.8 99.3 98.4 99.4 98.8
MED 5.6 / 27.0 97.1 96.6 99.1 98.6 99.5 99.1
SYS 5.6 / 24.8 98.4 97.7 98.9 98.0 99.4 98.7
ELC 5.8 / 29.4 97.4 97.0 99.0 98.5 99.5 99.1
PAT 6.0 / 26.8 97.0 96.8 99.1 98.7 99.4 99.2
CHE-E 6.1 / 23.7 97.9 97.0 99.0 98.0 99.2 98.7
MIN 6.6 / 22.6 98.0 97.4 98.8 98.1 99.0 98.6
BIO 6.7 / 30.2 96.7 96.0 98.8 98.0 99.3 98.7
PHY 7.5 / 29.6 97.1 96.4 98.5 97.7 99.2 98.8
CHE-B 8.1 / 35.4 97.0 96.1 98.5 97.4 99.1 98.4
EMR 11.2 / 30.2 95.4 91.9 95.6 92.5 97.1 94.0
DIE 0.9 / 7.5 98.0 97.6 97.7 97.0 97.9 97.4
LAW 2.1 / 11.0 97.4 97.0 97.6 97.4 97.9 97.8
PRM 2.8 / 11.1 98.7 98.1 97.7 96.8 98.3 97.8
TBK 4.4 / 19.0 99.0 97.0 97.7 95.5 98.7 96.8
VRS 19.7 / 47.4 87.3 82.3 81.8 75.1 87.1 83.0

Table 3: System performance for each domain. BL
represents BiLSTM.

without explicit DA steps and demonstrated the
strong effectiveness of PLMs. This may be be-
cause the BERT representations were pretrained on
Wikipedia text, including articles on scientific top-
ics. BERT-WM did not show salient improvements
over BERT, even when we used Ut unlabeled data.
For the GOV domains, MeCab and BERT achieved
the best WS and POS tagging performance. Most
systems achieved lower performance than that for
the GEN and SCI domains, which may be because
of the high proportions of unknown non-noun to-
kens, such as verbs, in the GOV domains, as shown
in Appendix C.

3.3 Results for Each Domain

Table 3 shows the performance (F1 scores) of the
three accurate systems for the GEN and each JCMS
domain. For each domain group, the domains are
shown in descending order of the unknown token
ratio (UTR).20 The performance of the systems
for the two tasks tended to decrease as the UTR
increased. However, BiLSTM-LWP and BERT
achieved robust performance for SCI domains with
higher UTR (scores ≥98% and ≥99% are shown
with the light blue and blue background). As in-
dicated by the high UTR and low system perfor-

20The unknown token (type) ratio is the percentage of word
tokens (types) that did not occurr in the BCCWJ training
sentences among all test word tokens (types).

mance, EMR and VRS were two difficult domains.
In Appendices D, E, and G, we present addi-

tional experiments for domain-specific enhanced
models for EMR and VRS, the evaluation of the dif-
ferences between the JCMS annotation and original
annotation for GOV and OTH, and segmentation
examples output by the systems, respectively.

3.4 Discussion

The JCMS comprises well-formed written text
from, for example, scientific papers and govern-
ment documents. Because of this characteristic,
systems trained only on source domain resources
achieved reasonable performance (WS and POS
tagging F1 scores of 96.6–98.5%, on average), and
more sophisticated systems enhanced with DA tech-
niques or PLMs, that is, BiLSTM-LWP and BERT,
achieved more accurate performance (F1 scores of
97.1–99.3%), as shown in Table 2. Straightforward
extensions include the introduction of POS tagging-
oriented DA techniques and the integration of DA
techniques into PLM-based models.

Furthermore, possible research directions in-
clude WS and POS tagging on more challenging
text registers, such as speech and social media text
on specialized topics. Another important text anal-
ysis task is chunking or recognizing multi-word
terms because NLP applications in specialized do-
mains can require term-level processing.

4 Related Work

Japanese Morphology Corpora The represen-
tative Japanese morphology corpora used in the
1990s and early 2000s include the EDR Japanese
Corpus (Miyoshi et al., 1996) and RWCP Text
Database (Toyoura et al., 1998), and those used
from the 2000s to the present include the Kyoto
University Text Corpus (Kurohashi and Nagao,
2003) and BCCWJ (Maekawa et al., 2014). These
corpora mainly comprise newspaper articles and
other written language text, such as magazines,
books, and dictionary example sentences. These
corpora have played a significant role in the devel-
opment of many Japanese morphological analysis
and WS systems (Takeuchi and Matsumoto, 1995;
Asahara and Matsumoto, 2000; Kudo et al., 2004;
Neubig et al., 2011; Tolmachev et al., 2020). Ad-
ditionally, web corpora (Hashimoto et al., 2011;
Hangyo et al., 2012) and transcribed speech cor-
pora (Maekawa, 2003; Koiso et al., 2022) anno-
tated with morphology information have been con-
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structed and released. Efforts have also been made
to construct and publish corpora of other special-
ized domain text: patent (Mori et al., 2014), shogi
(Japanese chess) commentary (Mori et al., 2016),
and recipes (Harashima and Hiramatsu, 2020).

Domain Adaptation Methods To improve
Japanese morphological analysis and WS per-
formance on target domains, domain-specific or
domain-independent adaptation methods have been
proposed. Fujita et al. (2014) explored data
augmentation techniques to improve morpholog-
ical analysis performance on picture book text.
Kameko et al. (2015) enhanced a WS model for
shogi commentary text using shogi game state in-
formation. Partially labeled data have been used
to fine-tune general WS models to target domains;
Tsuboi et al. (2008) adapted a CRF model to a
medical domain and Neubig et al. (2011) adapted
a pointwise prediction model to a web domain. Hi-
gashiyama et al. (2020) enhanced a BiLSTM-based
WS model by introducing an auxiliary word predic-
tion task and adapted the model to several Japanese
and Chinese target domains.

5 Conclusion

We presented the JCMS, which is a Japanese corpus
of 27 specialized domains annotated with word
boundaries and POS tags. The experiments on
the corpus demonstrated the robust WS and POS
tagging performance of recent neural models on
many out-of-domain datasets. Our corpus could be
a useful benchmark for developing and evaluating
cross-domain systems for WS and POS tagging.
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SUW SUW-SC
POS tag Example POS tag (stem) POS tag (ending) Example

V1 動詞-一般 ある 動詞-語幹-一般 活用語尾-動詞型 あ|る
V2 動詞-非自立可能 すぎる 動詞-語幹-非自立可能 活用語尾-動詞型 すぎ|る
V3 動詞-一般 有し 動詞-特殊型-一般 – 有し
V4 動詞-非自立可能 する 動詞-特殊型-非自立可能 – する

A1 形容詞-一般 高い 形容詞-語幹-一般 活用語尾-形容詞型 高|い
A2 形容詞-非自立可能 欲しい 形容詞-語幹-非自立可能 活用語尾-形容詞型 欲し|い
A3 形容詞-非自立可能 ねえ 形容詞-特殊型 – ねえ

S1 接尾辞-動詞的 (悪)ぶる 接尾辞-動詞型語幹 活用語尾-動詞型 (悪)ぶ|る
S2 接尾辞-形容詞的 っぽい 接尾辞-形容詞型語幹 活用語尾-形容詞型 っぽ|い
AV1 助動詞 させる 助動詞-動詞型語幹 活用語尾-動詞型 させ|る
AV2 助動詞 (行か)ない 助動詞-形容詞型語幹 活用語尾-形容詞型 (行か)な|い
AV3 助動詞 だろう 助動詞-特殊型 – だろう

Table 4: POS tags and example words of the SUW and SUW-SC criteria

A SUW-SC POS Tags

Table 4 shows the SUW-SC POS tags that differ
from the SUW POS tags. Characters in “()” in-
dicate the preceding context and the symbol “|”
presents a word boundary.

B Details for the Evaluated Systems

We used the default hyperparameters of KyTea. We
used similar model architectures, hyperparameters,
and training settings to Higashiyama et al. (2020)
for BiLSTM, BiLSTM-LF, and BiLSTM-LWP, ex-
cept we introduced an additional multi-layer per-
ceptron with one hidden layer (300 hidden units)
for POS tagging for each model. We used Tian et al.
(2020)’s code for BERT and BERT-WM models
with their hyperparameters and training settings for
the MSR data, except we used softmax inference
similarly to BiLSTM-based models and decreased
the mini-batch size to 4 or 8 because of the memory
limitation. The BERT model predicted joint seg-
mentation and POS tags, such as B-名詞 (noun),
using a single inference layer.

C POS Proportions of Unknown Tokens

Figure 1 shows the proportions of POS tags of un-
known tokens for each domain in the JCMS SUW
data. Nouns accounted for 95–99% of all unknown
tokens for the SCI (AGR to PAT) domains, whereas
non-noun tokens, such as verbs and symbols, ac-
counted for 15–60% for the GOV and OTH do-
mains.

D Performance of domain-specific models

The VRS data consisted of Japanese verse sen-
tences written in historical literary styles. The
EMR data consisted of medical history summaries

VRS

TBK

PRM

DIE

LAW

PAT

EMR

TRA

THM

SYS

PHY

NUC

MIN

MED

MEC

MAN

INF

ETH

ENV

ENE

ELC

CON

CHE-I

CHE-E

CHE-B

BIO

AGR

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Noun
Verb
Adjective
Adverb
Adj_noun
Symbol
Other

Figure 1: POS Proportions of Unknown Tokens in the
SUW data

of imaginary patients. We additionally evaluated
two domain-specific models for the VRS and EMR
domains of the SUW data. One is the off-the-shelf
MeCab model with the morphological analysis dic-
tionary for historical literary style text: “UniDic-
202203_65_novel” Dh (Ogiso et al., 2013). The
other is a BiLSTM-LWP model trained with medi-
cal domain-specific lexicon Dm and unlabeled data
Um, which we describe later. As shown in Table
5, the improved performance of the MeCab model
on the VRS domain indicates the alleviation of do-
main mismatch. The BiLSTM-LWP model adapted
for the EMR domain achieved 1.2–1.3 F1 point im-
provement for WS and POS tagging over the model
adapted for all scientific domains, and achieved
competitive scores to BERT.
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Domain
MeCab BiLSTM-LWP
Dh Ds, Dm, Um

Seg POS Seg POS
EMR – – 96.9 93.7
VRS 94.1 91.3 – –

Table 5: Performance of domain-specific models for the
EMR or VRS domain of the SUW data

Domain F1 FPSeg POS FPOS

GOV
DIE 98.2 98.1 97.9 544
LAW 98.3 98.3 98.1 501
PRM 98.6 98.1 96.8 637

OTH TBK 99.7 99.6 99.3 100
VRS 95.3 92.9 91.7 1,380

Table 6: Accuracy of original annotation in the BCCWJ
non-core data evaluated on the JCMS SUW data

Regarding the resources for the EMR domain,
we preprocessed and merged five medical dictionar-
ies into a single lexicon Dm: MEDIS hyojun by-
omei master,21 J-GLOBAL Mesh,22 ComeJisyo,23

Manbyo dictionary,24 and Hyakuyaku dictionary.25

We merged 400K sentences from the ASPEC medi-
cal domain and 137K sentences from the MedTxt26

case report and radiography report corpus into a
single unlabeled dataset Um.

E Accuracy of the Original BCCWJ
annotation

The original annotation of the BCCWJ non-core
data was performed semi-automatically; hence, the
average annotation accuracy was 98%.27 We re-
garded the original annotation of the GOV and
OTH domain data as system prediction and evalu-
ated it using the SUW annotated sentences in the
JCMS as the gold standard. Table 6 shows the
WS and POS tagging (top-level POS as “POS” and
full POS as “FPOS”) F1 scores and the numbers
of false positives (FP) based on the FPOS errors.
All domain data contained annotation errors, which
corresponded to 100–1380 FPs; however, the origi-
nal annotation achieved higher F1 scores than the

21http://www2.medis.or.jp/stdcd/byomei/
index.html

22https://dbarchive.biosciencedbc.jp/
en/mecab/data-2.html

23https://ja.osdn.net/projects/comedic/
24https://sociocom.naist.jp/

manbyou-dic/
25https://sociocom.naist.jp/

hyakuyaku-dic/
26https://sociocom.naist.jp/medtxt/
27https://clrd.ninjal.ac.jp/bccwj/doc/

manual/BCCWJ_Manual_01.pdf

Dom.
Unknown MeCab BL-LWP BERT
Tok/Type Ds Ds, Dt, Ut –

Ratio Seg POS Seg POS Seg POS
GEN 3.7 / 21.1 99.6 99.1 98.8 98.3 99.3 99.1
SCI Avg. 98.0 97.3 98.9 98.2 99.3 98.8
GOV Avg. 98.0 97.6 97.5 97.0 98.0 97.7
ENE 3.1 / 18.1 99.3 98.9 99.5 99.2 99.7 99.4
TRA 3.6 / 20.9 98.8 98.4 99.4 98.9 99.6 99.2
ENV 3.8 / 17.4 98.8 98.2 99.3 98.8 99.6 99.3
MAN 3.9 / 22.0 98.6 98.3 99.4 99.0 99.6 99.3
CON 4.0 / 22.2 98.9 98.2 99.3 98.7 99.5 99.1
THM 4.9 / 26.7 98.4 97.8 99.1 98.4 99.4 98.9
AGR 5.1 / 23.5 98.5 98.1 99.0 98.5 99.4 99.1
INF 5.1 / 25.2 98.0 97.6 99.1 98.6 99.5 99.1
MEC 5.5 / 27.8 98.4 97.9 99.2 98.7 99.5 99.2
NUC 5.7 / 22.6 98.2 97.5 98.9 98.1 99.4 99.0
CHE-I 5.9 / 26.2 98.0 97.4 99.0 98.4 99.5 99.2
ETH 6.0 / 27.1 98.6 97.9 99.4 98.5 99.4 98.9
MED 6.0 / 29.3 97.2 96.8 99.1 98.6 99.6 99.2
SYS 6.1 / 27.7 98.4 97.8 98.9 98.1 99.4 98.8
ELC 6.2 / 31.8 97.5 97.1 99.0 98.5 99.5 99.1
PAT 6.4 / 29.9 97.1 96.9 99.0 98.6 99.4 99.3
CHE-E 6.5 /26.5 97.9 97.1 98.9 98.1 99.3 98.8
MIN 6.9 / 24.9 98.0 97.5 98.8 98.1 99.1 98.7
BIO 7.2 / 32.6 96.8 96.2 98.8 98.1 99.3 98.8
PHY 8.0 / 32.2 97.2 96.6 98.7 97.9 99.2 98.8
CHE-B 8.6 / 38.2 97.1 96.3 98.6 97.5 99.2 98.6
EMR 11.1 / 32.4 95.5 92.1 95.9 92.5 97.3 94.3
LAW 2.7 / 12.4 97.4 97.0 97.6 97.3 98.1 97.9
DIE 3.4 / 12.0 98.1 97.8 97.7 97.1 98.0 97.5
PRM 3.7 / 14.3 98.5 97.9 97.3 96.6 98.1 97.7
TBK 5.5 / 23.6 98.9 97.2 97.6 95.7 98.6 97.0
VRS 18.1 / 47.6 88.6 81.4 80.0 72.9 85.0 81.1

Table 7: Performance of the three systems on the JCMS
SUW-SC data. BL represents BiLSTM.

evaluated systems in §3.3 because of manual cor-
rection efforts by NINJAL.

F Results for the SUW-SC POS Tag Set

Table 7 shows the performance of the three sys-
tems trained and evaluated on the SUW-SC annota-
tion data. For MeCab, we applied the conversion
rules mentioned in §2.3 to SUW results and ob-
tained SUW-SC results. For BiLSTM-LWP and
BERT, we trained new model instances with SUW-
SC training data. Similar to the results of the SUW
experiments, we observed that system performance
tended to decrease as the UTR increased.

G Segmentation Examples

Table 8 shows the gold standard annotation and
segmentation results of several JCMS sentence
fragments28 output by three systems: MeCab,
BiLSTM-LWP, and BERT. Incorrect segmentation
(including incorrect manual annotation) is high-
lighted in the gray background. System errors
include oversegmentation of Latin characters (a–
c), oversegmentation of English loanwords written

28The Japanese writing system uses multiple script types,
including kanji (e.g., ‘漢字’), hiragana (e.g., ‘ひらがな’),
katanaka (e.g., ‘カタカナ’), Arabic numerals (e.g., ‘012’ or
‘０１２’), Latin characters (e.g., ‘ABC’ or ‘ＡＢＣ’), and
punctuation and auxiliary symbols.
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Domain Gold MeCab BiLSTM-LWP BERT
(a) PHY ＮａＣｌ (型) Ｎａ|Ｃｌ Ｎａ|Ｃｌ ＮａＣｌ
(b) INF Ｂｌｕｅｔｏｏｔｈ Ｂｌｕｅ|ｔｏｏｔｈ Ｂｌｕｅ|ｔｏｏｔｈ Ｂｌｕｅｔｏｏｔｈ
(c) BIO ＨＥＶ (の感染) Ｈ|Ｅ|Ｖ ＨＥＶ ＨＥＶ

(d) INF サブルーチン (の効率) サブルーチン サブ|ルーチン サブルーチン
(e) INF (ＴＣＰ)スループット スルー|プット スループット スループット
(f) CHE-B クロマトグラフィー クロマトグラフィー クロマト|グラフィー クロマト|グラフィー
(g) LAW (関係)市町村長 市町村長 市|町村長 市|町村長
(h) PHY (Ｂ)中間|子 (物理) 中間|子 中間子 中間|子
(i) PHY 希|土類|金属 希|土類|金属 希土|類|金属 希土|類|金属
(j) LAW ただし書 (又は) ただし書 ただし|書 ただし書
(k) PHY 撹はん (する) 撹|はん 撹|はん 撹はん
(l) PHY り患 (年数) り患 り患 り|患
(m) PHY (パルス)静電|場 静電|場 静|電場 静電|場
(n) EMR 右下|腹部|痛 右下|腹部|痛 右|下腹|部|痛 右下|腹部|痛
(o) EMR 両下|肢 両|下肢 両|下肢 両|下肢

Table 8: Segmentation results of the JCMS sentence examples using the three systems. Characters in “()” indicate
the surrounding context. The meanings of the examples are as follows: (a) ‘NaCl (-type),’ (b) ‘Bluetooth,’ (c) ‘HEV
(infection),’ (d) ‘(efficiency of) the subroutine,’ (e) ‘(TCP) throughput,’ (f) ‘chromatography,’ (g) ‘(the relevant)
municipal mayors,’ (h) ‘B-meson physics,’ (i) ‘rare earth metal,’ (j) ‘proviso (or),’ (k) ‘stir,’ (l) ‘(duration years of)
the disorder,’ (m) ‘(pulse) electrostatic field,’ (n) ‘right lower quadrant pain,’ and (o) ‘both lower extremities.’

with katakana (often into English morphemes) (d–
f), incorrect segmentation of kanji sequences (g–i),
and incorrect segmentation of hiragana and kanji
mixed sequences (j–l). We found words that were
correctly segmented by the systems but were eval-
uated as errors because of the annotation errors
(m–o).
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Abstract

Natural language models are often summarized
through a high-dimensional set of descriptive
metrics including training corpus size, train-
ing time, the number of trainable parameters,
inference times, and evaluation statistics that
assess performance across tasks. The high di-
mensional nature of these metrics yields chal-
lenges with regard to objectively comparing
models; in particular it is challenging to as-
sess the trade-off models make between perfor-
mance and resources (compute time, memory,
etc.).

We apply Data Envelopment Analysis (DEA)
to this problem of assessing the resource-
performance trade-off. DEA is a nonparametric
method that measures productive efficiency of
abstract units that consume one or more inputs
and yield at least one output. We recast natu-
ral language models as units suitable for DEA,
and we show that DEA can be used to create
an effective framework for quantifying model
performance and efficiency. A central feature
of DEA is that it identifies a subset of models
that live on an efficient frontier of performance.
DEA is also scalable, having been applied to
problems with thousands of units. We report
empirical results of DEA applied to 14 different
language models that have a variety of archi-
tectures, and we show that DEA can be used to
identify a subset of models that effectively bal-
ance resource demands against performance.

1 Introduction

A standard task in the machine learning lifecycle is
to compare performance of many models; typically
this process involves analyzing high-dimensional
sets of summary statistics (hyperparameters, evalu-
ation metrics, etc.). A common use case is quantify-
ing the trade-off between performance and resource
constraints; the goal being to achieve the best pos-
sible performance using minimal resources.

Meanwhile, multitask performance benchmarks
(e.g., GLUE) have found widespread adoption in

the natural language processing (NLP) commu-
nity, with transformer-based models often leading
in evaluation performance (Vaswani et al., 2017).
While the performance of transformer-based lan-
guage models is impressive, they are notoriously
resource-intensive, and often smaller models can
more efficiently leverage a limited resource budget.
However, it is nontrivial to demonstrate this fact by
formulating a rational and fair comparison among
models of different sizes and architectures.

In this paper, we apply data envelopment anal-
ysis (DEA) to this challenge of assessing model
resource-performance trade-off (Charnes et al.,
1978; Banker et al., 1984). DEA is a technique
that originated in the operations research commu-
nity, and it has been applied to a wide range of
settings over many decades. It is traditionally con-
cerned with rigorously defining decision making
efficiency for teams, departments, companies, and
other types of people-oriented organizations. But
DEA is a generic technique that is based on solving
a series of linear programs that are constructed to
analyze the relative efficiency of decision making
units (DMUs). A DMU is an abstract object that
converts a set of inputs or resources into a set of
outputs or benefits.

Our adaptation of DEA to the NLP context be-
gins by treating each model as a DMU. Example
inputs for the analysis include training time, train-
ing corpus size, the number of trainable parameters,
and total monetary cost to train. Typical outputs
would be performance evaluation metrics, evalua-
tion throughput, etc.

Our main contribution in this paper is that we ap-
ply DEA to the problem of assessing the resource-
performance trade-off of machine learning models
with an emphasis on evaluating the efficiency of
language models. To our knowledge, this applica-
tion of DEA to machine learning has not appeared
in prior work. We do not assume familiarity with
DEA, so in Section 4 we provide sufficient detail
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Figure 1: Two simple examples of DEA. (Left) Each DMU, represented by a blue dot, has two outputs and a single
input. Efficient DMUs generally lie far from the origin, which corresponds to DMUs that have high output per
unit of input. (Right) Each DMU ingests two inputs and yields a single output. The set of DMUs that lie close to
either axis are more efficient, which has the interpretation of low unit input per unit of output. The Pareto fronts are
indicated with the heavy black line segments. Note that the dashed lines segments are not considered part of the
front. Suboptimal DMUs are said to be “enveloped” by efficient DMUs.

to interpret our empirical results, which apply DEA
to a variety of models, in Section 5.

2 Background

DEA was developed to enable performance assess-
ment of teams of people and organizations such
as not-for-profits, governmental organizations, de-
partments within larger organizations and meta-
analyses of industries. Traditional inputs include
organizational staff salary, operational costs, and
time. Traditional outputs include revenue, sales
volume, and other organizational goals. The Pareto
front of DEA in this context is also known as
the best practice frontier, with the name derived
from the observation that if a decision making unit
(DMU) is on this frontier, it is objectively more
efficient at transforming its inputs into outputs.

DEA analysis is applied to the inputs and outputs
of a population of DMUs, and it assigns a scalar
value between 0 and 1 to each DMU which ex-
presses its efficiency. A DMU that is more effective
at transforming inputs into outputs is considered
more efficient.

Figure 1 illustrates two simple scenarios where
DEA-type efficiency can be endowed with an intu-
itive representation. On the left, several DMUs are
represented as blue dots, and each DMU ingests
a single input and yields two outputs. A process
that generates more output for a given input is con-
sidered to have greater efficiency. In this scenario,

processes that lie on the Pareto front are far from
the origin. At right, a different set of DMUs is
shown. In this example, each DMU ingests two in-
puts and performance is assessed through a single
output. A DMU with low input or large output will
live close to one of the axes, and DMUs close to
the origin are more efficient.

We now illustrate how DEA quantifies model
efficiency by briefly describing a hypothetical, and
simple, example. Consider a language model
trained on a small amount of data with high ac-
curacy for some task. DEA classifies this model
as more efficient than (1) a model that achieves
the same accuracy with more training data or (2)
a model that achieves a lower accuracy with the
same amount of training data.

We describe the formal definition of DEA below
in Section 4, but for now it suffices to understand
that DEA is the result of solving a sequence of
linear programs. In particular, global solutions
are guaranteed to be found rapidly and with high
numerical precision.

A DEA-based approach to model comparison
has several advantages. Since it is based on linear
programming, the DEA framework lends itself to
detailed theoretical analysis, which extends to in-
terpreting solutions and modifying the programs in
a controlled way. Furthermore, DEA is extensible
both in the number of models that one can consider
as well as the metrics that are used to represent
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each model’s inputs and outputs. Finally, DEA is a
scalable technique, since it allows one to analyze
model performance of tens of thousands of models.

DEA can be applied to almost arbitrary data that
satisfies a small number of weak conditions, but
this flexibility comes with some cost. In order to de-
rive meaning from DEA, one must carefully choose
the set of inputs and outputs. This process of selec-
tion is necessarily subjective. The specifics of our
implementation are not meant to be universal pre-
scriptions but rather a demonstration of the concept
and useful starting point.

3 Related work

DEA was introduced to the operations research
community as a tool to help organizations quan-
tify efficiency, and to objectively identify subor-
ganizations that perform especially well (Charnes
et al., 1978). Since its introduction, DEA has
been applied to a vast array of fields, including
international banking, cloud computing operations,
economic sustainability, police department opera-
tions, hospital operations, and logistical applica-
tions (Charnes et al., 1995; Emrouznejad et al.,
2016; Sun, 2002; Thanassoulis, 1995; Tsaples et al.,
2022). Recent work has applied DEA to the ma-
chine learning context to optimize generalization
error of models (Guerrero et al., 2022); we are
unaware of prior work that applies DEA to the pur-
pose of assessing model efficiency as we do here.

The theory of DEA continues to be an active
field of research, and there have been many devel-
opments over the years in an attempt to address per-
ceived shortcomings. In addition to the relaxation
of constant returns to scale, “cross-efficiency” was
introduced to generate unique efficiency rankings,
and “stochastic data envelopment analysis” was de-
veloped to account for noise and uncertainty in the
measurements that are used to inform DEA (Banker
et al., 1984; Doyle and Green, 1994; Olesen and
Petersen, 2016).

DEA is parallelizable, and it has been applied to
problems with tens of thousands of DMUs (Phillips
et al., 1990; Khezrimotlagh et al., 2019). Reducing
the required computation time of DEA has also
been explored (Ali, 1990, 1993).

Assessment of natural language understanding
requires models to execute a range of linguistic
tasks across different domains. Recognizing this,
the GLUE benchmarks were introduced (Wang
et al., 2018). The GLUE benchmarks consist of

nine English sentence understanding tasks, so the
performance of a single model on the GLUE bench-
mark yields a nine-dimensional vector. Typically,
this vector is summarized through an average and
reported as a single score.

A challenge of modern transformer-based ma-
chine learning is the large number of different ar-
chitectures that can be tested. A fairly comprehen-
sive overview of recent performance results related
to language models is reported in (Narang et al.,
2021). The primary method of reporting the re-
sults is in tabular form (see, for example Tables 1
and 2 of that reference), and comparative analysis
is challenging. Others propose rigorous scientific
methods and experiment design to help manage
these challenges (Ulmer et al., 2022), (Dror et al.,
2019), (Dror et al., 2017); we believe DEA is an-
other tool that can be leveraged for these analyses.

Multidimensional descriptions of models are an
inescapable feature of machine learning, and scalar-
ization of such descriptions are equally common.
Several metrics commonly used to describe mod-
els include precision, recall, accuracy, model size,
and a variety measures of performance including
BLEU and the family of ROUGE scores (Lin, 2004;
Papineni et al., 2002). Aside from DEA, other well-
known examples of scalarization techniques used
within the machine learning community include the
F1 score, the Matthews correlation coefficient, and
the Fowlkes–Mallows index, which summarizes
the confusion matrix (Matthews, 1975; Yule, 1912;
Fowlkes and Mallows, 1983).

4 Mathematical background

In this section, we provide sufficient background
for one who is unfamiliar with DEA to interpret
the results of Section 5.

When DEA was originally introduced, a tech-
nical requirement of the processes being assessed
was that they exhibit constant returns to scale; for
example this means that doubling the value of each
input (e.g., sales staff) should cause the doubling
of the value of all the outputs (e.g., monthly sales).
DEA found widespread adoption despite this as-
sumption almost never holding in practice. To ad-
dress this perceived deficiency in DEA, the original
formulation of DEA was modified to relax the con-
stant returns to scale assumption. Several other
extensions of DEA are now in common use, and
we provide an overview below. More details can
be found in (Cooper et al., 2007).
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We introduce the setup and notation as follows.
There are n DMUs, each of which consumes m
inputs and produces s outputs. Concretely, DMUj

consumes xij ≥ 0 units of input and produces
yrj ≥ 0 units of output, where 1 ≤ i ≤ m,
1 ≤ r ≤ s, and 1 ≤ j ≤ n. The measure-
ment units of the different inputs and outputs
need not be congruent. For shorthand, we can
express the data corresponding to DMUj with the
pair (xj , yj) ∈ Rm+s where xj = (xij)

m
i=1 and

yj = (yrj)
s
r=1. We call the pair (xj , yj) an activ-

ity. We can additionally arrange the input data in
an m × n matrix X = (xij) and the output data
in an s × n matrix Y = (yrj). All the vectors
xj and yj are assumed to be semipositive, mean-
ing their entries are nonnegative and at least one
entry is strictly positive. Equivalently, this means
DMUj consumes a positive amount of some input
and produces a positive amount of some output.

4.1 CCR efficiency

We first introduce the (input-oriented) CCR model
(Charnes et al., 1978), named as such after its cre-
ators Charnes, Cooper, and Rhodes. The CCR
model is widely regarded as the first DEA model,
and assumes constant returns to scale.

For each o, where 1 ≤ o ≤ n, we evaluate
DMUo against its peers. Let v = (vi)

m
i=1 ∈ Rm

+

and u = (ur)
s
r=1 ∈ Rs

+ denote the weights that
are applied to all the inputs and all the outputs
of DMUo, respectively. For an arbitrary activ-
ity (x, y) ∈ Rm+s

+ , the ratio u⊤y/v⊤x measures
efficiency by reducing the multiple inputs (resp.
outputs) to a single “virtual” input (resp. “virtual”
output), then returning the ratio of virtual output
to virtual input. The CCR model aims to solve the
following fractional program, indexed by o, where
1 ≤ o ≤ n:

maximize
v,u

θ := θo =
u⊤yo
v⊤xo

(1a)

subject to
u⊤yj
v⊤xj

≤ 1 for j = 1, . . . , n (1b)

v ∈ Rm
+ , u ∈ Rs

+. (1c)

The constraints (1b) bound the efficiency ratio of
each DMU above by 1. The objective (1a) aims to
find multipliers v, u that maximize the efficiency
ratio of target DMUo; due to the constraints (1b),
clearly the optimal value θ∗ is at most 1. It can be
shown that Eq. (1) is equivalent to the following

linear program, called the CCR multiplier form:

maximize
v,u

θ = u⊤yo (2a)

subject to v⊤xo = 1 (2b)

− v⊤X + u⊤Y ≤ 0⊤ (2c)

v ∈ Rm
+ , u ∈ Rs

+. (2d)

Equivalence of (1) and (2) can be verified through
a simple exercise (Cooper et al., 2007). We call
DMUo CCR-efficient if θ∗ = 1 and there exists an
optimal (v∗, u∗) with v∗ > 0 and u∗ > 0. Other-
wise we call DMUo CCR-inefficient.

It is possible for DMUo to achieve the maximal
value θ∗ = 1 and still be CCR-inefficient; this oc-
curs when some DMUj ̸= DMUo consumes no
more input than DMUo, produces at least as much
output as DMUo, and either consumes strictly less
of some input or produces strictly more of some
output than DMUo. In the literature, such CCR-
inefficient DMUs are occasionally referred to as
weakly efficient, whereas DMUs satisfying both
θ∗ = 1 and (v∗, u∗) > 0 are called strongly effi-
cient (Cooper et al., 2004). In Figure 1, the weakly
inefficient points are the endpoints of the dashed
line segments that are parallel to the axes, and they
are labeled “suboptimal.” For the most part, we
will not use this terminology and simply refer to
DMUs satisfying θ∗ = 1 and not (v∗, u∗) > 0 as
inefficient.

Computationally, one typically does not work
with the CCR multiplier form directly, but rather
with its dual. The dual of (2) is referred to as the
CCR envelopment form:

minimize
θ,λ

θ (3a)

subject to θxo −Xλ ≥ 0 (3b)

Y λ ≥ yo (3c)

θ ∈ R, λ ∈ Rn
+. (3d)

We now describe the connection between the
CCR model and the assumption of constant returns
to scale with an alternative interpretation of the
envelopment form. Recall that an arbitrary pair of
vectors (x, y) ∈ Rm+s

+ is called an activity. The
CCR model assumes there is a set of feasible activ-
ities, called the production possibility set, denoted
PCCR, which is defined as the polytope

PCCR := {(x, y) ∈ Rm+s
+ :

x ≥ Xλ, y ≤ Y λ, λ ∈ Rn
+},

and which has the following properties:
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1. We assume the observed activities
{(xj , yj)}nj=1 are contained in PCCR.

2. If (x, y) ∈ PCCR, then (x̄, ȳ) ∈ PCCR for
any x̄ ≥ x, ȳ ≥ y. (In the economics litera-
ture, this is known as free disposability (Carter
and Koopmans, 1952).)

3. Conic combinations of activities in PCCR be-
long to PCCR.

The last property implies constant returns to scale,
as (x, y) ∈ PCCR implies (tx, ty) ∈ PCCR for
any t > 0.

Eq. (3) can be viewed as finding the mini-
mum θ such that (θxo, yo) ∈ PCCR. More intu-
itively, Eq. (3) aims to synthesize a new activity
using conic combinations of the observed activi-
ties {(xj , yj)}nj=1, i.e., (Xλ, Y λ) where λ ∈ Rn

+.
Eq. (3) tries to scale the inputs xo as small as pos-
sible by the factor θ while ensuring that the synthe-
sized activity (Xλ, Y λ) consumes no more inputs
than θxo and maintains output levels at least as
high as yo.

The envelopment form allows for an alterna-
tive characterization of CCR-efficiency: DMUo is
CCR-efficient if for any optimal solution (θ∗, λ∗)
to (3), θ∗ = 1 and the solution has zero slack,
i.e., the constraints (3b) and (3c) hold at equality;
DMUo is CCR-inefficient otherwise. If DMUo is
CCR-inefficient, then there exists λ ∈ Rn

+ such that
xo ≥ Xλ, Y λ ≥ yo and at least one inequality in
the system holds strictly; the synthesized activity
(Xλ, Y λ) is thus strictly better than (xo, yo), and
so DMUo is said to be enveloped by the observed
activities {(xj , yj)}nj=1.

Solving (3) alone is not enough to determine
whether DMUo is CCR-efficient; to determine
whether every optimal solution to (3) has zero slack,
one additionally solves the following linear pro-
gram:

maximize
λ,s−,s+

1⊤s− + 1⊤s+ (4a)

subject to s− = θ∗xo −Xλ (4b)

s+ = Y λ− yo (4c)

λ ∈ Rn
+, s

− ∈ Rm
+ , s+ ∈ Rs

+, (4d)

where θ∗ in (4) is the optimal value of (3). If DMUo

is CCR-inefficient, we can additionally find its ref-
erence set, the set of CCR-efficient DMUs that en-
velop DMUo thus making it CCR-inefficient. The

reference set is defined based on the max-slack
solution (θ∗, λ∗, s−∗, s+∗) of (3) and (4) to be

ECCR
o = {j ∈ {1, . . . , n} : λ∗

j > 0}.

4.2 BCC efficiency

The constant returns to scale assumption of the
CCR model can be problematic when comparing
language models, e.g., one typically expects dimin-
ishing returns from increased training time. For-
tunately, this can be relaxed with a very simple
modification to the CCR formulation (Banker et al.,
1984). The so-called BCC model, named after its
creators Banker, Charnes, and Cooper, addresses
this shortcoming and allows for variable returns
to scale by adding a single additional constraint,
namely 1⊤λ = 1, on the production possibility
set. The BCC envelopment form, which is almost
identical to Eq. (3), is as follows:

minimize
θ,λ

θ (5a)

subject to θxo −Xλ ≥ 0 (5b)

Y λ ≥ yo (5c)

1⊤λ = 1 (5d)

θ ∈ R, λ ∈ Rn
+. (5e)

The dual of (5) is the BCC multiplier form:

maximize
v,u,u0

u⊤yo − u0 (6a)

subject to v⊤xo = 1 (6b)

− v⊤X + u⊤Y − u01
⊤ ≤ 0⊤ (6c)

v ∈ Rm
+ , u ∈ Rs

+, u0 ∈ R. (6d)

The production possibility set PBCC of the BCC
model is defined as

PBCC = {(x, y) ∈ Rm+s
+ :

x ≥ Xλ, y ≤ Y λ, 1⊤λ = 1, λ ∈ Rn
+}.

The envelopment form (5) can be viewed as finding
the minimum θ such that (θxo, yo) ∈ PBCC . We
call DMUo BCC-efficient if for any optimal solu-
tion (θ∗, λ∗) to (5), θ∗ = 1 and the solution has
zero slack, i.e., the constraints (5b) and (5c) hold at
equality; DMUo is BCC-inefficient otherwise. As
in the case of the CCR model, one not only solves
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(5) but also the following:

maximize
λ,s−,s+

1⊤s− + 1⊤s+ (7a)

subject to s− = θ∗xo −Xλ (7b)

s+ = Y λ− yo (7c)

1⊤λ = 1 (7d)

λ ∈ Rn
+, s

− ∈ Rm
+ , s+ ∈ Rs

+, (7e)

where θ∗ in (7) is the optimal value of (5).
If DMUo is BCC-inefficient, we are interested

in finding its reference set, the set of BCC-efficient
DMUs that envelop DMUo thus making it BCC-
inefficient. The reference set is defined based on
the max-slack solution (θ∗, λ∗, s−∗, s+∗) of (5) and
(7) to be

EBCC
o = {j ∈ {1, . . . , n} : λ∗

j > 0}.

If DMUo is BCC-efficient, we can additionally
determine returns to scale as follows:

1. Increasing returns to scale prevails at (xo, yo)
iff u∗0 < 0 for all optimal solutions to (6).

2. Decreasing returns to scale prevails at (xo, yo)
iff u∗0 > 0 for all optimal solutions to (6).

3. Constant returns to scale prevails at (xo, yo)
iff u∗0 = 0 for some optimal solution to (6).

Suppose we solve (6) and obtain u∗0 < 0. We then
solve the following modified program:

maximize
v,u,u0

u0 (8a)

subject to v⊤xo = 1 (8b)

u⊤yo − u0 = 1 (8c)

− v⊤X + u⊤Y − u01
⊤ ≤ 0⊤

(8d)

v ∈ Rm
+ , u ∈ Rs

+, u0 ≤ 0. (8e)

If (8) yields an optimal solution with u∗0 = 0, then
constant returns to scale prevails at (xo, yo), oth-
erwise increasing returns to scale prevails. If on
the other hand we solve (6) and obtain u∗0 > 0, (8)
can be modified by replacing the constraint u0 ≤ 0
with u0 ≥ 0 and switching the optimization sense
to minimize u0.

Since the BCC envelopment form differs from
the CCR envelopment form only in the addition
of the convexity constraint 1⊤λ = 1, if DMUo is
CCR-efficient, it is also BCC-efficient, and con-
stant returns to scale prevail at DMUo.

The CCR score θ∗CCR is called the (global) tech-
nical efficiency (TE) as the CCR model ignores the
effects of scaling. The BCC score θ∗BCC is called
the (local) pure technical efficiency (PTE) as the
BCC model accounts for variable returns to scale.
The scale efficiency (SE) is defined as

SE =
TE

PTE
=

θ∗CCR

θ∗BCC

. (9)

Note that 0 ≤ SE ≤ 1. Eq. (9) implies a decom-
position of technical efficiency into pure technical
efficiency and scale efficiency; if technical effi-
ciency TE is low, it is either because of inefficient
operation (low PTE) or poor scaling of resources
(low SE).

We remark that all of the CCR and BCC mod-
els we consider are input-oriented, as they attempt
to reduce input consumption while maintaining
the same if not higher level of output production.
We do not consider output-oriented models which
consider the opposite situation where output pro-
duction is increased while maintaining the same or
lower level of input consumption.

5 Results and analysis

In this section, we describe the results of applying
DEA to compare a variety of NLP models. The in-
put features and the output features were selected to
incorporate aspects of training, evaluation and task
performance. Since training is one part of our anal-
ysis, several identical versions of the same models
are represented in the set of models considered
but with different learning rates selected. We also
incorporate several simpler models as baselines in-
cluding TF-IDF and GloVe embeddings with linear
classifiers (Pennington et al., 2014).

The transformer models are pretrained mod-
els that are sourced from the Hugging Face
Model Hub (Hugging Face, 2022). Each trans-
former model appears three times: once for
each of the learning rates 10−3, 10−4, and 10−5.
The base models are bert-base-uncased,
bert-large-uncased (Devlin et al., 2019),
roberta-base (Liu et al., 2019), and their dis-
tilled versions: distilbert-base-uncased,
distilroberta-base (Sanh et al., 2019).
The GloVe embeddings used are all trained on the
Wikipedia 2014 and Gigaword 5 6B corpuses and
vary in embedding dimension between 50, 100, 200
and 300 (Pennington et al., 2014). As our simplest
baseline we use scikit-learn’s implementa-
tion of TF-IDF which varies in vocabulary size
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between 100, 500, 1000, 5000, 10000 and 15000
(Pedregosa et al., 2011).

The number of trainable parameters for the trans-
former and other deep network models is deter-
mined by the model architecture and is typically
in the millions. For the simpler embedding-based
models, the number of trainable parameters is deter-
mined by the embedding dimension or vocabulary
size. The GLUE benchmarks were coalesced in the
standard manner by applying an average of all the
scores. This score was treated as an output.

We ran each model through the standard GLUE
benchmark by training them on the train split of
the dataset and evaluating them on the eval split;
in doing so we generated several dozen metrics
for each model. These metrics include standard
metrics that capture model throughput, running
time and performance; a condensed representative
summary is presented in Table 1.

In practical applications of DEA, if the analysis
uses far more inputs and outputs than the num-
ber of DMUs, then the typical outcome classifies
all DMUs as Pareto efficient. There can still be
value in analyses where this happens, this is atyp-
ical and we wish to avoid it. A rule of thumb
advises that the number of DMUs should be at
least twice the number of inputs and outputs con-
sidered (Cook et al., 2014; Golany and Roll, 1989).
Following this advice, we run an analysis with
just two inputs and two outputs. The inputs we
use are log (# trainable params) and total train run-
time. The outputs were average score across all
GLUE tasks and average eval throughput (sam-
ples/second).

We nonlinearly transform the number of train-
able parameters by applying log to it for two rea-
sons. First, there is a large disparity between the
number of trainable parameters that the simple
models have, and the number of trainable parame-
ters that the transformer models have. The result
of this gap is that the feature effectively becomes
a binary indicator of whether the model is a trans-
former or not, and this is not what we would like
the feature to convey. The second reason is based
on empirical observations about performance. In-
formally, we expect performance to be a sublinear
function of model size. That is, model performance
should improve as a function of model size, but
with decreasing returns.

We ran our experiments via Google Cloud Plat-
form’s Vertex AI Pipelines. Transformer models

were trained on n1-highmem-8 instances (8 vC-
PUs, 52 GiB memory) and one NVIDIA T4 GPU
with CUDA toolkit version 11.2. Non-transformer
models were trained on e2-standard-4 in-
stances (4 vCPUs, 16 GiB memory). All ex-
periments used Python 3.8 and, at the time of
writing, the latest versions of major libraries1.
Our experiment script was a modified version of
the run_glue.py script included with Hugging
Face’s examples 2. Runtimes for all tasks varied
from minutes to hours depending on the task and
model but all experiments were completed within
24 hours.

After generating the model metrics, we con-
structed the relevant linear programs described in
Section 4, and we solved them using Gurobi ver-
sion 9.5.2.

The results shown in Table 2 use the following
definitions. The column headed “CCR score” re-
ports the optimal objective value of the program in
Eq. (3), and the “BCC score” reports the optimal
objective value of the program in Eq. (5). The col-
umn headed “scale efficiency” reports the ratio of
the two optimal values, and is defined explicitly in
Eq. (9). The column “CCR eff.” indicates whether
the optimal solution to (3) has zero slack, and re-
ports the result of solving Eq. (4). The column
headed “BCC eff.” indicates whether the optimal
solution to Eq. (5) has zero slack and requires solv-
ing Eq. (7) to make the determination. Note that
several models exhibit a BCC score of 1.000 while
not being BCC-efficient, i.e., they are weakly effi-
cient. Finally, the “ret. to scale” column containing
either CRS or DRS (IRS does not occur here) re-
ports the results of Eq. (6) and Eq. (8). CRS indi-
cates constant returns to scale, which corresponds
to item 3 in the list appearing just prior to Eq. (8).
DRS indicates decreasing returns to scale. In this
case, DRS corresponds to item 2 in that same list.

As a result, of this table, it is clear
that the models glove-50-linear,
tfidf-1000-linear, and roberta-base
with lr=1e-4 perform well overall. It is also
clear that the BCC equations provide a view of
model performance that benefits the more complex
models. This confirms the general intuition that
large changes in model size, complexity and

1The libraries and their versions are: (torch, 1.11.0),
(transformers, 4.20.1), and (scikit-learn, 1.1.1).

2https://github.com/huggingface/
transformers/blob/v4.20.1/examples/
pytorch/text-classification/run_glue.py
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other inputs yield incremental improvements
in performance. Additionally, it shows that
bert-large-uncased models are suboptimal,
requiring a lot of time and space in exchange for
performance that is similar to that of other models.

6 Conclusions and Future Work

We have applied Data Envelopment Analysis to the
challenge of quantifying the trade-off that exists
between model performance and resource demands.
We base this analysis on standard high-dimensional
summary statistics that describe each model. We
apply DEA to the analysis of 14 natural language
models, and from this analysis we identify both
simple and transformer-based models that effec-
tively balance the competing objectives.

We demonstrate that the method is feasible
and scales well. Future work can refine the ap-
proach presented above in several directions. First,
specifics of our analysis can be modified by se-
lecting different sets of inputs and outputs, or by
selecting different ways of normalizing the inputs
and outputs. Although DEA is a quantitative frame-
work, there is much subjectivity in how the analysis
is set up and interpreted. Second, it would be in-
teresting to consider a more principled approach
to the normalization of inputs and output attributes
used in the analysis. We take the log of the number
of trainable parameters to amplify the difference
between models where the number of parameters
is small, as well as to capture diminishing resource
cost once models are sufficiently large. For future
work, one may apply exp to achieve the opposite ef-
fect. In addition, for attributes that take on negative
values, since DEA assumes semipositive data, one
may consider splitting the attribute into its positive
and negative parts. Third, we have only consid-
ered input-oriented models, and so inherent in our
approach is the goal of minimizing input consump-
tion while maintaining best-in-class performance.
An output-oriented approach is conversely inter-
ested in holding input resources constant while
producing superior results. We leave investigation
of these types of models to future work. Finally, it
seems possible that DEA might be integrated into
the training process, where the analysis is used to
direct training time, parameter size, performance
criteria. Due to the high-dimensional nature of lan-
guage model descriptions, we believe that DEA is
well-suited for language model assessment.
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Metric Percentiles: 25 50 75
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eval_pearson 0.868 0.881 0.895

Table 1: Representative data for the stsb tests. The five models tested are: bert-base-uncased, bert-large-uncased,
distilbert-base-uncased, distilroberta-base, and roberta-base with three different learning rates 10−5, 10−4 and 10−3.
In addition to stsb, the other tests are mrpc, qqp, wnli, rte, mnli, cola, sst2, and qnli. For each distinct model, each
test, and each learning rate, similar metrics are generated, for a total of over 100 different metrics.

θ∗CCR θ∗BCC SE CCR eff. BCC eff. RTS GLUE score

glove-50-linear 1.000 1.000 1.000 + + → 0.408
tfidf-1000-linear 1.000 1.000 1.000 + + → 0.591
roberta-base, lr=1e-4 0.501 1.000 0.501 + ↓ 0.830
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distilbert-base-uncased, lr=1e-3 0.466 0.819 0.569 0.740
distilbert-base-uncased, lr=1e-4 0.473 0.803 0.588 0.769
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bert-base-uncased, lr=1e-3 0.410 0.543 0.756 0.703
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Table 2: Efficiency scores, returns to scale characterizations of BCC-efficient models, and GLUE scores (average
performance across tasks). Models are ranked first by their BCC score, then by their CCR score. Returns to scale
characteristics (increasing = ↑, decreasing = ↓, constant =→) indicated only for BCC-efficient models.
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Abstract
COMET is a recently proposed trainable neural-
based evaluation metric developed to assess the
quality of Machine Translation systems. In this
paper, we explore the usage of COMET for eval-
uating Text Summarization systems – despite
being trained on multilingual MT outputs, it
performs remarkably well in monolingual set-
tings, when predicting summarization output
quality. We introduce a variant of the model –
COMES – trained on the annotated summariza-
tion outputs that uses MT data for pre-training.
We examine its performance on several datasets
with human judgments collected for different
notions of summary quality, covering several
domains and languages.

1 Introduction

Since manual annotation for any generative task
is costly and time consuming, automatic metrics
are commonly used to both measure the progress
during training and compare outputs from indepen-
dent systems. Thanks to the Metrics Shared Task
(Freitag et al., 2021b; Mathur et al., 2020; Ma et al.,
2019) collocated with the WMT workshop since
2008 (Callison-Burch et al., 2008), advances in the
MT models performance are accompanied by a con-
tinuous development of new automatic metrics (Lo,
2019; Kepler et al., 2019; Rei et al., 2020; Sellam
et al., 2020) that improve correlation with human
judgment and are robust to both domain shifts and
changes in annotation style (Freitag et al., 2021a).

In contrary, for the task of text summarization
remarkable advances in modeling techniques (Koto
et al., 2022) are not followed by corresponding re-
search on evaluation methods – a number of recent
studies (Lewis et al., 2020a; Li et al., 2020; Raf-
fel et al., 2020) keep relying mostly on ROUGE
(Lin, 2004), a string-overlap metric measuring the
n-gram correspondence with the reference sum-
mary.

One of the issues making research on summary
evaluation metrics difficult is lack of standardized

framework for collecting human judgments. They
are collected not only along several dimensions
(Table 1) but also using different methods – based
on Likert scale (Fabbri et al., 2021; Stiennon et al.,
2020), Direct Assessment (Koto et al., 2021) or
methods that output numerical score indirectly
(Maynez et al., 2020; Bhandari et al., 2020) by
e.g. counting number of spans highlighted in the
model output by annotators. The other issue is
the amount of available annotated data. Even the
largest datasets (Fabbri et al., 2021; Bhandari et al.,
2020; Maynez et al., 2020) have no more than tens
of thousands of annotated instances. This is by far
less than the amount of available data for machine
translation, with roughly 800k ⟨⟨source, hypothe-
sis, reference⟩⟩ annotated triplets available from
the evaluation campaigns of the previous editions
of WMT News Translation shared task1.

The question we ask is: Can we use this resource
to improve summary evaluation? While the tasks of
Machine Translation and Text Summarization are
different, we believe that the problem of evaluating
the quality of generated output is closely related.

To address this question, we examine the appli-
cability of the COMET metric by Rei et al. (2020)
(Section 2.2) that is trained on the annotated MT
data and capable of directly regressing a quality
score. We propose (Section 3) a variant of the
model – COMES2 – that uses the annotated MT
data for pre-training and is capable of predicting
several aspects of summary quality. We evaluate
our approach (Section 4) on selected datasets with
various annotation styles.

2 Related Work

2.1 Automatic Summary Evaluation
Historically, the quality of summary was measured
by comparing n-gram overlap between reference

1https://wmt-metrics-task.github.io/
2Crosslingual Optimized Metric for Evaluation of

Summarization
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SummEval (Fabbri et al., 2021) ✓ ✓ ✓ ✓
REALSumm (Bhandari et al., 2020) ✓
Human Feedback (Stiennon et al., 2020) ✓ ✓ ✓ ✓
Multi_SummEval (Koto et al., 2021) ✓ ✓

Table 1: Comparison of the types of annotations in the summary evaluation datasets used in our experiments. For a
comprehensive survey on the summary evaluation resources see Koto et al. (2022).

and system output (Papineni et al., 2002; Lin, 2004).
Over the years, a variety of metrics were proposed
for this task – based on question answering (Eyal
et al., 2019; Scialom et al., 2019; Durmus et al.,
2020; Wang et al., 2020), similarity between sum-
mary and reference embeddings (Zhao et al., 2019;
Zhang et al., 2020) or the usefulness of summary
for language modeling on the source document
(Colombo et al., 2022; Liu et al., 2022).

2.2 COMET

COMET is a trained metric that, based on semantic
similarities between the translated and reference
texts, learns to output a score that resembles the
human perception of translation quality. In the
default settings, input to the model is a ⟨⟨source,
hypothesis, reference⟩⟩ triple, but a reference-less
variant for Quality Estimation (COMET_QE) that
operates on ⟨⟨source, hypothesis⟩⟩ pairs was also
proposed.

On a high level, COMET uses a pre-trained mul-
tilingual language model to independently extract
representations for each of the input sequences,
which are then pooled and concatenated, before be-
ing processed with a stack of feed-forward layers
that outputs a single numerical value. The choice
of COMET for our experiments (as opposed to e.g.
BLEURT (Sellam et al., 2020) or YiSi (Lo and
Larkin, 2020)) is motivated by a recent metrics
study by Kocmi et al. (2021) that shows it’s supe-
rior performance compared to other (pretrained)
metrics and the availability of a well-documented
implementation3.

2.3 SummEval

SummEval4 (Fabbri et al., 2021) is a recently pro-
posed dataset with human annotations for several
dimensions of summary quality. It consists of 100

3https://github.com/Unbabel/COMET/
4https://github.com/Yale-LILY/SummEval

articles randomly sampled from the test split of
the CNN/DailyMail corpus (Nallapati et al., 2016),
each of them summarized by 17 systems. For each
system output, the authors collected 3 expert judg-
ments for Coherence, Consistency, Fluency and
Relevance on a Likert scale of 1 to 5. In addition
to the original reference, for each article, 10 alter-
native references were created by Kryscinski et al.
(2020).

3 COMES

In the context of Machine Translation two frame-
works for collecting human ratings were employed
recently – MQM (Lommel et al., 2014) and DA
(Bojar et al., 2017), both producing a single nu-
merical score that indicated the overall translation
quality. That is not the case for Text Summariza-
tion – content, fluency and clarity are all graded in-
dependently (Hardy et al., 2019; Koto et al., 2022).
As a result, the COMET metric trained on MT data
outputs a single overall score.

In our experiments, when reporting COMET per-
formance, we compare this single overall score
to all evaluation dimensions. To enable (indepen-
dently) predicting several aspects of summary qual-
ity at once, we propose a modification that alters the
number of outputs in the last feed-forward layer,
see Figure 1. We experiment with both training
from scratch (COMES) and pre-training on the an-
notated MT data by initializing the model weights
from the COMET checkpoint (COMES_MT). See
Appendix A.1 for the training details. In both sce-
narios, we examine the reference-less variant of
the metric (COMES_QE and COMES_QE_MT, re-
spectively).

4 Experiments

4.1 SummEval experiments
Since, to the best of our knowledge, SummEval is
the largest resource for summary evaluation, we
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Pretrained Encoder

Source Reference Hypothesis

Pooling Layer

Embedding Concatenation

Feed-Forward

Coherence Consistency Fluency Relevance

MSE

Figure 1: Estimator model architecture used in COMES. Source, reference and hypothesis are all independently
encoded with a pre-trained encoder. Pooling layer is used to create sentence embeddings from sequences of token
embeddings. In the COMES variant, the last feed-forward layer has 4 outputs, corresponding to different summary
evaluation dimensions. Dashed lines are used to indicate the reference-less variant. For the full COMET description
see Rei et al. (2020).

would like to use it both for training and evaluation.
To achieve this, we rely on cross-validation. We
split the data into 10 subsets of 10 articles each, us-
ing 80 articles for training, 10 for validation (early
stopping) and evaluating on the remaining 10. We
train 10 models, use each of them to score 10% of
the available (unseen) data and merge the results.
That way we can directly compare to other met-
rics that report correlation on the whole SummEval
dataset. During training, we use each reference and
each expert annotation5 to create more training in-
stances (80 articles×11 references×17 models×
3 annotations = 44, 880 instances). During eval-
uation, we handle multiple references by scoring
each reference independently and taking the maxi-
mum score.

The results of our experiments can be found in
Table 2. We report the system-level Kendall’s Tau
correlations with (average) expert annotations. For
comparison, we also include metrics which pre-
viously (Fabbri et al., 2021) achieved the highest
correlation with each of the evaluation dimensions
– ROUGE-1 and ROUGE-4, BERTScore (Zhang
et al., 2020), CHRF (Popović, 2015) and METEOR
(Lavie and Agarwal, 2007). Scoring system out-
puts with both out-of-the-box variants (COMET

5We have tried averaging human ratings during training,
the results were comparable but slightly worse.

and COMET_QE) results in the highest correlation
coefficients along all metrics analysed by Fabbri
et al. (2021) for Coherence and Relevance dimen-
sions. The reference-less variant has much higher
correlation with the Consistency dimension (0.24
→ 0.72). Both COMES and COMES_QE variants
perform similarly, achieving higher correlations
than both COMET (COMET_QE) and traditional
metrics. However the effect of pre-training is am-
biguous – on average it does not help, but the main
cause is the poor performance on predicting the
Consistency dimension.

4.2 Domain and Annotation Style shift
To get a better understanding of the metric per-
formance, we apply it to several other annotated
summarization datasets. Since we have trained 10
instances for each variant of the COMES models
(Section 4.1), evaluating with each of them allows
us to estimate the confidence intervals directly, not
having to rely on e.g. bootstrapping (Deutsch et al.,
2021).

To examine the performance on non-matching
evaluation dimensions, we report results on
data6 from the same domain – subset of the
CNN/DailyMail corpus. Bhandari et al. (2020) pro-
duced the numerical gold-standard scores by rating

6https://github.com/neulab/REALSumm
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Metric Coherence Consistency Fluency Relevance
ROUGE-3 f 0.2206 0.7059 0.5092 0.3529
ROUGE-4 f 0.3088 0.5882 0.5535 0.4118
BERTScore f 0.2059 0.0441 0.2435 0.4265
CHRF 0.3971 0.5294 0.4649 0.5882
METEOR 0.2353 0.6324 0.6126 0.4265
COMET 0.5735 0.2353 0.5240 0.6765
COMES 0.6912 0.7206 0.5830 0.7206
COMES_MT 0.6471 0.4412 0.6273 0.7206
COMET_QE 0.4118 0.7206 0.7011 0.5441
COMES_QE 0.6618 0.7647 0.6126 0.7059
COMES_MT_QE 0.6912 0.4853 0.6126 0.6912

Table 2: System-level Kendall’s Tau correlations with (average) expert annotations for four evaluation dimensions
annotated in the SummEval dataset. The three metrics with the highest correlation in each column are bolded. See
Table 2 in Fabbri et al. (2021) for results of other metrics.

a system output based on a number of Semantic
Content Units (SCUs) that can be inferred from
it. LitePyramid (Shapira et al., 2019) method was
used to obtain SCUs from reference summaries.
On this dataset, the reference-less COMET_QE
outperforms any other variant, almost doubling the
correlation of COMET (0.46→ 0.75). The Consis-
tency head of COMES_QE comes in second (0.59).
Considering the recall based nature of annotations,
it is not surprising that the best correlation is ob-
tained by the recall variant of ROUGE (0.85).

In an independent work7, Stiennon et al. (2020)
annotated a different subset of the CNN/DailyMail
corpus by rating system outputs for Accuracy, Co-
herence, Coverage and Overall Quality. Again,
the reference-less variant COMET_QE performs
best, obtaining almost a perfect correlation with the
Overall dimension (0.92). This is by far a better re-
sult than any traditional metric considered (0.65 by
ROUGE-1 F-score). COMES trained from scratch
out-performs the pre-trained variant COMES_MT
which may indicate overfitting to the SummEval
annotations. Surprisingly, the highest correlation
with the Coherence dimension (present in the Sum-
mEval annotations used for training) is not obtained
by the Coherence head of COMES. That is how-
ever the case for the variant pre-trained on MT data
(COMES_MT). For the full, results see Table 5 and
Table 6 in Appendix.

To validate the performance on a different do-
main, we evaluate on the subset of the TL;DR cor-
pus (Völske et al., 2017) annotated in a similar
manner by Stiennon et al. (2020), see Table 7 in
Appendix. On this dataset COMET achieves the

7https://github.com/openai
/summarize-from-feedback

top correlation, with the COMES clearly lagging
behind in performance compared to the pre-trained
COMES_MT variant.

4.3 Non-English data

One of the strengths of the COMET metric is its
multilinguality – the model has seen over 30 lan-
guage pairs during training. To assess its quality
as a summary evaluation tool for non-English data,
we evaluated it on the Multi_SummEval dataset
(Koto et al., 2021). With only two system outputs
annotated (along the Focus and Coverage dimen-
sions), the size of the resource is not sufficient for
reporting system-level correlations. Thus, we re-
port the summary-level (segment-level) Pearson
correlations.

For a fair comparison, we wanted to train the
COMES model variant using the multilingual data.
Due to the lack of sufficient resources, we fall
back on using automatic machine translation to
translate the English annotated data. This ap-
proach has proven successful for e.g. Question
Answering (Lewis et al., 2020b; Macková and
Straka, 2020). We limit our analysis to the sub-
set of languages from Multi_SummEval that origi-
nates from the MLSUM (Scialom et al., 2020) cor-
pus. We have translated SummEval into German,
French, Russian, Turkish and Spanish using the
uni-directional models provided by the Helsinki-
NLP group (Tiedemann, 2020) and used the data
(together with the original SummEval) to train a
multilingual COMES model (COMES_MT_ML).

Our findings indicate that in the summary-level
evaluation, the original COMET metric is supe-
rior to any other variant considered, clearly out-
performing the reference-less variant COMET_QE.
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Metric CV Coherence Consistency Fluency Relevance
COMES ✓ 0.6912 0.7206 0.5830 0.7206
COMES - 0.9412 0.9412 0.8340 0.9265
COMES_MT ✓ 0.6471 0.4412 0.6273 0.7206
COMES_MT - 0.8088 0.7941 0.6864 0.8676
COMES_QE ✓ 0.6618 0.7647 0.6126 0.7059
COMES_QE - 0.9706 0.9265 0.8782 0.9706
COMES_MT_QE ✓ 0.6912 0.4853 0.6126 0.6912
COMES_MT_QE - 0.8235 0.7794 0.6568 0.8676

Table 3: System-level Kendall’s Tau correlations with (average) expert annotations for four evaluation dimensions
annotated in the SummEval dataset. The CV variants correspond to the un-biased cross-validation settings (Sec-
tion 4.1), the remaining ones are obtained with the over-fitted models, see Section 4.4.

Surprisingly, both the COMES_MT and the COMES

variants perform better than the multilingual
COMES_MT_ML variant. This is in line with re-
cent findings by Braun et al. (2022), which indicate
that summary evaluations do not survive translation.
On this dataset, even the best performing COMET

is still inferior to both ROUGE and BERTScore.
Considering, however, the relatively small size of
the dataset (270 instances per language, outputs
from two systems) we believe that the question
about COMET/COMES usefulness for multilingual
and summary-level evaluation is still open. For the
full results, see Table 8 in Appendix.

4.4 Ablation Study

In Section 4.1, we propose the usage of cross-
validation to enable training and un-biased testing
on the SummEval dataset – different articles
are used for training, validation and testing. To
show that the model can over-fit to the data, we
have trained a model using all of the available
annotations from the SummEval dataset and then
applied it to the same articles, already seen during
training. Table 3 (rows without the CV mark)
presents the results. It is clear that the model is
able to memorize the annotations proving that
the cross-validation approach enables un-biased
reporting on the whole SummEval dataset and thus
is a fair way of comparing COMES to other metrics.

In Section 2.2 we mention that COMET (and
COMES) uses a pre-trained multilingual language
model to extract representations from input se-
quences. In our experiments, it is always the XLM-
RoBERTa (Conneau et al., 2020) model. A major
difference between Machine Translation and Text
Summarization is the length of the typical input.
By examining the lengths of the tokenized docu-
ments from SummEval, we have realized that only

48% of them fit completely within the model limit
of 512 tokens. However, on average, 92% of in-
put tokens are consumed (average input document
length in tokens equals 502) so the information lost
is hopefully not significant. We leave the detailed
analysis for future works.

5 Conclusion

In this paper, we showed that the COMET metric
trained on (multilingual) MT outputs can be suc-
cessfully used to evaluate the quality of (monolin-
gual) summaries. We proposed an adaptation that
enables scoring several (independent) evaluation
dimensions at once. Our results (Table 2) indi-
cate, that the off-the-shelf COMET metric performs
comparable to the variants fine-tuned on the an-
notated summarization outputs. Furthermore, the
reference-less variants perform similar to the ones
using references, making the metric applicable in
settings when the gold-standard summary is not
available.
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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A Appendix

A.1 COMES Hyper-Parameters
During COMES training, we mostly follow the training/fine-tuning configuration of Rei et al. (2021),
see Table 4. We monitor Pearson correlation on the validation set for early stopping. When fine-tuning
the COMET model instead of training from scratch, we decrease the learning_rate to 1.0e-05
and load weights from the wmt21-comet-da checkpoint. In the reference-less variant, we set the
hidden_sizes to [2048, 1024] and load weights from the wmt21-comet-qe-da checkpoint. We
employ gradient accumulation to train with the effective batch size of 40. As a part of pre-processing, we
de-tokenize and true-case system outputs with Stanford CoreNLP (Manning et al., 2014) tool.

nr_frozen_epochs 1.0
keep_embeddings_frozen True
optimizer AdamW
encoder_learning_rate 1.0e-0
learning_rate 3.1e-05
layerwise_decay 0.95
encoder XLM-RoBERTa
pretrained_model xlm-roberta-large
pool avg
layer mix
dropout 0.15
hidden_sizes [3072, 1024]
epochs 5

Table 4: Hyper-parameters used for COMES training.

A.2 REALSumm results
In Table 5, we report the system-level Kendall’s Tau correlations on the REALSumm corpus (100 articles×
25 models), annotated by Bhandari et al. (2020). „Score” column is used for metrics that output a single
score, the following ones correspond to outputs from each of the COMES heads. From the analysis,
we excluded 2 articles that appear in the SummEval dataset. For the COMES variants that we trained
ourselves, we evaluate with models trained on each cross-validation fold, reporting mean and standard
deviation, see Section 4.1 for details.

Metric LitePyramid SCU
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R
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ROUGE-1 r 0.779
ROUGE-2 r 0.853
ROUGE-L r 0.746
BERTScore r 0.538
JS-2 0.518
MoverScore 0.264
COMET 0.457
COMES 0.242 ± 0.05 0.561 ± 0.07 0.290 ± 0.02 0.481 ± 0.05
COMES_MT 0.405 ± 0.03 0.423 ± 0.02 0.434 ± 0.02 0.409 ± 0.03
COMET_QE 0.745
COMES_QE 0.264 ± 0.06 0.592 ± 0.04 0.309 ± 0.06 0.490 ± 0.06
COMES_MT_QE 0.457 ± 0.05 0.473 ± 0.04 0.472 ± 0.04 0.460 ± 0.05

Table 5: System-level Kendall’s Tau correlations on the REALSumm corpus annotated by Bhandari et al. (2020).
The three metrics with the highest correlation in each column are bolded.
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A.3 Human Feedback data results
Table 6 presents the system-level Kendall’s Tau correlations on the subset of the test split of the
CNN/DailyMail corpus annotated by Stiennon et al. (2020). The columns indicate different evalua-
tion dimensions in the annotated (test) data. In the rows, we include outputs from each of the COMES

heads, that correspond to evaluation dimensions used in the training data. From the analysis, we excluded
6 articles that appear in the SummEval dataset. In Table 7, we present the corresponding numbers when
evaluating on the subset of the TL;DR corpus annotated by Stiennon et al. (2020) in a similar manner. For
the COMES variants that we trained ourselves we evaluate with models trained on each cross-validation
fold, reporting mean and standard deviation, see Section 4.1 for details.

Metric O
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ROUGE-1 f 0.647 0.752 0.621 0.464
ROUGE-2 f 0.569 0.699 0.542 0.438
ROUGE-L f 0.595 0.699 0.569 0.412
BERTScore f 0.621 0.725 0.595 0.464
COMET 0.843 0.686 0.817 0.425

COMES

Coherence −0.204 ± 0.05 −0.050 ± 0.04 −0.230 ± 0.05 0.264 ± 0.04
Consistency 0.722 ± 0.12 0.630 ± 0.06 0.695 ± 0.12 0.565 ± 0.07
Fluency 0.209 ± 0.10 0.340 ± 0.07 0.186 ± 0.09 0.625 ± 0.07
Relevance 0.774 ± 0.03 0.703 ± 0.04 0.750 ± 0.03 0.627 ± 0.02

COMES_MT

Coherence 0.366 ± 0.16 0.403 ± 0.12 0.340 ± 0.16 0.654 ± 0.07
Consistency 0.455 ± 0.11 0.418 ± 0.10 0.431 ± 0.12 0.604 ± 0.11
Fluency 0.433 ± 0.12 0.414 ± 0.11 0.407 ± 0.12 0.634 ± 0.06
Relevance 0.379 ± 0.16 0.403 ± 0.12 0.353 ± 0.16 0.654 ± 0.06

COMET_QE 0.922 0.660 0.895 0.477

COMES_QE

Coherence −0.158 ± 0.1 −0.017 ± 0.09 −0.184 ± 0.10 0.305 ± 0.09
Consistency 0.714 ± 0.05 0.630 ± 0.05 0.688 ± 0.05 0.544 ± 0.06
Fluency 0.170 ± 0.13 0.272 ± 0.11 0.144 ± 0.13 0.559 ± 0.08
Relevance 0.695 ± 0.07 0.648 ± 0.06 0.669 ± 0.07 0.646 ± 0.04

COMES_MT_QE

Coherence 0.480 ± 0.11 0.467 ± 0.09 0.454 ± 0.11 0.668 ± 0.03
Consistency 0.528 ± 0.07 0.484 ± 0.08 0.502 ± 0.07 0.638 ± 0.06
Fluency 0.519 ± 0.07 0.480 ± 0.08 0.493 ± 0.07 0.647 ± 0.05
Relevance 0.493 ± 0.09 0.477 ± 0.08 0.467 ± 0.09 0.678 ± 0.02

Table 6: System-level Kendall’s Tau correlations on the subset of CNN/DailyMail corpus annotated by Stiennon
et al. (2020). The three metrics with the highest correlation in each column are bolded.

A.4 Multi_SummEval results
In Table 8, we report the summary-level (segment-level) Pearson correlations on the subset of
Multi_SummEval corpus annotated by Koto et al. (2021). Koto et al. (2021) collected human judg-
ments for Focus and Coverage, using the Direct Assessment method to collect scores on a continuous
scale of 1 to 100. For other metrics, see Table 2 in Koto et al. (2021). For readability reasons, we report
only the mean COMES scores and do not report variance, see Section 4.1 for details.
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ROUGE-1 f 0.545 0.000 0.576 0.333
ROUGE-2 f 0.576 0.091 0.606 0.424
ROUGE-L f 0.606 0.061 0.636 0.394
BERTScore f 0.424 −0.121 0.455 0.212
COMET 0.727 −0.061 0.758 0.273

COMES

Coherence −0.058 ± 0.19 0.306 ± 0.15 −0.052 ± 0.18 0.124 ± 0.09
Consistency 0.239 ± 0.05 0.082 ± 0.01 0.209 ± 0.05 −0.003 ± 0.05
Fluency 0.227 ± 0.09 −0.106 ± 0.04 0.258 ± 0.09 0.039 ± 0.04
Relevance 0.600 ± 0.12 0.042 ± 0.08 0.630 ± 0.12 0.315 ± 0.08

COMES_MT

Coherence 0.682 ± 0.02 −0.100 ± 0.03 0.712 ± 0.02 0.294 ± 0.03
Consistency 0.536 ± 0.14 −0.155 ± 0.05 0.567 ± 0.14 0.215 ± 0.09
Fluency 0.561 ± 0.10 −0.161 ± 0.07 0.591 ± 0.10 0.233 ± 0.07
Relevance 0.676 ± 0.03 −0.112 ± 0.03 0.706 ± 0.03 0.282 ± 0.03

COMET_QE 0.545 0.121 0.576 0.394

COMES_QE

Coherence 0.088 ± 0.27 0.258 ± 0.14 0.100 ± 0.27 0.173 ± 0.15
Consistency 0.206 ± 0.11 0.085 ± 0.06 0.182 ± 0.11 0.012 ± 0.08
Fluency 0.218 ± 0.11 −0.073 ± 0.06 0.248 ± 0.11 0.055 ± 0.06
Relevance 0.533 ± 0.09 0.085 ± 0.07 0.564 ± 0.09 0.315 ± 0.07

COMES_MT_QE

Coherence 0.564 ± 0.04 0.048 ± 0.04 0.594 ± 0.04 0.394 ± 0.02
Consistency 0.491 ± 0.11 0.012 ± 0.08 0.521 ± 0.11 0.321 ± 0.09
Fluency 0.473 ± 0.11 0.000 ± 0.07 0.503 ± 0.11 0.297 ± 0.10
Relevance 0.555 ± 0.05 0.058 ± 0.04 0.585 ± 0.05 0.385 ± 0.03

Table 7: System-level Kendall’s Tau correlations on the subset of TL;DR corpus annotated by Stiennon et al. (2020).
The three metrics with the highest correlation in each column are bolded.

Focus Coverage
Metric de es tr fr ru de es tr fr ru
COMET 0.82 0.51 0.64 0.47 0.42 0.82 0.54 0.72 0.40 0.45
COMET_QE 0.29 0.06 0.03 0.01 0.10 0.31 0.09 0.27 −0.03 0.24

COMES

Coherence 0.21 0.03 0.07 0.16 −0.01 0.15 −0.01 −0.05 0.08 −0.07
Consistency 0.33 0.11 0.21 0.10 0.14 0.35 0.13 0.30 0.07 0.22
Fluency 0.36 0.05 0.10 0.11 0.08 0.33 0.06 0.10 0.05 0.15
Relevance 0.42 0.15 0.25 0.18 0.12 0.44 0.20 0.38 0.15 0.26

COMES_MT

Coherence 0.37 0.13 0.25 0.15 0.08 0.36 0.09 0.31 0.11 0.14
Consistency 0.31 0.10 0.20 0.14 0.09 0.30 0.09 0.24 0.09 0.16
Fluency 0.31 0.10 0.21 0.14 0.09 0.30 0.09 0.25 0.09 0.16
Relevance 0.36 0.12 0.25 0.15 0.09 0.35 0.09 0.30 0.10 0.15

COMES_MT_ML

Coherence 0.03 −0.01 −0.03 0.13 −0.09 −0.04 −0.04 −0.17 0.10 −0.14
Consistency 0.10 0.02 0.01 0.00 0.01 0.10 0.00 0.01 −0.02 0.12
Fluency 0.23 0.02 0.09 0.07 0.01 0.22 0.03 0.08 −0.01 0.01
Relevance 0.36 0.20 0.16 0.15 0.06 0.38 0.25 0.27 0.16 0.23

Table 8: Summary-level Pearson correlations on the Multi_SummEval corpus annotated by Koto et al. (2021). The
three metrics with the highest correlation in each column are bolded.
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Abstract

Recently, astonishing advances have been ob-
served in AMR parsing, as measured by the
structural SMATCH metric. In fact, today’s
systems achieve performance levels that seem
to surpass estimates of human inter annotator
agreement (IAA). Therefore, it is unclear how
well SMATCH (still) relates to human estimates
of parse quality, as in this situation potentially
fine-grained errors of similar weight may im-
pact the AMR’s meaning to different degrees.

We conduct an analysis of two popular and
strong AMR parsers that – according to
SMATCH– reach quality levels on par with hu-
man IAA, and assess how human quality rat-
ings relate to SMATCH and other AMR met-
rics. Our main findings are: i) While high
SMATCH scores indicate otherwise, we find that
AMR parsing is far from being solved: we
frequently find structurally small, but seman-
tically unacceptable errors that substantially
distort sentence meaning. ii) Considering high-
performance parsers, better SMATCH scores
may not necessarily indicate consistently bet-
ter parsing quality. To obtain a meaningful
and comprehensive assessment of quality differ-
ences of parse(r)s, we recommend augmenting
evaluations with macro statistics, use of addi-
tional metrics, and more human analysis.

1 Introduction

Abstract Meaning Representation (AMR), pro-
posed by Banarescu et al. (2013), aims at capturing
the meaning of texts in an explicit graph format.
Nodes describe entities, events, and states, while
edges express key semantic relations, such as ARGx

(indicating semantic roles as in PropBank (Palmer
et al., 2005)), or instrument and cause.

Albeit the development of parsers can be
driven by multiple desiderata, better performance
on benchmarks often serves as main criterion.
For AMR, this goal is typically measured using
SMATCH (Cai and Knight, 2013) against a refer-

P1
P2P3

P4
r = 1-IAA

Figure 1: Sketch of AMR IAA ball. The center (P1)
is a reference AMR, while P2, P3, P4 are candidates.
Any AMR x from the ball has high structural SMATCH
agreement with P1, i.e., SMATCH(x, P1) ≥ estimated
human IAA. However, they may fall in different cate-
gories: H (green cloud) contains correct AMR alterna-
tives. Its superset A (light cloud) contains acceptable
AMRs that may misrepresent the sentence meaning up
to a minor degree. Other parses from the ball, e.g., P2,
mis-represent the sentence’s meaning – despite possibly
having higher SMATCH agreement with the reference
than all other candidates.

ence corpus. The metric measures to what extent
the reference has been reconstructed by the parser.

However, thanks to astonishing recent advances
in AMR parsing, mainly powered by the language
modeling and fine-tuning paradigm (Bevilacqua
et al., 2021), parsers now achieve benchmark scores
that surpass IAA estimates.1 Therefore, it is diffi-
cult to assess whether (fine) differences in SMATCH

scores i) can be attributed to minor but valid diver-
gences in interpretation or AMR structure, as they
may also occur in human assessments, or ii) if they
constitute significant meaning distorting errors.

This fundamental issue is outlined in Figure 1.
Four parses are located in the ball B(P1, SMATCH)

1Banarescu et al. (2013) find that an (optimistic) aver-
age annotator vs. consensus IAA (SMATCH) was 0.83 for
newswire and 0.79 for web text. When newly trained annota-
tors doubly annotated web text sentences, their annotator vs.
annotator IAA was 0.71. Recent BART and T5 based models
range between 0.82 and 0.84 SMATCH F1 scores.
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of estimated IAA, (gold) parse P1 being the center.
However, the true set of possible human candidates
H is very likely much smaller than the ball and its
shape is unknown.2 Besides, a superset ofH is a set
of acceptable parsesA, i.e., parses that may have a
small flaw which does not significantly distort the
sentence meaning. Now, it can indeed happen that
parse P2, as opposed to P3, has a lower distance
to reference P1, i.e., to the center of B(SMATCH)
– but is not found in A ⊇ H, which marks it as
an inaccurate candidate. On the other hand, P4 is
contained in A, but not inH, which would make it
acceptable, but less preferable than P3.

Research questions Triggered by these consider-
ations, this paper tackles the key questions: Do
high-performance AMR parsers indeed deliver
accurate semantic graphs, as suggested by high
benchmark scores that surpass human IAA esti-
mates? Does a higher SMATCH against a single
reference necessarily indicate better overall parse
quality? And what steps can we take to mitigate po-
tential issues when assessing the true performance
of high-performance parsers?

Paper structure After discussing background
and related work (Section 2), we describe our data
setup and give a survey of AMR metrics (Section
3). We then evaluate the metrics with regard to scor-
ing i) corpora (Section 5), ii) AMR pairs (Section
6) and iii) cross-metric differences in their ranking
behavior (Section 7). We conclude by discussing
limitations of our study (Section 8), give recom-
mendations and outline future work (Section 9).3

2 Background and related work

AMR parsing and applications Over the years,
we have observed a great diversity in approaches
to AMR parsing, ranging from graph prediction
with a pipeline (Flanigan et al., 2014), or a neural
network (Lyu and Titov, 2018; Cai and Lam, 2020)
to transition-based parsing (Wang et al., 2015) and
sequence-to-sequence parsing, e.g., by exploiting
large parallel corpora (Xu et al., 2020). A re-
cent trend is to exploit the knowledge in large
pre-trained sequence-to-sequence language models
such as T5 (Raffel et al., 2019) or BART (Lewis
et al., 2020), by fine-tuning them on AMR corpora,

2Under the unrealistic assumptions of an omniscient anno-
tator and AMR being the ideal way of meaning representation,
one might require that H always has exactly one element.

3Code and data for our study are available at https:
//github.com/Heidelberg-nlp/AMRParseEval.

as show-cased, e.g., by Bevilacqua et al. (2021).
Such models are on par or tend to surpass esti-
mates for human AMR agreement (Banarescu et al.,
2013), when measured in SMATCH points.

AMR, by virtue of its properties as a graph-based
abstract meaning representation, is attractive for
many key NLP tasks, such as machine translation
(Song et al., 2019), summarization (Dohare et al.,
2017; Liao et al., 2018), NLG evaluation (Opitz
and Frank, 2021; Manning and Schneider, 2021;
Ribeiro et al., 2022) and measuring semantic sen-
tence similarity (Opitz and Frank, 2022).

Metric evaluation for MT evaluation Metric
evaluation for machine translation (MT) has re-
ceived much attention over the recent years (Ma
et al., 2019; Mathur et al., 2020; Freitag et al.,
2021). When evaluating metrics for MT evalua-
tion, it seems generally agreed upon that the main
goal of a MT metric is high correlation to human
ratings, mainly with respect to rating adequacy of a
candidate against one (or a set of) gold reference(s).

A recent shared task (Freitag et al., 2021) meta-
evaluates popular metrics such as BLEU (Papineni
et al., 2002) or BLEURT (Sellam et al., 2020), by
comparing the metrics’ scores to human scores for
systems and individual segments. They find that
the performance of each metric varies depending
on the underlying domain (e.g., TED talks or news),
and that most metrics struggle to penalize transla-
tions with errors in reversing negation or sentiment
polarity, and show lower correlations for semantic
phenomena including subordination, named enti-
ties and terminology. This indicates that there is
potential for cross-pollination: clearly, AMR met-
ric evaluation may profit from the vast amount of
experience of metric evaluation for other tasks. On
the other hand, MT evaluation may profit from
relating semantic representations, to better differ-
entiate semantic errors with respect to their type
and severity. A first step in this direction may have
been made by Zeidler et al. (2022), who assess
the behaviour of MT metrics, AMR metrics, and
hybrid metrics when analyzing sentence pairs that
differ in only one linguistic phenomenon.

3 Study Setup: Data creation and AMR
metric overview

In this Section, first we select data and two popular
high-performance parsers for creating candidate
AMRs. Then we describe the human quality an-
notation, and give an overview of automatic AMR
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-----------------Reference AMR and Sentence------------------
(l / look-over-06 ‘‘Looking over to the flag’’

:ARG1 (f / flag))
---------------------Candidate parses------------------------
(l / look-01 (z0 / look-01

:direction (o / over) :ARG2 (z1 / flag)
:destination (f / flag)) :direction (z2 / over))

---------------------------Eval------------------------------
Smatch (ref, cand): both score 0.2 (indicates low quality)

Human (sent, cand): both are acceptable

Human (cand, cand): no preference
-------------------------------------------------------------

Figure 2: Data example: acceptable, low SMATCH. That
is, P ∈ H but P /∈ B(SMATCH, ref).

metrics that we consider in our subsequent studies.

Parsers and corpora We choose the AMR3
benchmark4 and the literary texts from the freely
available Little Prince corpus.5 As parsers we
choose T5- and BART-based systems, both on par
with human IAA estimates, where BART achieves
higher scores on AMR3.6 We proceed as follows:
we 1. parse the corpora with T5 and BART parsers
and use SMATCH to select diverging parse candi-
date pairs, and 2. sample 200 of those pairs, both
for AMR3, and for Little Prince (i.e., 800 AMR
candidates in total).

3.1 Annotation dimensions

Annotation dimension I: pairwise ranking The
annotator is presented the sentence and two can-
didate graphs, assigning one of three labels and a
free-text rationale. The labels are either +1 (prefer
first graph), −1 (prefer second graph), or 0 (both
are of same or very similar quality).

Annotation dimension II: parse acceptability
In addition, each graph is independently assigned a
single label, considering only the sentence that it is
supposed to represent. Here, the annotator makes
a binary decision: +1, if the parse is acceptable,
or 0, if the graph is not acceptable. A graph that
is acceptable is fully valid, or may allow a very
minor meaning deviation from the sentence, or a
slightly weird but allowed interpretation that may
differ from a normative interpretation. All other
graphs are deemed not acceptable (0).

Example: Acceptable candidates, low SMATCH
Figure 2 shows an example of two graphs that
have very low structural overlap with the refer-
ence (SMATCH = 0.2), but are acceptable. Here,
the candidate graphs both differ from the reference

4LDC corpus LDC2020T02
5From https://amr.isi.edu/download.html
6See https://github.com/bjascob/

amrlib-models for more benchmarking statistics.

----------------Reference AMR (excerpt)--------------------
(i2 / imagine-01

:ARG0 (y / you)
:ARG1 (a / amaze-01

:ARG1 (i / i)))
:time-of (w / wake-01

:ARG0 (v / voice
:mod (o / odd)
:mod (l / little))

:ARG1 i))))))
----------------Candidate parse (excerpt)--------------------
(ii / imagine-01

:ARG0 (y / you)
:ARG1 (a / amaze-01

:ARG0 (v / voice
:mod (l / little)
:mod (o / odd))

:ARG1 (ii2 / i)))

Means: (..) imagine my amazement (..) by an odd little voice
Should mean: (..) imagine my amazement (..) when I was

awakened by an odd little voice
---------------------------Eval------------------------------

Smatch (ref, cand): scores 0.88 (indicates high quality)

Human (sent, cand): not acceptable
-------------------------------------------------------------

Figure 3: Data example excerpt that shows an unaccapt-
able parse with high SMATCH. That is, P ̸∈ A ⊇ H but
P ∈ B(SMATCH, ref)

because they tend to a more conservative interpre-
tation, using the more general look-01 predicate
instead of the look-over-06 predicate in the human
reference. In fact, the meaning of the reference can
be considered, albeit valid, slightly weird, since
look-over-06 is defined in PropBank as examining
something idly, which is a more ‘specific’ inter-
pretation of the sentence in question. On the other
hand, the candidate graphs differ from each other in
the semantic role assigned to flag. In the first, flag
is the destination of the looking action (which can
be accepted), while in the second, we find a more
questionable but still acceptable interpretation that
flag is an attribute of the thing that is looked at.

Example: Candidate not acceptable, high
SMATCH An inverse example (high SMATCH,
unacceptable) is shown in Figure 3, where the parse
omits awaken. Albeit the factuality of the sentence
is not (much) changed, and the structural deviation
may legitimately imply that the odd voice is the
cause of amazement, it misses a relevant piece of
meaning and is therefore rated unacceptable.

Label statistics will be discussed in Section 5,
where the human annotations are also contrasted
against parser rankings of automatic metrics.

3.2 Metric overview

We distinguish metrics targeting monolingual AMR
parsing evaluation from multi-purpose AMR met-
rics. AMR metrics that are designed for evaluation
of monolingual parsers typically have two features
in common. First, they compare a candidate against
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a reference parse that both (try to) represent the
same sentence. Second, they measure the amount
of successfully reconstructed reference structure.7

We also consider multi-purpose AMR metrics
that aim to extend to use cases where AMRs repre-
sent different sentences, such as evaluation of cross-
lingual AMR parsing, natural language generation
(NLG) or rating semantic sentence similarity.

3.2.1 Monolingual AMR parsing metrics
Triple matching strategies SMATCH (Cai and
Knight, 2013) and SEMA (Anchiêta et al., 2019)
consider graph triples as the elementary con-
stituents of an AMR graph. Both compute a triple
overlap score between candidate and reference
parses. SMATCH computes an alignment between
the variable nodes of two AMRs, which is accurate
but slow. The SEMA metric achieves a large speed-
up by removing AMR variables from the graphs,
replacing them with concept labels.

Inspired by BLEU: SEMBLEU BLEU (Pap-
ineni et al., 2002) is a popular (but debated) metric
for machine translation evaluation. It matches bags-
of-k-grams from candidate and reference, with a
geometric mean of the precision scores over the k
different bags. Inspired by BLEU, and, similar to
SEMA, driven by the goal to make AMR evaluation
more fast and efficient, Song and Gildea (2019)
propose the SEMBLEU metric for AMR graphs. It
extracts bags-of-k-grams from graphs, collected via
breadth-first traversal. A point of motivation, sim-
ilarly to SEMA, is that the metric skips the costly
graph alignment. Per default, SEMBLEU uses k=3.
In this work we additionally use k=2, following
Opitz et al. (2021) who find that k=2 better relates
to human notions of sentence similarity.

3.2.2 Multi-purpose metrics
S2MATCH and WLK/WWLK Targeting AMR
metric application cases beyond monolingual pars-
ing evaluation, such as measuring AMR similar-
ity of different sentences, or cross-lingual AMR
parsing evaluation, Opitz et al. (2020, 2021);
Uhrig et al. (2021) propose three metrics: i)
S2MATCH is an adaption of SMATCH that com-
putes graded concept similarity (reflecting that,
e.g., cat is more similar to kitten than to plant). ii)
WLK applies the Weisfeiler-Leman kernel (Sher-
vashidze et al., 2011) to compute a similarity score

7The notion of success is mostly focused on structural
matches, and can vary among metrics, usually depending on
theoretical arguments of the developers of the metric.

over feature vectors that describe graph statistics
in different iterations of node contextualization.
iii) WWLK (Wasserstein WLK, Togninalli et al.
(2019)) projects the nodes of the graphs to a latent
space partitioned into different degrees of node con-
textualization. Wasserstein distance is then used
to match the graphs, based on a pair-wise node
distance matrix.

Setup of multi-purpose metrics For S2MATCH,
WLK and WWLK we use the default setup, which
consists of GloVe (Pennington et al., 2014) em-
beddings and k=2 in WLK and WWLK, where k
indicates the depth of node contextualizations.

Default WWLK initializes parameters randomly,
if tokens are out of vocabulary (a random embed-
ding for each OOV token type). To achieve deter-
ministic results, without fixing a random seed, we
could initialize the OOV parameters to 0. However,
with this we’d lose valuable discriminative infor-
mation on graph similarity. We therefore adopt
a slight adaptation for WWLK and calculate the
expected distance matrix before Wasserstein met-
ric calculation, making results more reproducible
while keeping discriminative power.

We also introduce WWLK-k3e2n, a WWLK vari-
ant with edge2node (e2n) transforms, more tailored
to monolingual AMR parsing evaluation, which is
the focus of this paper. It increases the score impact
of edge labels, motivated by the insight that edge
labels are of particular importance in AMR pars-
ing evaluation. It transforms an edge-labeled graph
into an equivalent graph without edge-labels.8 This
is also known as ‘Levi transform’ (Levi, 1942),
and has been previously advocated for AMR rep-
resentation by Beck et al. (2018) and Ribeiro et al.
(2019). Since due to the transform the distances in
the graph will grow, we increase k by one (k=3).
With this, we can set all edge weights to 1.

3.2.3 Simple baseline
To put the results into perspective, we introduce
a very SIMPLE baseline: SIMPLE extracts bag-of-
words (relation and concept labels) from two AMR
graphs and computes the size of their intersection
vs. the size of their union (aka Jaccard Coefficient).

4 Preliminaries

We denote an AMR metric m over AMRs as:

m : A×A → R, (1)
8E.g., (x, arg0, z) → (x, y) ∧ (y, z) ∧ (y, arg0).
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and a human metric h as

h : A× S → R, (2)

where S contains sentences.

5 Study I: System-level scoring

Research questions We focus on two questions:

1. How are the two parsers rated by humans?

2. How do metrics score our two parsers?

With 1. we aim to assess whether there is still
room for AMR parser improvement, even though
their SMATCH scores pass estimated human IAA.
And for 2. we aim to know whether the metric
rankings (still) appropriately reflect parser quality.

5.1 System scoring

Aggregation strategies: Micro vs. Macro We
have defined a metric between two AMRs. For
ranking systems, we need to aggregate the individ-
ual pair-wise assessments into a single score. At
this point, it is important to note that most papers
use (only) micro SMATCH for ranking parsers, i.e.,
counting triple matches of aligned AMR pairs over
all AMR pairs (before a final F1 score calculation).

Naturally, such micro corpus statistics are unbi-
ased w.r.t. to whatever is defined as a single evalua-
tion instance (in SMATCH: triples), but the trade-off
is that they are biased towards instance type fre-
quency and sentence length, since longer sentences
tend to yield substantially more triples. Hence, the
influence of a longer sentence may marginalize the
influence of a shorter sentence. This issue may be
further aggravated by the fact that longer sentences
tend to contain more named entity phrases, and en-
tity phrases typically trigger large simple structures,
that are mostly easy to project.9 Therefore, micro
corpus statistics alone could potentially yield an
incomplete assessment of parser performance. To
shed more light on this issue, we provide additional
evaluation via macro aggregation.

9As a small example, consider The bird sings vs. Jon Bon
Jovi sings. The first sentence yields 3 triples, while the sec-
ond sentence yields 8 triples, where the John Bon Jovi named
entitiy structure has added 6 triples, outweighing the key se-
mantic event x sings. Micro score would assign 2.6 times
more importance to the second sentence/AMR.

Statistics for micro and macro system scoring
We calculate two statistics. The first statistic shows
the (micro/macro)-aggregated corpus score for a
metric m, parsed corpus X and gold corpus G:

S(m,X,G)

= AGGR({m(X1, G1), ...,m(Xn, Gn)}),

For macro metrics, AGGR is the mean of pair-
wise scores over all instances in a corpus X . In case
of the human metric, this is the ratio of acceptable
parses in X . For micro metrics, AGGR computes
overall matching triple F1 (SMATCH, SEMA) or
overall k-gram BLEU (SEMBLEU). For WLK and
WWLK, a micro variant is not implemented, hence
we only show their macro scores.

The second statistic shows how often m prefers
the parses in a parse corpus X over the these in Y :

P(m,X, Y,G) =
n∑

i=1

I[m(Xi, Gi) > m(Yi, Gi)].

Here, I[c] denotes a function that returns 1
if the condition c is true, and zero in all other
cases. For better comparability of numbers, we
distribute cases where m(Xi, Gi) = m(Yi, Gi),
which are frequent for the human metric, evenly
over P(m,X, Y,G) and P(m,Y,X,G).

5.2 Results
Results are shown in Table 1. In view of our re-
search questions, we make interesting observations.

AMR parsing is far from solved Considering
the ratio of parses that were rated acceptable by
the human (HUM, S), they are surprisingly low,
at only 0.58 (BART, Little Prince, Table 1); 0.69
(T5, Little Prince). Other parses have errors that
substantially distort sentence meaning, even though
major parts of the AMRs may structurally overlap.

Better SMATCH on AMR benchmark may not
(always) imply a better parser On AMR3, when
inspecting corpus-SMATCH (micro SMATCH, Table
1), BART is considered the better parser, in compar-
ison to T5 (+2 points). However, when consulting
macro statistics, a different picture emerges. Here,
BART and T5 obtain the same scores: AMR3, 0.62
vs. 0.62, Table 1. On the literary texts (Little
Prince), where the domain is different and sen-
tences tend to be shorter, T5 significantly (binomial
test, p <0.05) outperforms BART, both in the ratio
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Little Prince AMR3
P S P S

BART T5 ∆ BART T5 ∆ BART T5 ∆ BART T5 ∆
M

ac
ro

HUM 87 113 -26 0.58 0.69 -0.11 100 100 0.0 0.62 0.62 0.00

SIMPLE 87 113 -26 0.69 0.7 -0.01 82 118 -36 0.75 0.75 0.00

SEMA 84 116 -32 0.6 0.63 -0.03 89 111 -22 0.68 0.68 0.00
SEMBLEU-k2 90 110 -20 0.61 0.63 -0.02 98 102 -4 0.70 0.69 0.01
SEMBLEU-k3 90 110 -20 0.51 0.53 -0.02 103 97 6 0.58 0.58 0.00
SMATCH 94 106 -12 0.73 0.74 -0.01 95 105 -10 0.77 0.77 0.00
S2MATCH 93 107 -14 0.75 0.76 -0.01 95 105 -10 0.79 0.79 0.00
WLK-k2 92 108 -16 0.63 0.65 -0.02 96 104 -8 0.69 0.69 0.00
WWLK-k2 91 109 -18 0.79 0.8 -0.01 102 98 4 0.84 0.84 0.00
WWLK-k3e2n 97 103 -6 0.72 0.73 -0.01 94 106 -12 0.78 0.78 0.00

M
ic

ro

SEMA - - - 0.62 0.64 -0.02 - - - 0.69 0.68 0.01
SEMBLEU - - - 0.53 0.54 -0.01 - - - 0.60 0.57 0.03
SMATCH - - - 0.74 0.74 -0.01 - - - 0.77 0.75 0.02
S2MATCH - - - 0.76 0.76 0.00 - - - 0.80 0.77 0.03

Table 1: Corpus level scoring results. Negative ∆ shows preference for T5, positive ∆ shows preference for BART.

of acceptable sentences (BART: 0.58, T5: 0.69),
and in number of preferred candidates (BART: 87,
T5: 113). Note that this insight is independent from
our human annotations.

All in all, this may suggest that BART tends to
provide better performance for longer sentences,
while T5 tends to provide better performance es-
pecially for shorter and medium-length sentences.
Further analysis provides more evidence for this,
cf. Appendix A.1: Figure 6 and Figure 7).

Metrics for system ranking Regarding our
tested metrics, especially the macro metrics, a clear
pattern is that they mostly agree with the human
ranking. However, our current results for the dif-
ferent metrics do not tell much, yet, about their
suitability for AMR assessment and ranking. Even
if a metric ranks a parser more similarly to the hu-
man, this may be for the wrong reasons, since this
statistic filters out pair-wise correspondences to the
human. This is also indicated by results of the
simplistic bag-of-structure metric SIMPLE, which
achieves the same results as human (HUM) on Lit-
tle Prince, with respect to the number of preferred
parses (P, Little Prince, Table 1, HUM vs. SIMPLE).
In that respect, it is more important to assess the
pair-wise metric accuracy and metric specificity,
which we will visit next in Sections 6 and 7.

6 Study II: Metric accuracy on parse level

Research questions Now, we are interested in
the metric accuracy, that is, agreement of AMR

metrics with the human ratings. In particular, we
would like to know, regarding:

• Pair-wise parse accuracy: How do metrics
agree with human preferences when ranking
two candidates?

• Individual parse accuracy: Can metrics tell
apart acceptable from unacceptable parses?

Note that these are hard tasks for metrics, since
both T5 and BART show performance levels on par
or above estimated measurements for human IAA.
Therefore, smaller structural divergences from the
reference can potentially have a bigger impact on
parse acceptability (or preference) than larger struc-
tural deviations, that could express different (but
valid) interpretations or (near-)paraphrases.

6.1 Evaluation metrics
Pairwise accuracy Recall that the human as-
signed one of three ratings: 1, if AMR x is bet-
ter, −1, if AMR y is better, and 0 if there is no
considerable quality difference between two can-
didate graphs x and y. A metric assigns two real
values, m(x, g) and m(y, g), where g is the ref-
erence graph. Mapping the score to −1 or 1 is
simple and intuitive, prompting us to introduce
pair-wise accuracy. Consider a data set SD that
contains all graph triplets (x, y, g) with a human
preference sign (label −1 or +1). Further, let
δm(x, y, g) = m(x, g)−m(y, g) the (signed) qual-
ity difference between x and y when using m. Anal-
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Little Prince AMR3
PA A∆ PA A∆

HUM 1.0 233 1.0 234

RAND 0.5 0.0 0.5 0.0

SIMPLE 0.66† 11.0 0.68† 39.5†

SEMA 0.66† 24.3 0.7† 35.3†

SEMBLEU-k2 0.67† 25.0 0.74† 28.0
SEMBLEU-k3 0.63† 32.0 0.68† 29.0
SMATCH 0.72† 42.0† 0.7† 35.0†

S2MATCH 0.72† 35.3 0.7† 42.3†

WLK 0.66† 28.0 0.68† 41.5†

WWLK-k2 0.63† 20.5 0.73† 51.0†

WWLK-k3e2n 0.66† 48.0† 0.76† 57.0†

Table 2: Metric agreement with human. †: random base-
line (RAND) not contained in 95% confidence interval.

ogously δh(x, y) is the human preference. Then,
the pairwise accuracy is

PA =
1

|D|
∑

(x,y,g)∈D
I[δm(x, y, g) · δh(x, y) > 0]

(3)
This measures the ratio of candidate pairs where

the metric has made the same signed decision as
the human, in preferring one over the other parse.

Acceptability score When rating acceptability,
the human rates a single parse (given its sentence),
assigning 1 (acceptable) or 0 (no acceptable). The
metrics make use of the reference graph to compute
a score. Aiming at an evaluation metric that makes
as few assumptions as possible, we formulate the
following expectation for an AMR graph metric
to fulfill: the average rank of the scores for parses
that have been labeled acceptable by the human
should surpass the average rank of the scores for
parses labeled as being not acceptable. Let I+
(I−) be the set of indices for which the human has
assigned a label that indicates (un-)acceptability.
Let S = {m(X1, G1)...m(Xn, Gn)} be the metric
m’s scores over all (x, g) parse/reference pairs, and
R be the ranks of D. Let R+ (and R−) be the set
of ranks indexed by I+ (and I−). Then

A∆ = avg(R+)− avg(R−) (4)

To increase robustness, we use avg := median.

6.2 Results
The results are shown in Table 2. We conclude:

All metrics are suitable for pairwise-ranking of
parses from high-performance parsers All met-

rics significantly outperform the random baseline
with regard to the pair-wise ranking accuracy (PA).
For Little Prince, SMATCH and S2MATCH yield the
best performance, while for AMR3, WWLK-k3e2n
has the best performance (closely followed by SEM-
BLEU-k2). Among different metrics, however, the
differences are not large enough to confidently rec-
ommend one metric over the other.

Parse acceptability rating is hard When tasked
to rate parse acceptability (A∆), all metrics show
issues. For Little Prince, only SMATCH and
WWLK-k3e2n significantly outperform the chance
baseline, while for AMR3 all metrics are signifi-
cantly above chance level, except SEMBLEU. Over-
all, however, the differences are not large enough to
confidently recommend one metric over the other.
On both corpora, best results are achieved with
WWLK-k3e2n (Little Prince: 48.0, AMR3: 57.0).

Control experiment of metrics We additionally
parse a subset of 50 sentences with an older parser
(Flanigan et al., 2014) that scores more than 20
points lower SMATCH, when compared with IAA
as estimated in Banarescu et al. (2013). All met-
rics (with the exception of SIMPLE for one pair)
correctly figure out all rankings and acceptability
(according to the human, BART and T5 are pre-
ferred in all cases, except two cases where all three
systems deliver equally valid graphs). This indi-
cates that metrics indeed can accurately tell apart
quality differences, if they are large enough and do
not lie beyond human IAA.

7 Metric specificity

We found little evidence that could help us giv-
ing recommendations on which metrics to prefer
over others for monolingual parser evaluation in
the high-performance regime. On the contrary, we
found evidence that no metric can sufficiently as-
sess parse acceptability. Therefore, it is interesting
to see whether the metrics can provide different
views on parse quality.

7.1 Correlation analysis
Statistics We compute Spearman’s ρ over metric
pairs. Spearman’s ρ calculates Pearson’s ρ on the
ranked predictions, which increases robustness.

Results Results are plotted in Figures 4 and 5.
For both datasets, we see that the Wasserstein met-
rics provide rankings that differ more from the rank-
ings assigned by other metrics, suggesting that they
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Figure 4: Inter-metric correlation on Little Prince.

Figure 5: Inter-metric correlation on AMR3.

have unique features. On the other hand, the SEM-
BLEU metrics tend to agree the most with the rank-
ings of the other metrics, suggesting that they share
more features with other metrics. On a pair-wise
level, the most similar metrics are SMATCH and
S2MATCH, which is intuitive, since S2MATCH is
an adaption of SMATCH that also targets the com-
parison of AMRs from different sentences. Indeed,
synonyms and similar concepts are unlikely to of-
ten occur in monolingual parsing, where parses
contain exactly matching concepts. Further, WLK

very much agrees with SEMBLEU, which seems
intuitive, since both aim at comparing larger AMR
subgraphs. Lowest agreement is exhibited between
SEMA and WWLK, perhaps because these met-
rics are of different complexity and share differ-
ent goals: simple and fast match of structures vs.
graded assessment for general AMR similarity.

8 Discussion of study limitations

There are limitations of our study:

Limitation I: Single vs. Double annotation
While our quality annotations stem from an expe-
rienced human annotator, we would have liked to
obtain annotations from a second annotator to mea-
sure IAA for AMR quality rating. This was partly

precluded by the high costs of AMR annotation,
which requires much time and experience. This
is also reflected in the AMR benchmark corpora:
the majority of graphs were created by a single
annotator. Note, however, that some findings are
independent of annotation (e.g., macro vs. micro
metric corpus scoring, metric specificity).

Limitation II: Assessing individual suitability
of metrics for rating high-performance parsers
Our study reports relevant findings on (monolin-
gual) AMR parsing evaluation in high-performance
regimes, and on upper bounds of AMR parsing.
But an important question we had to leave open is
the individual suitability of the metrics for compar-
ing high-performance parsers.

Limitation III: Single-reference parses and ambi-
guity Elaborating on Limitation II and recalling
that AMR benchmarks have only single references,
another caveat is that potentially correct metric be-
havior may be misinterpreted in our study. E.g., if a
sentence allows two different interpretations, a met-
ric might (correctly) yield a low score for the refer-
ence (different meaning), while the (reference-less)
human rating may find the parse acceptable. This
issue may also be mitigated by providing (costly)
double annotation of AMR benchmark sentences.

To facilitate follow-up research, we release the
annotated data. Our Little Prince annotations can
be freely released, while AMR3 annotations re-
quire proof of LDC license.

9 Discussion and Conclusions

Main recommendations based on our study:

Recommendation I Besides micro aggregate
scores we recommend using a macro
aggregate score for parse evaluation (e.g.,
macro SMATCH, computed as an average
over sentence scores): Commonly, only
micro corpus statistics are used to compare
and rank parsers. Yet, we found that macro
(sentence-average) metrics can provide a
valuable complementary assessment that
can highlight important additional strengths
of high-performance parsers.

Recommendation II We recommend conducting
more human evaluation of AMR parses.
With the available high-performance AMR
parsers, it becomes more important to con-
duct manual analyses of parse quality. Our
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study provides evidence that AMR parsing
still has large room for improvement, due to
small but significant errors. Since this may
not be noticeable for (current) metrics when
given a single human reference, future work
on parsing may profit from careful human
acceptability assessments.

T5 vs. BART: which parser to prefer? Next to
AMR parser developers, this question mainly con-
cerns potential users of AMR parsers. Fine-tuned
T5 and BART are both powerful AMR parsers. We
observe a slight tendency that researchers prefer
BART, possibly since it achieves slightly better
SMATCH scores than T5 on the AMR3 benchmark.
But our work shows that differences between the
systems are often finer than what can be assessed
with structural overlap metrics (SMATCH), and both
systems are generally strong but struggle with small
but significant meaning errors.

In our study we found that when choosing be-
tween T5 and BART based AMR systems, the
choice might depend on the target domain. In-
deed, our results on Little Prince and AMR3
(mainly news) could indicate that T5 may have
an edge over BART when parsing literary texts,
and shorter sentences in general, while BART has
an edge over T5 when parsing longer sentences,
and sentences from news sources, especially if
they are longer. However, it must be clearly noted,
that we do not know (yet) whether this insight car-
ries over to other types of literary texts.

Perhaps, if we presume that performance is car-
ried over to other types of literary texts, a pos-
sible explanation can be found in the data these
two large models were trained on. BART uses the
same training data as RoBERTa (Liu et al., 2019),
e.g., Wikipedia, book corpora and news. T5 lever-
ages the colossal common crawl corpus (C4), that
contains all kinds of texts scraped from the web.
This could make T5 more robust to AMR domain
changes, but less suitable for analysing longer sen-
tences, since these may occur more frequently in
BART’s corpora that seem more normative.

Which AMR metric to use? Our findings do
not provide conclusive evidence on this question,
partly due to insufficient data size, partly due to the
general difficulty of the task. WWLK-k3e2n seems
slightly more useful for detecting parse acceptabil-
ity and pairwise ranking on news, while SMATCH

yields best ranking on Little Prince.

However, our work shows that it can be use-
ful to calculate more than one metric to com-
pare parsers. In particular, we saw that predic-
tions of structural matching metrics differ consid-
erably from graded semantic similarity-based met-
rics, such as the WWLK metric variants. This sug-
gests that these two types can provide complemen-
tary perspectives on parsing accuracy. Metric se-
lection may, of course, also be driven by users’ spe-
cific desiderata, such as speed (SEMA, SEMBLEU,
WLK), 1-1 alignment (SMATCH), n:m alignment
(WWLK), or graded matching (SMATCH, WWLK).
Overall, we see much profit to gain from more
research into AMR metrics, and will now outline
a direction that we believe is very interesting.

A direction for future research: Reference-less
AMR metrics Recall that for human quality as-
sessments a candidate graph is compared to a sen-
tence, in lieu of a reference AMR. If this process
can be approximated by a metric, we gain an impor-
tant mechanism for assessing the quality of high-
performance parsers: a measure that is cheap and
not biased towards a single reference.

To date, referenceless AMR parse quality rat-
ing has been attempted by Opitz and Frank (2019);
Opitz (2020). However, an unsolved issue is that
this approach does not approximate a human qual-
ity assessment, but instead tries to project SMATCH

score without using a reference, and we saw that
SMATCH cannot well assess the impact of fine er-
rors of high-performing parsers.

A worthwhile solution could be found in the ex-
ploitation of indirect tools: E.g., our human annota-
tion indicated that significant, but small structural
errors are sometimes due to coreference, which
is known to be a hard task in general (Levesque
et al., 2012) and for AMR in particular (Anikina
et al., 2020). Therefore, e.g., one may profit from
matching parses from a high-performance parser
against the structures predicted by a strong corefer-
ence system, possibly with the help of a predicted
AMR-to-text alignment (Blodgett and Schneider,
2021). Another promising route to take may be
to invert approaches of Opitz and Frank (2021);
Manning and Schneider (2021) who evaluate AMR-
to-text generation without reliance on a reference
by using a strong parser for back-parsing. It may
be beneficial to use strong AMR-to-text systems
to generate from candidate AMRs, and to match
the generations against the source sentence using
strong automatic text-to-text metrics.
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A Appendix

A.1 Sentence length vs. score
See Figures 6, 7. For total sentence length distribu-
tion see Figure 8.

Figure 6: Sentence length vs. human acceptability
on all annotated data. 55 includes all sentences longer
than 55 tokens. See Figure 8 for occurences of different
sentence lengths.

Figure 7: Sentence length vs. Smatch on all anno-
tated data. 55 includes all sentences longer than 55
tokens. See Figure 8 for occurences of different sen-
tence lengths. Other metrics look similar.

Figure 8: Sentence length occurrences. 55 includes all
sentences longer than 55 tokens.
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Abstract

Recently, transformer models (Vaswani et al.,
2017) have been applied to adversarial example
generation—word-level substitution models uti-
lizing BERT (Devlin et al., 2018; Garg and Ra-
makrishnan, 2020; Li et al., 2020a,b) have out-
performed previous state-of-the-art approaches.
Extending the paradigm of transformer-based
generation of adversarial examples, we propose
a novel textual adversarial example generation
framework based on transformer language mod-
els: our method (GLARE) generates word- and
span-level perturbations of input examples us-
ing ILM (Donahue et al., 2020), a GPT-2 lan-
guage model finetuned to fill in masked spans.
We demonstrate that GLARE achieves a supe-
rior performance to CLARE (the current state-
of-the-art model) in terms of attack success rate
and semantic similarity between the perturbed
and original examples.1

1 Introduction

A large body of evidence (Goodfellow et al., 2014;
Chakraborty et al., 2018; Kurakin et al., 2016)
has demonstrated that otherwise high-performing
ML models can be deceived by “adversarial”
examples—small perturbations of existing data
points wrongly classified by the model. However,
generating adversarial textual examples can be
challenging due to text’s discrete structure, which
makes generating fluent, believable perturbations
difficult (Jin et al., 2019b; Morris et al., 2020a).
Recently, large pretrained Transformer language
models (Devlin et al., 2018; Liu et al., 2019) have
successfully been adapted to generate adversar-
ial examples. Typically, such frameworks use a
masked language model (Devlin et al., 2018)’s
pretrained word substitution objective to generate
word-level replacements; combining several such
replacements allows the generation of perturbations

1Full source code for this project is available at https:
//github.com/nathankim7/infilling-adversarial.

that are both locally fluent and globally adversarial.
However, this approach allows only one token to be
substituted at a time, due to the pretraining objec-
tive of masked language models; although several
[MASK] tokens can be inserted repeatedly, the over-
all result is that generating multi-word sequences
of text is difficult (Wang and Cho, 2019).

In this work, we suggest instead applying gen-
erative language models (Radford et al., 2019) to
produce adversarial examples. These models can
easily generate multiple tokens at a time, enabling
a larger space of possible attacks. Specifically,
our framework, GLARE, applies GPT-2 (Radford
et al., 2019) to generate adversarial examples, aug-
mented by Donahue et al. (2020)’s infilling, which
allows the LM access to rightwards context. Our
approach, which can be easily used to substitute ex-
isting MLM attack methods, outperforms existing
strong approaches as measured by attack success
rate, semantic similarity between the perturbed and
original examples, and modification rate of per-
turbed examples.

2 Background

2.1 Adversarial Example Generation

Adversarial example generation is focused on at-
tacking a victim model f ; in particular, we focus
on black-box examples, where the attack method
has access to model outputs given an arbitrar-
ily large number of model inputs, but not its pa-
rameters. An adversarial example, then, is some
perturbation Perturb(x) of an original example x
which triggers an error in the victim model, i.e.
f(Perturb(x)) ̸= f(x), while being close seman-
tically to the original x. Typically, one measures
semantic similarity by computing the similarity
between vector representations of the initial and
modified sentence.
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2.2 Previous Approaches

Typically, an adversarial approach consists of some
underlying set of perturbations; these can be at the
subword level (e.g. typo introduction; Li et al.,
2019), word level (e.g., word addition or deletion),
or even sentence level (e.g., sentence paraphrasing;
Iyyer et al., 2018). The iterated set of such per-
turbations represents the attack space from which
an attack may be drawn, and an attack is consid-
ered “successful” for a particular example if a set of
perturbations which flips the victim model’s predic-
tion can be found in the space. In practice, a stan-
dard search algorithm is typically applied to search
through the space of perturbations for computa-
tional efficiency; these are typically implemented
through a framework, such as TextAttack (Morris
et al., 2020b) or OpenAttack (Zeng et al., 2021).

Modern adversarial methods typically apply a
small set of perturbations computed via a masked
language model. We can view most previous meth-
ods (Li et al., 2020b; Garg and Ramakrishnan,
2020; Li et al., 2020a) through the lens of the fol-
lowing broad operations (Li et al., 2020a):

• Replace: an existing token is masked and
replaced with a new token.

• Insert: a [MASK] token is inserted, then to be
replaced with a new token.

• Delete: a token is deleted.

Token replacement can be accomplished by
computing vector similarity or manual dictionary
lookups (Jin et al., 2019a); however, most competi-
tive methods use masked language models (MLMs).
BERTAttack (Li et al., 2020b) performs only Re-
place operations using BERT. BAE (Garg and Ra-
makrishnan, 2020) allows Insert operations simul-
taneously adjacent to substitutions. CLARE (Li
et al., 2020a) allows all three operations. As all
of these additions expand the attack space, their
combination allows for an infinite space of new
examples to be generated given enough exploration
steps.

3 Methods

Like previous methods, GLARE utilizes the same
fundamental Replace operation, where tokens from
the input are replaced with neurally generated to-
kens. However, unlike previous approaches, we
parameterize this replacement with a generative

language model, allowing for the generation of ar-
bitrarily large sequences. In particular, we apply
language-model infilling (Donahue et al., 2020),
which places both the leftwards and rightwards
context of the original infill in the context window,
allowing both sides to be considered during infill-
ing (see Figure 1).

Specifically, GLARE entails the following steps,
which closely follow previous approaches:

1. All possible replaceable spans are enumer-
ated. Previous methods must limit spans to
single tokens only due to the one-for-one na-
ture of masked language model token replace-
ment. Instead, GLARE defines a configurable
hyperparameter cmax which controls the maxi-
mum number of contiguous tokens which may
form a span.

2. The spans are ranked according to their Word
Importance Ranking (Jin et al., 2019b): i.e.
the difference between the score of the origi-
nal example and the score after the span has
been replaced by [MASK].

3. The top k candidates are selected and infilled
using a GPT-2 model fine-tuned via Don-
ahue et al. (2020)’s approach on the dataset
itself. As the length of the infill is theo-
retically unlimited, we constrain its length
during the decode; the final replacement for
an original span of length n may between
[n − emax, n + emax], where emax is a config-
urable hyperparameter. We rerank the candi-
dates by likelihood under the infilling model,
picking the top candidate.

Unlike CLARE, we do not use Delete and Insert
operations, as the infilling process naturally allows
the length of the resulting sequence to change.

Overall, GLARE dramatically increases the
scope of the attack space by permitting more nat-
ural decoding of longer sequences. By allowing
multiple words to be masked and for multiple to-
kens to be added at any given step, vastly fewer
replacement steps are required. Additionally, the
joint generation of multi-word replacements allow
for greater flexibility; candidates of multiple dif-
ferent lengths can be compared rather than being
constrained to utilizing multiple Insert operations.

3.1 Variants
We ablate two variants of our model:
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Figure 1: Illustrated example of infilling procedure.

• GLAREsingle allows solely single-token re-
placements with no changes in length
whatsoever—cmax is set to 1 and emax is set to
0. Since GPT-2 is used solely for single-token
replacement here, this approach is equivalent
to a simple token-replacement strategy like
BERTAttack (Li et al., 2020b), simply with a
different model.

• GLAREmulti allows multi-word replacements:
in our experiments, cmax is set to 3 and emax
is set to 3.

3.2 Framework

We implement GLARE as a recipe on TextAttack
(Morris et al., 2020b). Specifically, the custom
attack recipe consists of word-level replacements
supplied by a fine-tuned version of an infilling GPT-
2 model and constrained by the minimum sentence-
wise cosine similarity score in a given example.

4 Experiments

Datasets We use the following datasets: Yelp
Polarity (Zhang et al., 2015), AG News (Zhang
et al., 2015), MultiNLI (Williams et al., 2018), and
QNLI (Wang et al., 2018).

Victim Model We attack a BERT-base-uncased
English model.

Metrics Evaluating adversarial attacks can be
challenging, as attacks which achieve high success
rate (successfully flipping a large fraction of model
predictions) may be extremely obvious to a human
reader due to a lack of fluency, coherency, or oth-
erwise suspicious language (Morris et al., 2020a).
We measure the following desiderata:

• Attack success: the percentage of model pre-
dictions successfully flipped, or Attack Suc-
cess Rate (A-rate).

• Distance from original example: We mea-
sure modification rate (Mod), the mean frac-
tion of words modified in each example, and
(Sim), the cosine similarity between the orig-
inal and perturbed text, as calculated by the
Universal Sentence Encoder (Cer et al., 2018).

• Fluency: We measure perplexity (PPL)
using a small (12-layer, 768-hidden, 12-
heads, 117M parameters) non-finetuned GPT-
2 model, as well as the average number of
grammar errors (GErr) is the average num-
ber of grammatical errors introduced by each
perturbed example.

Baselines We compare GLARE against prior at-
tack methods: the non-neural TextFooler and the
LLM-based BERT-Attack and CLARE (Section
2.2). Notably, CLARE is identical to our method
except for the infilling method: fully generative
rather than masked language modelling.2

5 Results

Overall, GLARE effectively attacks the victim
model, achieving more fluent and grammatical at-
tacks than baseline approaches (Table 1).

Notably, GLAREsingle achieves extremely strong
performance as opposed to a method with an equiv-
alent search space that uses BERT, BERTAttack,
achieving an average of 8.3 points better on A-rate
while achieving 0.04 higher Sim. Here, the search
space is equivalent to BERTAttack; the advantage
lies solely in using a better-parameterized GPT
model.

GLAREmulti generally performs better than
GLAREsingle. GLAREmulti also achieves a 10.1
point better A-rate and 0.14 higher Sim than
CLARE, another approach capable of changing
token lengths – the GPT-2 infilling approach pro-
vides more flexibility and coherency to the attack.

6 Analysis

We are able to successfully outperform CLARE
(the current SOTA) on a number of metrics: specif-
ically, attack success rate, perplexity, and semantic
similarity.

Effect of in-domain fine-tuning The infilling
model used in our main experiments is fine-tuned

2Due to difficulties implementing the TEXTFOOLER and
CLARE models with TEXTATTACK, the baseline values in-
cluded in Table 2 were taken from (Li et al., 2020a).
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Yelp (PPL = 53.4) AG News (PPL = 38.0)

Model A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑ A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑
TEXTFOOLER 77.0 16.6 163.3 1.23 0.70 81.7 23.6 177.5 1.27 0.83
BERTATTACK 71.8 10.7 90.8 0.27 0.72 63.4 7.9 90.6 0.25 0.71
CLARE 79.7 10.3 83.5 0.25 0.78 84.7 21.2 162.3 0.17 0.57

GLARE (single-word) 91.9 16.6 163.3 1.23 0.70 56.1 23.3 331.3 1.43 0.69
GLARE (variable-len) 92.1 56.7 48.2 0.22 0.92 79.0 69.77 63.9 1.69 0.88

MNLI (PPL = 28.9) QNLI (PPL = 37.9)

Model A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑ A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑
TEXTFOOLER 59.8 13.8 161.5 0.63 0.73 57.8 16.9 164.6 0.62 0.72
BERTATTACK 82.7 8.4 86.7 0.04 0.77 76.7 13.3 86.5 0.03 0.73
CLARE 88.1 7.5 82.7 0.02 0.82 83.8 11.8 76.7 0.01 0.78

GLARE (single-word) 92.9 6.2 77.9 0.23 0.84 86.9 10.0 72.9 0.22 0.87
GLARE (variable-len) 84.2 18.8 60.2 0.33 0.82 79.6 42.2 55.6 0.47 0.89

Table 1: Adversarial example performance compared on attack success rate (A-rate), modification rate (Mod),
perplexity (PPL), number of increased grammar errors (GErr), and textual similarity (Sim) on four datasets. The
perplexity of each dataset is marked in the header. ↑ (↓) represents which direction is more desirable. The best score
per metric and dataset is bolded. Certain baseline results are drawn from Li et al. (2020a).

Figure 2: Comparison of attack success rates by differ-
ent models.

Figure 3: Comparison of cosine similarities between
original and perturbed text by different models.

on in-domain data. To examine the impact of this
fine-tuning on attack rates, we provide preliminary
experiments on a GLARE model utilizing an OOD

GPT-2 infilling model fine-tuned on the ROCSto-
ries corpus (Donahue et al., 2020). We use Don-
ahue et al. (2020)’s fine-tuned checkpoints and
otherwise use identical settings to GLAREsingle.
The results are inconclusive, though preliminary
metrics suggest that fine-tuning the GPT-2 model
does not appear to as successful as we would like,
demonstrated by the fact that the ILM model fine-
tuned on stories was able to often match or even
outperform the corresponding model finetuned on
the specific dataset (Table 2, Appendix).

Modification rate We note that our model suf-
fers from a higher modification rate than CLARE.
Although this is ostensibly undesirable, one benefit
of a larger modification rate is that attacks are less
likely to comprise simple polarity switches (e.g.,
"The food was delicious" → "The food was ter-
rible"), which feature low modification rates but
are not satisfactory adversarial examples as they
necessitate a change in the example’s gold label.
A long-term goal is lower modification rate while
maintaining the same fluent adversarial substitu-
tions.

Example Length We note that longer inputs gen-
erally experience higher similarity scores when
comparing their perturbed and original examples.
We believe this is because the longer context gives
the model a wider range of opportunities to perform
an adversarial attack, as well as allowing the model
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a better glimpse into the semantic and syntactic
structure of the example.

7 Conclusion

In this work we propose GLARE, a novel method
for generating textual adversarial examples for use
in adversarial attacks. GLARE operates by select-
ing spans in training examples to be masked out
and then replaced with variable-length spans from
a left-to-right generative model, bypassing restric-
tions on both the space of possible perturbations
and the context available to each replacement step
imposed by the single-token replacement strategy
in existing methods. Our experiments show that
GLARE outperforms contemporary methods in at-
tack success, perplexity, grammatical correctness
and semantic preservation when generating adver-
sarial examples for a variety of classification bench-
marks, and indicate that input text perturbation can
be a promising application of left-to-right genera-
tive models for text infilling.
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Yelp (PPL = 53.4) AG News (PPL = 38.0)

Model A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑ A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑
GLARE (single-word) 91.9 16.6 163.3 1.23 0.70 56.1 23.3 331.3 1.43 0.69
GLARE (single, OOD) 93.5 11.2 63.6 0.15 0.92 70.3 18.9 124.4 0.27 0.86

MNLI (PPL = 28.9) QNLI (PPL = 37.9)

Model A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑ A-rate↑ Mod↓ PPL↓ GErr↓ Sim↑
GLARE (single-word) 92.9 6.2 77.9 0.23 0.84 86.9 10.0 72.9 0.22 0.87
GLARE (single, OOD) 93.6 5.8 64.6 0.15 0.84 91.1 9.7 77.3 0.18 0.87

Table 2: Adversarial example performance of GLAREsingle and GLAREOOD.
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Abstract
We present three large-scale experiments on
binary text matching classification task both
in Chinese and English to evaluate the effec-
tiveness and generalizability of random text
perturbations as a data augmentation approach
for NLP. It is found that the augmentation can
bring both negative and positive effects to the
test set performance of three neural classifica-
tion models, depending on whether the mod-
els train on enough original training examples.
This remains true no matter whether five ran-
dom text editing operations, used to augment
text, are applied together or separately. Our
study demonstrates with strong implication that
the effectiveness of random text perturbations
is task specific and not generally positive.

1 Introduction

Data augmentation (DA) is a common strategy to
generate novel label-preserving data to remedy data
scarcity and imbalance problems (Xie et al., 2020),
which has been applied with noteworthy success in
image and speech recognition (Iwana and Uchida,
2021; Park et al., 2019; Shorten and Khoshgoftaar,
2019). In the field of natural language processing
(NLP), there have also been a number of studies
that use various DA techniques to boost the trained
models’ performance (Feng et al., 2021; Liu et al.,
2020), ranging from word replacement (Wang and
Yang, 2015; Wang et al., 2018; Zhang et al., 2015),
to predictive neural language models (Hou et al.,
2018; Kobayashi, 2018; Kurata et al., 2016). How-
ever, an evident and critical difference between text
and image/speech is that text cannot be treated as
purely physical. For any given sequence of words,
both the word order and the semantic compatibil-
ity among words affect the meaning, and possibly
the label of the sequence. This complex nature
raises the question as to whether there exists some
generally effective DA approach for NLP because
automatic strict paraphrasing barely exists (Bhagat
and Hovy, 2013).

Operation Text
None A sad, superior human comedy played out

on the back roads of life.
SR A sad, superior homo funniness played out

on the back roads of life.
RI A sad, superior human comedy played man

out on the back stunned roads of life.
RS the sad, superior human comedy played out

on roads back A of life.
RD A superior human comedy played out on

back roads life.

Table 1: Text augmented with two edits each DA tech-
nique by EDA. The original text is from Wei and Zou
(2019). SR: Synonym Replacement; RI: Random Inser-
tion; RS: Random Swap; RD: Random Deletion.

This study is a preliminary examination of the
effectiveness and generalizability of random text
perturbations as a DA approach, exemplified by
Easy Data Augmentation (EDA)1, which has been
proposed to be a universal DA approach for NLP
(Wei and Zou, 2019). This approach consists of
four commonly used token-level editing operations
(Wei et al., 2021; Wei and Zou, 2019), i.e., Syn-
onym Replacement (SR), Random Insertion (RI),
Random Swap (RS), and Random Deletion (RD).
SR randomly replaces synonyms for eligible words,
while RS randomly swap word pairs. RI inserts ran-
dom synonyms, if any, instead of random words,
whereas RD deletes words at random. Simple as
these operations may seem, they have shown gen-
eral success in various sentiment-related and sen-
tence type classification tasks (Wei and Zou, 2019).

To do the examination, we first present a linguis-
tically informed hypothesis and propose a relevant
method of evaluation in section 2. We then intro-
duce the experimental settings and results in sec-
tion 3 and section 4, respectively. The paper ends
with some discussions and conclusions in section 5.

The major contributions of this study are three-
fold. First, it reveals the possible inherent limita-
tions of random text perturbations used as a DA

1https://github.com/jasonwei20/eda_nlp
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approach for NLP with cross-lingual evidence. Sec-
ond, the paper provides a critical angle and possibly
a general way to evaluate the effectiveness and gen-
eralizability of a DA approach or technique for NLP.
Third, we present an EDA-like Python program
that refines EDA’s functionalities, contains a novel
DA technique, and can be easily employed for
text augmentation in other languages. The source
code for this program can be found at https:
//github.com/jaaack-wang/reda.

2 Hypothesis and evaluation method

From a linguistic point of view, the success of EDA
defies understanding, as the augmented texts pro-
duced by EDA can often be unnatural, ungram-
matical, or meaningless, such as examples shown
in Table 1. However, it is also not surprising that
these imperfect augmented texts may help mod-
els generalize better on test sets for some simple
text classification tasks, as they introduce certain
noise to the training examples that reduces overfit-
ting while not damaging key information, which
can easily lead to label change. For example, for
sentence-level sentiment analysis, the sentiment of
a sentence is often captured by only few keywords
(Liu, 2012). It follows, as long as an augmented
text keeps these few keywords or similar replaced
words, it still reasonably preserves the sentiment
label of the original text even if it is a problematic
sentence. That explains the decline in models’ per-
formance in the ablation experiments by Wei and
Zou (2019), where SR and RD were applied with
30% or larger editing rate, making the key lexical
features more likely to be replaced or deleted. In
contrast, RS and RI were overall harmless no mat-
ter how large proportion of a text was edited. This
is simply because unlike SR and RD, RS and RI do
not remove any lexical items in the original texts.

Therefore, we hypothesize that the effectiveness
of random text perturbations is task specific and
thus may not constitute a generally effective DA
approach for NLP, especially if the task requires
stricter semantic equivalence of the augmented
text to the original text. To verify this hypothe-
sis, we conduct experiments on binary text match-
ing classification task both in Chinese and in En-
glish to see if five simple text editing operations,
adapted from EDA, can improve the performance
of three commonly used deep learning models.
Since text matching classification involves predic-
tion of whether a text pair match in meaning, it is

Split LCQMC QQQD
(Matched & Mismatched) (Matched & Mismatched)

Train 238,766 260,000
(138,574 & 100,192) (130,000 & 130,000)

Dev 8,802 20,000
(4,402 & 4,400) (10,000 & 10,000)

Test 12,500 18,526
(6,250 & 6,250) (9,263 & 9,263)

Table 2: Statistics of the LCQMAC & QQQD data sets.

inherently a more reliable way to test if a certain
level of semantic changes, caused by text perturba-
tions, can remain useful for training NLP models.

3 Experimental settings

3.1 Datasets

We used two large-scale benchmark datasets, the
Large-scale Chinese Question Matching Corpus
(LCQMC) compiled by Liu et al. (2018) and the
Quora Question Pairs Dataset (QQQD)2, to rep-
resent binary text matching task in Chinese and
in English, respectively. Both datasets contain a
large collection of question pairs manually anno-
tated with a label, 0 or 1, to indicate whether a pair
match or not in terms of the expressed intents.

For LCQMC, we reused the original train, de-
velopment, and test sets as provided by the authors
(Liu et al., 2018). For QQQD, we created three
label-balanced data sets based on its train set since
the test set is made unlabeled for online competi-
tion. The basic statistics about these two datasets
are given in Table 2.

3.2 Augmentation Setup

We created REDA (i.e., Revised EDA), a Python
program adapted from EDA, to perform text aug-
mentation in this study. REDA comes with the four
text editing operations as in EDA, but also presents
a novel technique called Random Mix (RM), which
randomly selects 2-4 of the other four operations
to further diversify the augmented texts. Besides,
the rationales for REDA over EDA are as follows:
unlike EDA, (1) REDA has a mechanism to prevent
deduplicates, which can occur when there are no
synonyms to replace (SR) or insert (RS) for words
in the original text, or when the same words are
replaced or swapped back during SR and RS op-
erations. (2) REDA does not preprocess the input
text (e.g., removing punctuations and stop words),
which we believe are more in line with the basic

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Model 5k 10k 50k 100k Full set
CBOW 59.4% 60.4% 65.4% 67.8% 73.8%

+ REDA 58.1% 60.9% 68.2% 72.2% 76.4%
CNN 59.3% 63.4% 67.2% 69.0% 72.9%

+ REDA 59.8% 62.6% 66.8% 69.8% 74.9%
LSTM 60.0% 62.1% 66.2% 69.6% 74.8%

+ REDA 58.9% 61.5% 67.7% 71.8% 76.4%
Average 59.6% 62.0% 66.3% 68.8% 73.8%

+ REDA 58.9% 61.7% 67.6% 71.3% 75.9%

Table 3: Test set accuracy scores of the three models
trained on LCQMC’s train sets of varying size with and
without augmentation.

Metric 5k 10k 50k 100k Full set
Precision 57.2% 59.2% 62.4% 64.1% 68.2%

+ REDA 56.9% 59.7% 63.9% 66.5% 70.2%
Recall 75.5% 77.3% 82.0% 85.5% 89.2%

+ REDA 73.6% 72.1% 80.7% 85.5% 90.0%

Table 4: Average test set precision and recall scores
of the three models trained on LCQMC’s train sets of
varying size with and without augmentation.

idea of random text perturbations, the focus of this
study. (3) REDA only replaces one word with its
synonym at a given position at a time, instead of
all its occurrences, which we see as extra edits.
(4) REDA supports Chinese text augmentation in
addition to English text augmentation.

Due to costs of doing experiments at this scale,
we are unable to evaluate the effects of different
initializations of REDA (e.g., editing rate) on the
trained models’ performance. Therefore, we initial-
ized REDA with small editing rates, among others,
based on our hypothesis and Wei and Zou (2019),
which we believe is reasonably informed to reveal
the effectiveness of random text perturbations for
our experiments in general. Please refer to Ap-
pendix A for details.

3.3 Classification Models

We chose three common neural models, including
Continuous Bag of Word (CBOW) model, Convo-
lutional Neural Network (CNN) model, and Long
Short-Term Memory (LSTM) model, as the clas-
sification models. The models were trained with
a 64 batch size, a fixed .0005 learning rate, and
constantly 3 epochs. We used Adaptive Moment
Estimation (Adam) as the optimizer and cross en-
tropy as the loss function. Also, unlike Wei and
Zou (2019), we did not utilize pretrained word
embeddings for our models, which will make the
effects of text perturbations complicated and less
interpretable. Plus, we believe for a DA approach
to be generally effective, it should also work in a

Model 10k 50k 100k 150k Full set
CBOW 64.4% 69.9% 72.1% 74.2% 77.7%

+ REDA 62.5% 68.5% 71.6% 74.8% 78.0%
CNN 66.1% 71.1% 72.6% 73.4% 75.9%

+ REDA 63.7% 69.9% 72.7% 75.3% 77.6%
LSTM 65.7% 71.6% 72.9% 75.0% 77.9%

+ REDA 64.0% 69.8% 72.5% 75.1% 78.1%
Average 65.4% 70.9% 72.5% 74.2% 77.2%

+ REDA 63.4% 69.4% 72.3% 75.1% 77.9%

Table 5: Test set accuracy scores of the three models
trained on QQQD’s train sets of varying size with and
without augmentation.

Metric 10k 50k 100k 150k Full set
Precision 63.8% 70.2% 71.1% 72.4% 75.6%

+ REDA 61.8% 67.6% 70.5% 74.2% 76.4%
Recall 71.4% 72.5% 76.1% 78.3% 80.2%

+ REDA 70.4% 74.3% 76.7% 76.9% 80.9%

Table 6: Average test set precision and recall scores
of the three models trained on QQQD’s train sets of
varying size with and without augmentation.

setting where resources for pretrained word embed-
dings are limited or unavailable.

The details of the model configurations and the
training settings are provided in Appendix B.

4 Results

This section reports the test set performance of the
three classification models trained on train sets of
varying size with and without augmentation for the
binary text matching task in Chinese and in English.
We used accuracy as the main metric to evaluate
the effectiveness of random text perturbations. The
average precision and recall scores of the three
models are taken as secondary metrics for more
nuanced analyses. Due to the experimental costs,
we only did ablation study on LCQMC to examine
the effectiveness of the five DA techniques applied
separately. The classification results on the original
train sets are seen as baselines. Please refer to
Appendix C for the size of augmented train sets.

4.1 For Chinese
As can be seen in Table 3, the size of the train set
affects whether models trained on the augmented
train sets outperform the baselines, with the thresh-
old being near 50k (about 21% of the original full
train set). Table 4 shows that the gains in the test set
accuracy scores are mainly driven by two factors:
(1) the leading precision scores of the REDA-led
models after the 10k training size; (2) the narrow-
ing gap in the recall scores after the 50k training
size. That implies, the classification models learn

53



to make less false positives with sufficient origi-
nal training examples augmented. But before the
threshold, augmentation is nevertheless detrimental
to the models’ performance even with the drastic
increase of the training examples.

4.2 For English

Table 5 resembles Table 4 in data patterns, reaf-
firming the need of sufficient training examples
for random text perturbations to work for the bi-
nary text matching task. The threshold, however,
is much larger this time, nearing the 150k training
size (about 57% of the original full train set), which
may be dataset specific. Moreover, the REDA-led
models only outperform the baselines by a small
margin on average (i.e., less than 1%) on the test
set, smaller than the previous section. Table 6 also
shows that the increasing test set precision and re-
call scores, particularly the former, account for the
performance gains of the REDA-led models.

4.3 Ablation Study: each DA technique

With random text perturbations requiring ample
original training examples to be effective as pre-
sented above, a natural question becomes: what if
the five DA techniques were applied separately?
To get a more nuanced and reliable observation, we
augmented train sets of 11 different sizes, instead
of 5 as in the previous sections. These 11 training
sizes roughly correspond to 2%, 4%, 10%, 21%,
31%, 42%, 52%, 63%, 73%, 84%, and 100% of
the LCQMC’s train set, respectively.

Figure 1 shows the average accuracy scores of
the three classification models trained across these
11 training sizes and under different text editing
conditions. Again, it confirms that there is a thresh-
old of training size that needs to be satisfied so
that each text editing operation can boost the per-
formance of the models. Noticeably, the threshold
here appears to be the 100k training size or so, in-
stead of 50k as in Table 3, which may have to do
with the separation of these DA techniques.

To explore the possible causes for the improve-
ment in the test set accuracy scores, we also plotted
the average precision and recall scores in the same
way. It turns out that the rising accuracy scores
are highly correlated with the increasing precision
scores, as displayed in Figure 2, whereas such trend
does not exist for the recall scores, as shown in Fig-
ure 3, which shows more complicated patterns.

Figure 1: Average test set accuracy scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC’s train sets. The sixth plot
averages the statistics of the previous five plots.

Figure 2: Average test set precision scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC’s train sets. The sixth plot
averages the statistics of the previous five plots.

Figure 3: Average test set recall scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC’s train sets. The sixth plot
averages the statistics of the previous five plots.

5 Discussion and Conclusion

In this study, we evaluate the effectiveness and
generalizability of random text perturbations as a
DA approach for NLP. Our experiments on binary
text matching classification task in Chinese and En-
glish indicate strongly that the effectiveness of the
five random text editing operations, both applied
together and separately, is task specific and not gen-
erally positive. Compared to Wei and Zou (2019)
who show general success of text perturbations in
simpler one-text-one-label NLP tasks across vary-
ing training sizes, we find that test set performance
gains are only possible for the binary text matching
task when a large amount of original training exam-
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ples are seen by the models. This makes random
text perturbations a less practical DA approach for
text pair classification tasks, where having suffi-
ciently large labeled data is usually expensive.

As expected, since text matching involves clas-
sification of text pairs, the task is by nature more
sensitive to the semantic changes caused by text
augmentation and thus represents a more reliable
way to evaluate a DA approach for NLP. The fail-
ure of random text perturbations with small train
sets may imply that the classification models are
misguided by the negative effects of the augmented
examples, possibly related to the augmented false
matching pairs, which hamper their test set perfor-
mance. However, with enough original training
examples supplied, the models learn to mediate
these negative effects and turn them somewhat into
a means of regularizations, which help the models
generalize better with improving precision on the
test sets.

In relation to Wei and Zou (2019), another possi-
ble cause for the failure of augmentation on small
train sets may have to do with the fact that REDA
does not allow deduplicates to be in the augmented
texts. That means, given comparably small editing
rates, REDA tends to produce more diverse and
yet non-paraphrastic augmented texts than EDA,
which enlarges the negative effects of random text
perturbations and thus demand more original train-
ing examples to mediate such effects. However, the
exact theoretical reasons behind are worth further
studying in the future.

Thoroughly evaluating a DA approach for NLP
is not easy. There certainly remains a lot to be
done so that we can better understand and leverage
the effective sides of random text perturbations, or
any other DA approaches/techniques for NLP. For
example, future experiments may want to examine
how a model’s configurations (e.g., whether ini-
tialized with pretrained word embeddings, model
architecture, hyperparameters) or the initialization
of REDA may affect the test set performance for
NLP tasks of various natures, e.g., classification
or non-classification, binary or multi-class etc. In
addition, since language is a complex discrete sys-
tem, a fair evaluation also requires a large enough
test set, either from one domain or across domains
such that the evaluation results are more reliable
and revealing. We hope this study will inspire more
in-depth experiments to contribute to text augmen-
tation, or more broadly, the empirical (evaluation)

methods for NLP.
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Appendix

A. Initialization of REDA

We initialized REDA with the following editing
rate for SR, RS, RI, and RD, respectively: 0.2, 0.2,
0.1, and 0.1. We applied Python rounding rule to
calculate and perform the number of edits needed
for each operation. That means, if the number of
edits is less than or equal to 0.5, it will be rounded
down to 0 and thus no editing operation will ap-
ply. To make our experiments more controlled and
doable, (1) we made RM only randomly perform
two of the other four editing operations with one
edit each; (2) and every editing operation will pro-
duce up to 2 non-duplicated augmented texts, if
the train set size is less than 50k; otherwise, there
will only be one augmented text instead. Every
augmented text was crossed paired with the other
text that was the pair to the text being augmented
with the original label kept for the augmented text
pair. That means, the augmented text pairs double
the number of augmented texts set for each text.
These settings also apply for the ablation study.

The synonym dictionary for English comes from
WordNet3. The synonym dictionary for Chinese
comes from multiple reputable sources through
web scraping4.

B. Model Training

Training Settings. We reused the three simple
models already constructed using Baidu’s deep
learning framework paddle5. We trained all the
models in Baidu Machine Learning CodeLab on its
AI Studio6 with Tesla V100 GPU and 32G RAM,
which the author could use up to 70 hours per week.

Basic Architecture. All the models begin with an
Embedding layer that outputs 128-dimensional
word embeddings. Then, the word embeddings for
the text pairs each go through an encoder so that
the encoded embeddings for the text pairs have
same output dimensions and can be concatenated
along the last axis. The concatenated embeddings
run through a Linear layer, a Tanh activation
function, and another Linear layer that outputs
two dimensional logits. The details of the encoder
configurations used for the CBOW, CNN, and

3
https://wordnet.princeton.edu

4
https://github.com/jaaack-wang/Chinese-Synonyms

5
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/

examples/text_matching/simnet
6
https://aistudio.baidu.com/aistudio/index

LSTM models can be found at the footnote.7

Other. We did not use EarlyStopping or other
similar callbacks, because that might increase the
experimental costs to a point that obstructs training.
Also, the effect of such a callback should be trivial
as most of our models overfitted within 3 epochs.

C. Size of augmented train sets
Table 7 and Table 8 contain size of the train sets for
the first two experiments on LCQMC and QQQD
and the ablation experiment on LCQMC, respec-
tively. Please note that, for simplicity, 240k is
used to refer to the full size of LCQMC, which is
238,766 to be exact. Also, due to deduplication,
different text editing operations may result in aug-
mented train sets with non-trivial difference in size,
as discernible in Table 8. The reason that the ratio
of the augmented train sets to the corresponding
original train sets in size is different is explained in
Appendix A.

LCQMC Augmented QQQD Augmented
5k 66,267 10k 148,341
10k 132,513 50k 543,066
50k 563,228 100k 1,086,063

100k 929,176 150k 1,629,178
240k 2,218,512 260k 2,823,733

Table 7: Size of augmented train sets for the first two
experiments on LCQMC and QQQD.

Size SR RS RI RD RM
5k 24,402 24,758 16,733 16,780 24,859

10k 48,807 49,575 33,090 33,208 49,652
25k 122,358 124,040 83,329 83,592 124,237
50k 244,577 248,074 166,839 167,296 248,539
75k 220,843 223,497 162,563 162,972 224,026

100k 294,516 297,987 216,540 217,012 298,620
125k 368,078 372,536 270,957 271,552 373,266
150k 441,643 446,941 325,027 325,738 447,838
175k 515,229 521,484 379,352 380,214 522,535
200k 588,901 595,977 433,521 434,469 597,084
240k 703,077 711,631 517,492 518,664 712,852

Table 8: Size of augmented train sets for the ablation
experiment on LCQMC.

7
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/

paddlenlp/seq2vec/encoder.py
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Abstract

Various approaches have been proposed for au-
tomated stance detection, including those that
use machine and deep learning models and nat-
ural language processing techniques. However,
their cross-dataset performance, the impact of
sample size on performance, and experimental
aspects such as runtime have yet to be com-
pared, limiting what is known about the gener-
alizability of prominent approaches. This pa-
per presents a replication study of stance detec-
tion approaches on current benchmark datasets.
Specifically, we compare six existing machine
and deep learning stance detection models on
three publicly available datasets. We investi-
gate performance as a function of the number
of samples, length of samples (word count),
representation across targets, type of text data,
and the stance detection models themselves.
We identify the current limitations of these ap-
proaches and categorize their utility for stance
detection under varying circumstances (e.g.,
size of text samples), which provides valuable
insight for future research in stance detection.

1 Introduction

The task of detecting stance from a text sample,
i.e., determining if the author of the text is in fa-
vor, against, or has a neutral attitude towards an
entity or proposition in the text (Mohammad et al.,
2016; Zhou et al., 2017), has not only contributed
to increased understanding of how users behave
and interact on these platforms (Küçük and Can,
2020), but it has also complemented sentiment and
semantic analyses (Stieglitz and Dang-Xuan, 2013).
In stance detection, the entity or proposition, which
is often referred to as the target, can be a place,
person, product, situation, policy, organization, etc.
(Mohammad et al., 2016).

Many machine and deep learning and natural
language processing (NLP) techniques have been
proposed for automated stance detection (Zhou
et al., 2017; Mohtarami et al., 2018; Mohammad

et al., 2016; Augenstein et al., 2016). However,
substantial advancements thus far have depended
on publicly available datasets (Sobhani et al., 2017;
Mohammad et al., 2017), which, at the time of their
writing, were not large nor diverse in comparison
to datasets for other NLP tasks like sentiment anal-
ysis (Socher et al., 2013; Ni et al., 2019; Neal et al.,
2017). Most stance detection approaches have been
trained and tested on the benchmark dataset used
in the SemEval 2016 workshop (SemEval, 2016;
Mohammad et al., 2017), limiting the analysis of
stance detection on varying text types (blogs, social
media posts, news articles, etc.).

Due to the nature of the datasets on which cur-
rent stance detection models are trained, their abil-
ity to generalize to larger datasets is not well-
studied. This includes a comparative analysis of
their runtime, performance depending on the size
of the dataset, and their application to cross-dataset
stance detection, in which subtasks like cross-target
stance detection are receiving increasing attention
(Wei and Mao, 2019; Zhang et al., 2020; Liang
et al., 2021; Conforti et al., 2021; Ji et al., 2022;
Xu et al., 2018). Thus, we present a comparative
analysis of stance detection models as a means of
benchmarking existing approaches such that future
research can address gaps identified in this work.

This paper presents an analyses of six commonly
used stance detection classification approaches,
each trained and tested on three publicly available
datasets (Mohammad et al., 2017; Sen et al., 2018;
Somasundaran and Wiebe, 2010). The text samples
in these datasets cover three types of data sources
(i.e., Twitter posts, responses to questions, and on-
line debates), and are annotated with the target (e.g.,
gun rights, atheism, e-cigarettes, etc.) and the au-
thor’s stance (FAVOR, AGAINST, or NEUTRAL)
towards the target. In prior work, Ghosh et al.
(2019) also compared the reproducibility of dif-
ferent stance detection models on two datasets
(Sen et al., 2018; Mohammad et al., 2017). While
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their work studied stance detection within a single
dataset, they observed that “no single method [was]
able to give very high metric value over all datasets”
(Ghosh et al., 2019). However, a comparative anal-
ysis of other parameters that could play a role in
stance detection accuracy, alongside studying ex-
isting models in more demanding scenarios, such
as their application across datasets, has yet to be
explored. That is, prior work compares the merits
and limitations of stance detection models in terms
of stance detection accuracy alone, while we con-
tribute novel insight concerning other metrics (e.g.,
runtime) and use cases (e.g., cross-dataset stance
detection). Specific contributions include:

1. We examine the generalizability of stance de-
tection models across text types by using three
publicly available datasets, each representing
three different text domains (i.e., Twitter data,
query responses, and long debates).

2. We conduct cross-dataset stance detection to
determine if current stance detection models
can accurately identify stance on datasets un-
seen during training, furthering the analysis
of generalizability.

3. We explore the impacts of different character-
istics of the datasets, including sample size,
sentence length, semantic context, and run-
time, on stance detection accuracy.

2 Background

Initial work in stance detection focused on deter-
mining the stance of political and parliamentary
debates (Somasundaran and Wiebe, 2010). Lately,
this interest has shifted towards social media plat-
forms due to the diversity of opinions shared on
these applications (Mohammad et al., 2016). Many
tasks have been proposed in the past owing to the
diverse applications of stance analysis on social
media like multi-target stance detection (Wei et al.,
2018; Sobhani et al., 2017), cross-target stance de-
tection (Zhang et al., 2020; Conforti et al., 2021;
Wei and Mao, 2019), rumour stance classification
(Zubiaga et al., 2018; Lukasik et al., 2019), and
fake news stance detection (Ghanem et al., 2018;
Umer et al., 2020).

To date, there have been numerous efforts for
stance detection using traditional machine learn-
ing algorithms and deep learning techniques (Mo-
hammad et al., 2016; Zhou et al., 2017; Ghosh
et al., 2019; Mohtarami et al., 2018; Somasundaran
and Wiebe, 2010; Zhang et al., 2020; Augenstein

et al., 2016; Al-Ghadir et al., 2021), while the 2016
SemEval workshop’s task on detecting stance in
tweets (SemEval, 2016) generated various stance
detection approaches which used traditional sen-
timent and sentence classification features like n-
grams and embedded vectors (Zarrella and Marsh,
2016; Wei et al., 2016). Workshop submissions
showed significant improvement in performance
when using support vector machines (SVM), even
in comparison to the top three submissions which
leveraged transfer learning and recurrent neural net-
works (RNNs) (Mohammad et al., 2016). For in-
stance, the method proposed by Zarrella and Marsh
used transfer learning on features extracted from
two large unlabeled datasets via distant supervision
(Zarrella and Marsh, 2016), although their method
failed to outperform the SVM-derived baseline.

On the other hand, RNN models also show
promising results. Zhou et al. extended two RNN
models (biGRU and biGRU-CNN) to incorporate
target information via a token-level (AT-biGRU)
and semantic-level attention (AS-biGRU) mecha-
nism for detecting stance in tweets (Zhou et al.,
2017). Similarly, Ghosh et al. (2019) reproduced
a few competitive Convolutional Neural Network
(CNN) and RNN based methods, and compared
them with Google’s Bidirectional Encoder Repre-
sentations from Transformers (BERT) model.

3 Methodology

3.1 Dataset Descriptions
The chosen datasets were selected due to their di-
versity in text type, number of text samples, and
size of each sample. Only datasets with samples
written in English were considered.

The SemEval-2016 Task 6A Stance Dataset
The SemEval-2016 Stance Dataset (Mohammad
et al., 2017) was used in the task of stance detec-
tion at SemEval-2016 (SemEval, 2016). It con-
tains 4,870 manually annotated (stance and tar-
get) tweets. Tweets in the dataset are divided
among five targets: “Atheism”; “Climate Change
is Real Concern”; “Feminist Movement”; “Hillary
Clinton”; and “Legalization of Abortion.” Each
tweet is labeled with the author’s stance (FAVOR,
AGAINST or NEITHER) towards the target. An
example is shown below:

Target Tweet Stance
Feminist movement “Whether you label yourself a

feminist or not I think it’s impor-
tant that we address equal rights.”

FAVOR
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Multi-Perspective Consumer Health Query
Data (MPCHI) The MPCHI dataset (Sen et al.,
2018) consists of responses to five different queries:
“Are e-cigarettes safe?”; “Does the MMR vaccine
lead to autism in children?”; “Does sunlight expo-
sure lead to skin cancer?”; “Does vitamin C prevent
the common cold?”; and “Should women take HRT
post-menopause?” This dataset was created by
retrieving the top 50 links corresponding to each
query on the web, and then using crowd-sourcing
to retrieve query relevant sentences. Each sentence
has a polarized stance, i.e., FAVOR or AGAINST.
An example is shown below:

Target Response Stance
Does sunlight exposure
lead to skin cancer?

The UV explanation for
melanoma is not adequate.

AGAINST

Ideological Online Debates The Ideological On-
line Debates dataset (Somasundaran and Wiebe,
2010) consists of political and ideological on-
line debates on “Existence of God”; “Healthcare”;
“Gun Rights”; “Gay Rights”; and “Abortion and
Creationism.” Debates for each topic are labeled
as FOR or AGAINST; we converted the label FOR
to FAVOR for consistency across datasets. An ex-
ample is shown below:

Target Response Stance
Gun Rights “The statement of ‘Guns kill people, Guns kill

children’ is false guns don’t kill people, peo-
ple kill people. Guns should be allowed every-
where GUNS ARE GOOD.”

FAVOR

3.2 Stance Detection Approaches
Approach #1: Support Vector Machines and N -
grams Application of SVMs for stance detection
were proposed by Mohammad et al. (2016), and
used as the baseline method in the SemEval (Mo-
hammad et al., 2016) and in other stance detection
approaches (Zhou et al., 2017; Ghosh et al., 2019;
Augenstein et al., 2016; Mohtarami et al., 2018).
A SVM is a classification algorithm which finds a
hyperplane having a maximum margin, or distance,
between data points of different classes, in an n-
dimensional space. We refer the reader to (Noble,
2006) for more details on SVMs.

We were unable to find publicly available code
by the authors to replicate these experiments, and
thus wrote the code from scratch using the details
provided in the article (Mohammad et al., 2016).
We note that the article does not mention which
feature extraction method was used to extract n-
grams (i.e., CountVectorizer or TfidfVectorizer). A
CountVectorizer captures the frequency of tokens

in a text sample, while a TfidfVectorizer (Term Fre-
quency - Inverse Document Frequency) provides
both the frequency of tokens and their importance
by penalizing those that occur too frequently or
not often enough. Here, we have implemented
TfidfVectorizer as it performed better. We tuned
the SVM’s parameters (kernel, γ, C) using a grid
search and five-fold cross-validation. Following the
work of Mohammad et al. (2016), our experimental
approach consisted of two tasks:

1. SVM-ngrams: Multiple SVMs (one per target)
trained on n-grams, where n = 1, 2, 3 and
n = 2, 3, 4, 5 for word and character n-grams,
respectively.

2. SVM-ngram - comb (overall): A single classi-
fier trained on all targets using the same fea-
tures as SVM-ngram.

Approach #2: Bi-directional Gated Recurrent
Units Gated Recurrent Units (GRUs) are very
similar to basic RNNs except that they have a
update and relevance gate which are capable of
updating only relevant information, making them
useful for stance detection (Zhou et al., 2017).
A GRU maps the input sequence of length N ,
[x<t1>, x<t2>, x<t3>....x<tN>] into a set of hid-
den states [h<t1>, h<t2>, h<t3>, .......h<tN>] as
follows:

Γu = σ(Wu[h
<t0>, x<t1>] + bu)

Γr = σ(Wr[h
<t0>, x<t1>] + br)

h
′<t1> = tanh(Wh[Γr ∗ h<t0>, x<t1>] + bh)
h<t1> = Γu ∗ h<t0> + (1− Γu) ∗ h′<t1>

where Γu corresponds to the update gate and
Γr to the reset gate; σ(.) is a sigmoid function;
Wu,Wr,Wh ∈ Rd1×d0 represent the weight ma-
trices; h

′<t1> ∈ Rd1 corresponds to the generated
candidate hidden state and h<t1> ∈ Rd1 to the real
updated hidden state; bu, br ∈ Rd1 are bias terms;
and x<tn> ∈ Rd0 represents a word embedding of
tokenized and pre-processed text.

Bi-directional GRUs (bi-GRUs) process a se-
quence in forward and backward directions, i.e.,
the same gated mechanism is applied from both
directions to the sequence. The final hidden state
output is the concatenation of both outputs, cap-
turing information from past and future sequences.
For a text, X , the final vector representation is

X =
−−−−→
h<tN> ∥ ←−−−h<t1>

where ∥ represents the concatenation of two vec-
tors.
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Dataset Target Train Test
%Favor %Against %Neutral #Total Train %Favor %Against %Neutral #Total Test Sentence Length - Mean

SemEval 2016 Stance Dataset - Task A
Athesim (AT) 17.93 59.26 22.81 513 14.55 72.73 12.73 220 102.77
Climate Change is Real Concern (CC) 53.67 3.80 42.53 395 72.78 6.51 20.71 169 101.2
Feminist Movement (FM) 31.63 49.40 18.98 664 20.35 64.21 15.44 285 103.4
Hillary Clinton (HC) 17.13 57.04 25.83 689 15.25 58.31 26.44 295 102.7
Legalization of Abortion (LA) 18.53 54.36 27.11 653 16.43 67.50 16.07 280 103.9

Total 25.84 47.87 26.29 2914 24.34 57.25 18.41 1249 102.95 (Overall Mean)
MPC Query Data

E-Cigarettes (EC) 20.76 40.83 38.41 289 26.61 37.90 35.48 124 144.58
MMR Vaccine (MV) 26.52 33.70 39.78 181 30.77 42.31 26.92 78 157.83
Sunlight Cancer (SC) 29.24 22.03 48.73 236 33.98 25.24 40.78 103 124.09
Vitamin C (VC) 38.14 26.80 35.05 194 44.05 19.05 36.90 84 145.74
HRT (HT) 19.19 55.23 25.58 172 12.16 55.41 32.43 74 148.83

Total 26.49 35.26 38.25 1072 29.81 35.21 34.99 463 143.18 (Overall Mean)
Ideological Online Debates

Existence of God (EG) 48.28 51.72 NA 667 48.60 51.40 NA 286 678.59
Healthcare (HC) 50.00 50.00 NA 466 56.22 43.78 NA 201 715
Gun Rights (Gu R) 72.19 27.81 NA 748 72.90 27.10 NA 321 720
Gay Rights (Ga R) 64.40 35.60 NA 1444 63.06 36.94 NA 620 807.5
Abortion (AB) 54.04 45.96 NA 805 56.65 43.35 NA 346 746.13
Creationism (CR) 33.91 66.09 NA 861 37.67 62.33 NA 369 958.43

Total 55.14 44.86 0.00 4991 56.56 43.44 0.00 2143 784.68 (Overall Mean)

Table 1: Distribution of examples in all three datasets.

Approach #3: Bi-directional Gated Recurrent
Unit - Convolutional Neural Network (Zhou
et al., 2017) BiGRUs are powerful in capturing
dependencies in sequential data, but its gated mech-
anism is highly dependent on the length of a text
sequence. If the length of the sequence becomes
very large, it can suffer from vanishing gradients,
resulting in information loss from initial sequences.
Because the Online Debate Dataset (Somasundaran
and Wiebe, 2010) has an average text length that is
much higher compared to the other datasets used in
our experiments, we replicated the Bi-directional
Gated Recurrent Unit - Convolutional Neural Net-
work (biGRU-CNN) model. Using the approach
proposed by Tan et al. (2015) and used by Zhou
et al. (2017) for stance detection on Twitter data,
each value of feature map, c<i>, is obtained by
applying filter, Wg, on k concatenated consecu-
tive hidden states h<i:i+k−1> of the biGRU model.
This calculation also includes the addition of a bias
term, bg, as given in the equation below:

c<i> = g(W T
g h<i:i+k−1> + bg)

where g is a rectified linear unit function. To cap-
ture the most important semantic features, c′, max
pooling is applied over the generated feature map
C = [c<1>, c<2>, c<3>...c<N−k+1>], where N is
the input sequence length. Multiple features are
generated using different values of sliding windows
(i.e., k = 3, 4, 5), which are concatenated to obtain
a vector representation of a text sample. We refer
the reader to (Zhou et al., 2017) for more details
on the biGRU and biGRU-CNN models.

Approach #4: Bi-directional Long Short Term
Memory Models Long Short Term Memory
models (LSTMs) allow a deep network to for-
get irrelevant information. LSTMs have shown
promising results in many applications like im-
age captioning, speech recognition, chatbots, next-
character prediction and music composition, and
stance detection (Su et al., 2017; Wang et al.,
2016; Eck and Schmidhuber, 2002; Graves et al.,
2013; Sundermeyer et al., 2012; Augenstein et al.,
2016). LSTMs map an input sequence of length N ,
[x<t1>, x<t2>, x<t3>....x<tN>] into a set of hid-
den states [h<t1>, h<t2>, h<t3>, .......h<tN>] as
follows:

Γf = σ(Wf [h
<t−1>, x<t1>] + bf )

Γi = σ(Wi[h
<t−1>, x<t>] + bi)

ĉt = tanh(Wc[h
<t−1>, x<t>] + bc)

ct = Γf ⊙ ct−1 + Γi ⊙ ĉt
Γo = σ(Wo[h

<t−1>, x<t>] + bo)
h<t1> = Γo tanh(ct)

where Γf ,Γi,Γo represent the forget, input and
output gates, respectively; Wf ,Wi,Wc,Wo are the
weight matrices, bf , bi, bc, bo are the biases; ĉt and
ct are the candidate cell state and final cell state,
respectively; σ(.) is the sigmoid function; ⊙ rep-
resents the Hadmard product or element wise mul-
tiplication; and h<t1> ∈ Rd1 the real updated hid-
den state.

Similar to the biGRU, a biLSTM processes a
given sequence forward and backward; the same
gated mechanism is applied from both directions to
the sequence. The final hidden state output is the
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concatenation of both outputs. This allows the cap-
ture of information from past and future sequences.
For a text, X , the final vector representation is
X =

−−−−→
h<tN> ∥ ←−−−h<t1>.

Approach #5: Bi-directional Long Short Term
Memory - Convolutional Neural Network The
architecture of a bi-directional LSTM-CNN is sim-
ilar to biGRU-CNNs, except the outputs of consec-
utive hidden layers of the LSTM are fed into the
same CNN architecture as discussed in Approach
#3.

Approach #6: Bidirectional Encoder Represen-
tations from Transformers (BERT) BERT was
developed by Google AI Language as a language
representation model (Devlin et al., 2018a). It is a
masked language model which generates contex-
tual embeddings for each token in the raw text by
incorporating context in both left and right direc-
tions in the sentence. It has also been used for next
sentence prediction (Devlin et al., 2018b). We fine-
tuned the BERT base model (uncased) for stance
detection with 50 epochs, a batch size of 32, and
a maximum sequence length of 128. We used 512
tokens per sequence and a learning rate of 2e-5.
We used the pooled output from the final layer of
BERT model and applied a dropout of 0.1 followed
by a Dense layer with a sigmoid activation function.
We note that BERT was trained in an early stopping
fashion.

3.3 Experimental Setup

Data Preprocessing In line with Mohammad
et al. (2016), for all other models except the SVM,
the text was preprocessed as follows. Each text
sample was converted to lowercase characters.
Retweets, URLs, and hashtags were removed when
applicable. Stop words and punctuation were re-
moved to then create an array of tokens. To cre-
ate a vocabulary dictionary, all unique words (i.e.,
keys) in the dataset were assigned a unique num-
ber (i.e., value) corresponding with its index in the
dictionary. Indices 0, 1, and 2 were reserved for
padding (_PAD_), end of sentence (_</e>_), and
unknown tokens (_UNK_), respectively. Each text
sample was then transformed into a numerical ar-
ray, which consisted of the value corresponding to
each key (i.e., word in the sentence) in the vocabu-
lary dictionary. The resulting array was padded to
the maximum sentence length.

Training and Testing Like Mohammad et al.
(2016), all models were trained on all three classes
for the SemEval and MPCHI datasets, and the
NEUTRAL/NEITHER class was not considered dur-
ing testing. Further, because the Ideological dataset
only consist of two classes, all models were trained
on these two classes for this dataset.

We considered several experiments: one model
trained per target, a model trained on all targets,
and a model trained on one dataset and tested on the
others. For all models except BERT, we performed
five-fold cross-validation with 50 epochs per fold.
We used the same hyperparameters as Zhou et al.
(2017) for all neural network models, along with
using GLOVE (Global Vectors for Word Represen-
tation) Wikipedia embeddings (Pennington et al.,
2014). These hyperparameters were obtained by us-
ing a grid search on the biGRU model. For BERT,
we used the same hyperparameters as Ghosh et al.
(2019). All hyperparameters are listed in Table 4.

3.4 Evaluation
In line with the evaluation metric used in the
SemEval-2016 Task 6A and other studies, we em-
ploy the macro-average of the F1 score of detecting
FAVOR and AGAINST stance.

Ffavor =
2PfavorRfavor

Pfavor +Rfavor

Fagainst =
2PagainstRagainst

Pagainst +Ragainst

Favg =
Ffavor + Fagainst

2

4 Results

4.1 Performance Per Dataset
SemEval 2016 Stance Dataset According to Ta-
ble 2, BERT outperforms all models across all tar-
gets, excluding LA, for the SemEval dataset. We
note that the BERT model learns contextual de-
pendencies in a sentence, while sequence learning
models, biLSTM and biGRU, are based on GLOVE
embeddings which do not take context into account.
We also observe some merit (6 of 10 experiments
showed increased accuracy with the added CNN
layer) with adding the CNN layer for other models;
biGRU-CNN outperformed biGRU for targets AT,
CC, FM, LA by an average of 4.8%. biLSTM-CNN
outperformed biLSTM with an average increase of
1.95% on targets FM and HC.
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Dataset Target Models
SVM biGRU biGRU-CNN biLSTM biLSTM-CNN BERT

AT 58.72 54.33 60.21 54.67 56.35 69.41
CC 43.01 40.57 43.22 42.11 42.00 44.21

SemEval-2016 TaskA FM 58.18 52.30 53.75 57.06 56.58 58.72
HC 58.04 53.35 44.77 54.05 54.68 69.78
LA 64.55 59.22 63.40 61.83 57.73 59.30
Overall 62.11 57.45 56.19 54.67 54.54 66.24
EC 60.96 52.89 59.29 57.89 60.99 60.21
MV 75.38 56.75 62.79 59.42 66.93 44.50

MPCHI SC 59.97 50.13 57.99 60.79 57.88 67.57
VC 61.64 56.91 49.87 40.80 48.56 67.13
HT 55.13 59.00 47.57 44.26 60.56 41.38
Overall 58.51 54.92 60.72 57.46 59.44 58.22
EG 65.58 54.57 59.70 53.49 59.31 54.73
HC 63.75 60.21 61.00 59.27 59.38 64.88
Gu R 68.85 58.10 62.55 64.35 64.76 42.30

Ideological Online Debates Ga R 66.73 57.67 64.69 60.92 65.97 61.24
AB 65.91 58.21 62.30 58.09 61.86 57.69
CR 54.91 51.33 52.24 53.45 57.63 47.92
Overall 58.20 58.35 58.54 57.51 60.38 61.84

Table 2: F1 macro score for each model when trained and tested on the same target.

However, an interesting observation is that, with
the exception of BERT, the deep sequence mod-
els did not consistently outperform the SVM (the
biGRU-CNN outperformed the SVM for AT and
LA targets). We attribute the poor performance
of deep learning models to their need for a large
number of examples, which is not available in the
SemEval dataset. We suspect that the BERT model
outperformed SVM in most cases because it is a
pre-trained model which is fine-tuned on the data
corresponding to targets. Nonetheless, we posit
that in the case smaller datasets, a SVM with a Tf-
Idf vector captures more stance expressing features
than deep learning sequence models.

MPCHI Dataset As shown in Table 2, we again
observe that the SVM outperforms all models in
most cases (EC, MV, HT). For biLSTM-CNN, the
performance was increased by adding the CNN
layer to biLSTM by an average of 8.85% for targets
EC, MV, VC, and HT. Adding the CNN layer to
biGRU boosted its performance by an average of
6.76% for targets EC, MV, and SC.

Further, the biLSTM-CNN’s performance was
improved by an average of 7.2% compared to bi-
GRU’s performance. We suspect this is due to the
ability of these models to forget and the text sam-
ple size. The number of examples in the MPCHI
dataset is one-third of the number of examples in
the SemEval dataset, although the MPCHI has a
greater average sentence length. Sequence models
like biGRU and biLSTM can automatically extract
stance expressing features from a sentence of ad-
equate length, which should not be too short or
too long. However, the biLSTM may be a more
optimal model than biGRU since the biLSTM can

forget irrelevant information while biGRU does
not. Also, since sentences with high length will
result in larger sequences to classify, the problem
of vanishing gradient descent might arise.

Ideological Online Debates Dataset From Table
2, it can be observed that the SVM outperformed
other models for targets EG, Gu R, Ga R, and AB.
The biLSTM-CNN outperformed biLSTM for all
targets by an average of 3.68%. The biGRU-CNN
outperformed biGRU for all targets by an aver-
age of 3.41%. It is important to note that BERT’s
performance was generally poorer than previously
observed for the other datasets. We attribute this to
its limitation of the maximum processing sequence
length of 512 for this dataset, whereas the actual
average sentence length is greater than 512. There-
fore, truncating the rest of the text leads to a loss
of information.

We note that the Ideological dataset has the high-
est sentence average length (see Table 1). An
interesting observation here is that given an ad-
equate sequence length, both biLSTM-CNN and
biGRU-CNN outperformed their non-CNN added
version for all targets. However, for the SemEval
and MPCHI datasets, where the sequence length
is relatively small, these CNN-added models were
only able to outperform on some targets. We at-
tribute this to feeding the output of the bidirectional
layers to a CNN, which further enables the model
to capture most stance semantic features from the
feature map.

4.2 Performance Per Stance Detection Model

biGRU and biGRU-CNN For the biGRU and
biGRU-CNN models, Table 2 shows that adding a
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Tested On Trained on SemEval 2016 Task 6A
SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT

SemEval 2016 Task 6A 72.00 65.38 66.53 63.85 67.37 66.18
MPCHI 46.52 56.79 54.73 54.26 56.9 36.80
Ideological Online Debates 45.19 45.95 46.25 46.22 44.46 52.51
Tested On Trained on MPCHI

SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT
SemEval 2016 Task 6A 55.15 49.81 48.50 45.34 48.55 50.06
MPCHI 74.00 65.05 73.69 67.73 72.03 77.77
Ideological Online Debates 48.89 52.66 51.54 51.57 52.91 38.90
Tested On Trained on Ideological Online Debates

SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT
SemEval 2016 Task 6A 50.73 47.03 49.19 47.19 43.52 39.96
MPCHI 35.97 51.80 47.56 51.34 47.57 49.61
Ideological Online Debates 59.00 58.35 58.54 57.61 60.38 60.28

Table 3: F1 macro score for each model when trained on one dataset and tested on another dataset.

CNN layer to the hidden layer outputs of biGRU
generally provides improved F1 macro scores in
the SemEval and MPCHI datasets. We suspect
that feeding the output of the bidirectional layers
of the biGRU, which contains information about
dependencies in a text sequence, into CNN layers
with different filter sizes, enables the model to bet-
ter capture important semantic features. A further
possible explanation for the lower accuracy of the
biGRU could be the lower average sentence length
(after pre-processing) of 9 tokens in the SemEval
dataset and 15 tokens in the MPCHI dataset, caus-
ing the biGRU to fail to recognize dependencies in
the sequence; the CNN layer enabled the biGRU
to better capture dependencies. This claim is sup-
ported by the fact that the biGRU-CNN performed
better than SVM for targets AT, CC, and LA. On
the other hand, the poor performance of biGRU for
the Ideological Debates dataset can be attributed to
longer sequences, which may be difficult to process
and identify within sentence dependencies.

biLSTM and biLSTM-CNN Table 2 also shows
the F1 macro score of the biLSTM and biLSTM-
CNN models. First, when trained and tested on
the SemEval dataset, the biLSTM did not outper-
form the SVM. Further, adding a CNN layer did
not improve the performance of biLSTM except
for target AT and slightly for FM and HC. This is
attributed to the lower sequence length. This claim
is supported by the performance of biLSTM-CNN
on MPCHI targets, where it outperformed the biL-
STM along with biGRU and biGRU-CNN models
in most cases, possibly because the LSTM is ca-
pable of forgetting irrelevant information, which
enables it to capture more accurate dependencies
in the text sequence than the biGRU.

BERT The BERT model is capable of capturing
contextual information for each token in a text se-
quence, both in the left and right directions. Being
an attention model, it also directs attention towards
the desired word in the sequence. One interesting
observation is that while the BERT model performs
best in SemEval, except for target LA, it does not
perform well on EC, MV, HT, and overall in the
MPCHI dataset. Similarly, for the Ideological De-
bates dataset, it does not perform better than SVM
and other sequence models. We attribute this to the
following observations. First, the number of train-
ing examples in the SemEval dataset is three times
the number of examples in the MPCHI dataset.
Further, the F1 macro score is computed for the
Favor and Against classes only; the percent-
age of training examples is larger for the SemEval
dataset (73.71%) compared to the MPCHI dataset
(61.75%). For the Ideological Debates dataset, the
mean sentence length is 784.68, whereas BERT
can be trained on a maximum of 512 tokens. It is
important to observe that the mean sentence length
in the SemEval dataset is smaller (102.95) than
the MPCHI dataset (143.18). However, BERT per-
formed better on the former given the higher num-
ber of training examples.

4.3 Cross-Dataset Stance Detection

We investigated the performance across datasets
(trained on one dataset and tested on the others)
to determine the generalizability of each model.
Our datasets are diverse in size and text types, thus
motivating this analysis. Specifically, in SemEval,
the average sentence length is 102.95 words. In
MPCHI, the average sentence length is 143.18
words. In Ideological Online Debates, the average
sentence length is 784.68 words. Detailed results
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are given in Table 3.
Overall, we find that each model generalizes

poorly, highlighting the need for more robust al-
gorithmic solutions to stance detection, especially
for cross-dataset stance detection. Performance
degradation could be attributed to many factors,
including diversity of topics across datasets, diver-
sity in sample sizes, and the failure of models to
capture sequential information as the dataset sizes
change. Specifically, the datasets used in this work
comprise of contextually diverse targets and do-
mains. There is some domain overlap in SemEval
and Ideological Debates (e.g., (AT, EG) and (FM,
LA, AB)), but the number of training examples in
these datasets vary. Therefore, a model trained on
less training data might under perform due to low
and imbalanced learning. Since deep learning mod-
els are capable of capturing relevant information
from the data automatically, they fail to generalize
over datasets when trained on fewer data and signif-
icantly varying text lengths. Therefore, while using
deep learning models, a large number of examples
per target with adequate text length contributes
highly towards training on prediction performance.

The common use of GLOVE embeddings could
also play role in poor generalization across datasets.
GLOVE embeddings in sequence models do not
take context into account. Unlike sentiment analy-
sis, where the positive, negative and neutral words
are similar across datasets, stance analysis is de-
pendent on the revolving context around the target.
Cross-dataset stance detection might be improved
by using contextual embeddings for training.

4.4 Runtime Performance Comparison

Table 4 provides scaled runtimes (training time)
and scaled performances according to Table 2 for
experiments considered. This table serves as a
reference when deciding on the best-case model
architecture in consideration of sample size and
sentence lengths, in-dataset versus cross-dataset
stance detection, and whether the stance detec-
tion model extracts semantic context. For example,
when choosing between biLSTM-CNN and BERT
for a dataset similar to MPCHI, this table suggests
that although the biLSTM-CNN has lower average
per target training runtime, while BERT has higher
runtime, the per target performance is medium for
both models. Because of this, the biLSTM-CNN
can be chosen over BERT. Importantly, note that all
experiments were run on a NVIDIA A40 GPU with

four GPUs per task and 500GB memory. The pro-
vided categories in Table 4 are dependent on this
setup. The exact runtime in seconds and all code
files of the experiments in this paper are available at
the following Github link: https://github.com/nlp-
grp/stance_comparison

5 Discussion and Recommendations

Prior work identifies a linear relationship between
the labels in stance detection and sentiment analysis
— that is, Positive = Favor and Negative
= Against (ALDayel and Magdy, 2021). How-
ever, an author can also express a negative senti-
ment, while being in favor of the target. For exam-
ple, in the following tweet “The statement of ‘Guns
kill people, Guns kill children’ is false guns don’t
kill people, people kill people. Guns should be al-
lowed everywhere GUNS ARE GOOD”, TextBlob
(Loria, 2018), a Python text processing library, pre-
dicts its sentiment as negative, whereas the ac-
tual stance of this tweet towards the target of Gun
Rights is Favor. Thus, sentiment is based on the
polarity of words in the text, which are more likely
to persist across datasets and varying domains. On
the other hand, it is evident from Table 3 that the
current benchmark stance detection models gen-
eralize poorly across datasets. This is due to the
expression of stance toward a specific target, and
hence the dependence on semantic context. Specif-
ically, semantic context differs with the target, in
addition to the domain of the text. For example, in
the SemEval dataset, targets Feminist Movement
and Legalization of Abortion can be categorized to
a similar domain of women’s rights. However, a
stance detection model trained on the target of Le-
galization of Abortion can only perform well when
tested on the target of Feminist Movement if it has
learned the semantic contextual knowledge. This is
called cross-target stance detection (Conforti et al.,
2021).

We can consider cross-target stance detection a
subtask of cross-dataset stance detection. That is,
the limitations associated with cross-target stance
detection were observed in this work for cross-
dataset stance detection. It is evident from Table 3
that all models trained on the SemEval dataset gen-
eralize poorly when tested on the MPCHI dataset
as the model cannot adapt knowledge from one
domain to another. We anticipate improved gen-
eralization of models across datasets if the targets
in both datasets belong to similar domains, thus
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Model Hyperparameters Context Average per Target training Run Time Per Dataset training Run Time Per Target Performance per Dataset Cross-Dataset Performance per Dataset

LR = Learning Rate SemEval MPCHI Ideological SemEval MPCHI Ideological SemEval MPCHI Ideological SemEval MPCHI Ideological

SVM Grid(’kernel’: [’rbf’], ’gamma’:
[1e-3, 1e-4], ’C’: [1, 10, 100,
1000], ’kernel’: [’linear’], ’C’: [1,
10, 100, 1000])

N L L L H L H H H H P H P

BiGRU LR: 1e-3, batch size:50,
Batch Size: 32, dropout: 0.3,
Optimizer: Adam, activa-
tion=’softmax’

N M L H M H H P P P H P H

BiGRU-CNN LR: 1e-3, batch size:50, Batch
Size: 32, dropout: 0.3, Opti-
mizer: Adam, activation=’relu’

N M L M L M M M M M H H H

biLSTM LR: 1e-3, batch size:50,
Batch Size: 32, dropout: 0.3,
Optimizer: Adam, activa-
tion=’softmax’

N M L H L M M M P P H P H

biLSTM-CNN LR: 1e-3, batch size:50, Batch
Size: 32, dropout: 0.3, Opti-
mizer: Adam, activation=’relu’

N M L M L M M P M M H H H

BERT LR:2e-5, Epochs:50, Max Seq
Length:[(Semeval, MPCHI): 128,
Ideological: 512]

Y H H L L M L H M M P P H

Table 4: Comparison of runtime and performance of all models for Per Target and Per Dataset stance detection. Per
Target Run Time: Runtime mean in seconds per model when trained per target for all datasets, categorized as L:
Low, M: Medium, or H: High. Per Target Performance: Ranked performance of all stance detection models ranked
from 1 to 6 (best to worse), with 1-2: H (High), 2-4: M (Medium), 5-6: P (Poor). Per Dataset Run Time: Runtime
of each model when trained on the whole dataset, categorized as L: Low, M: Medium, or H: High. Performance
per Dataset: For each model, the mean of macro F1 scores when trained on one dataset and tested on the other two
datasets, categorized as P: Poor, M: Medium, or H: High. Note that all experiments were run on a NVIDIA A40
GPU with four GPUs per task and 500GB memory.

allowing the model to leverage similar linguistic
and semantic cues.

Further, we also found all deep learning stance
detection methods except BERT to be trained us-
ing GLOVE embeddings. As noted previously,
GLOVE embeddings do not capture context. Fu-
ture work should consider the use of pre-trained
models or their embeddings for training sequence
models, such as BERT, Sentence Bert (Reimers and
Gurevych, 2019), Universal Sentence Encoder em-
beddings (Cer et al., 2018), or Contextualized Word
Vectors embeddings (McCann et al., 2017). This
will enable the model to learn semantic contextual
dependencies, likely leading to better performance.

Finally, we often observed performance degrada-
tion due to smaller dataset sizes. To cope with this,
we suggest future work investigate the use of sam-
pling techniques like random sampling, SMOTE
(Synthetic Minority Over-Sampling Technique)
(Chawla et al., 2002), synthetic data augmentation
techniques like EDA (Easy Data Augmentation)
(Wei and Zou, 2019), and synthetic data integration,
such as paraphrase generation, to handle highly un-
balanced data (Liu et al., 2019). Zero-shot learning
has also shown improvement in these types of cases
(Allaway et al., 2021).

6 Conclusion

In this paper, we replicated six popular stance de-
tection approaches and analyzed them using three

publicly available datasets. We explored how well
these methods perform in stance detection per and
across each dataset. Our results show that current
methods generalize poorly, potentially due to the di-
versity in targets and the use of deep models which
do not consider semantic contextual information,
such as meaning and domain specificity. In our ex-
periments, BERT is the only model which captures
semantic context; all other deep learning models
are trained on GLOVE embeddings which do not
capture context. We also explored the SVM, an-
other baseline stance detection model, which only
captures surface-level vocabulary statistics. Our ob-
servations and recommendations for future work,
such as the use of sampling techniques to increase
dataset sizes and the use of pre-trained models like
Sentence Bert to capture context, are also noted.

To expand this work, we will test similar meth-
ods for cross-target stance detection. We are
also developing techniques to improve cross-target,
cross-domain, and cross-dataset stance analyses.
We will also consider larger datasets like the Will-
They-Won’t-They dataset proposed by Conforti
et al. (2020), and other baseline models for cross-
target stance detection such as those proposed by
Augenstein et al. (2016), Du et al. (2017), and Xu
et al. (2018).
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Abstract

Computing the semantic similarity between
two texts is crucial in various NLP tasks. For
more than a decade, a framework, known as
Semantic Textual Similarity (STS) has been
used to test computational models of semantic
similarity (Agirre et al., 2012). The STS evalu-
ation framework assumes that a model that per-
forms well for the general STS task should also
perform well for specific application-oriented
tasks. However, does this assumption indeed
hold? This study empirically demonstrates that
the answer is not always positive. We found a
considerable gap between model performance
in STS and each specific task. We identified
three factors that contributed to the gap, namely,
(i) sentence length distribution, (ii) vocabulary
coverage, and (iii) granularity of gold-standard
similarity scores. We believe that these find-
ings will be considered in future research on
semantic similarity.

1 Introduction

Computing the semantic similarity between two
texts is crucial in various NLP tasks. One promi-
nent cluster of application examples is the use of
semantic similarity as a metric for evaluating auto-
matically generated text (e.g., machine translation
and text summarization) considering gold reference
texts (Zhang et al., 2020a; Sellam et al., 2020; Rei
et al., 2020). Such semantic similarity metrics are
also reported effective as a loss function for training
language generation models (Wieting et al., 2019;
Yasui et al., 2019). Another common application of
the semantic similarity can be seen in text/sentence
retrieval, where estimating the relevance between a
given query and retrieved texts is an essential com-
ponent (Chen et al., 2017; Karpukhin et al., 2020;
Gao et al., 2021a; Qu et al., 2021).

For more than a decade, a framework, known as
Semantic Textual Similarity (STS) has been widely
used to test computational models of semantic sim-
ilarity (Agirre et al., 2012). Over the last decade,

STS has emerged as the de-facto standard task for
evaluating semantic similarity models, and numer-
ous studies have been published to propose seman-
tic similarity models over a decade (Severyn et al.,
2013; Lan and Xu, 2018; Reimers and Gurevych,
2019; Li et al., 2020; Zhang et al., 2020b; Yan
et al., 2021; Giorgi et al., 2021; Gao et al., 2021b;
Chuang et al., 2022, etc.).

The STS evaluation framework assumes that a
model that performs well for the general STS task
should also perform well for specific application-
oriented tasks. Based on this assumption, models
proposed for and evaluated on STS have been ap-
plied to application-oriented tasks. For example, in
machine translation (MT) evaluation, for the model
incorporating several universal sentence encoders
(USE) (Conneau et al., 2017; Logeswaran and Lee,
2018; Cer et al., 2018), which performed well on
STS, had the highest performance in WMT18 (Shi-
manaka et al., 2018). In addition, for semantic re-
trieval, STS-based models such as USE have been
developed and validated their effectiveness (Yang
et al., 2020). These studies appear to provide em-
pirical evidence supporting the assumption that
STS performs well as a general proxy for specific
application-oriented tasks.

However, in this study, we question this widely
accepted assumption. Specifically, we empirically
investigated whether semantic similarity models
superior to the general STS task perform better on
specific application-oriented tasks. In the exper-
iments, we chose two representative application-
oriented tasks, MT Metrics (MTM) and passage
retrieval (PR), and investigated the correlation of
the performance of numerous (> 20) sampled mod-
els between STS and each specific task. From the
results, we gained several findings as follows:

• Semantic similarity models exhibited a non-
negligible gap in performance on STS and
each specific task (i.e., MTM or PR) (Fig. 1).
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• The discrepancies appeared to be caused by
the discrepancies between the STS dataset and
each application-specific dataset, including
(i) sentence length distribution, (ii) vocabu-
lary coverage, and (iii) granularity of gold-
standard similarity scores.

The identified gap, which we refer to as the eval-
uation gap, indicates that the assumption in ques-
tion does not necessarily hold and demonstrates
the potential dangers of relying solely on the cur-
rent STS-based evaluation alone in studying the
semantic similarity. We believe that our findings
will be considered in future research on the crucial
components of NLP.

2 Related work

The necessity of the semantic similarity in
application-oriented tasks. Semantic similarity
is required in various NLP application tasks, and
STS was motivated by being a surrogate task for
such application-oriented tasks (Agirre et al., 2012;
Cer et al., 2017). These tasks comparing simi-
larity can be categorized into two types, namely,
(1) reference-based evaluation and (2) semantic
retrieval. For example, the reference-based evalua-
tion is commonly used in the natural language gen-
eration (NLG) fields such as MT, summarization,
and simplification. Semantic retrieval includes PR,
dialog retrieval, as well as machine reading compre-
hension. Among these application-oriented tasks,
we selected (1) MT evaluation and (2) PR as repre-
sentatives, respectively.

In fact, MT evaluation and semantic retrieval
have several examples that incorporate STS-based
models. For example, Castillo and Estrella (2012);
Shimanaka et al. (2018) applied STS model for
MT evaluation and demonstrated the effectiveness
of those models. For semantic retrieval, Yang
et al. (2020) demonstrates the effectiveness of mul-
tilingual USE as a semantic retriever. Following
this success, recent semantic similarity models
have also reported performance as semantic re-
trievers (Gao et al., 2021b; Chuang et al., 2022).
However, relying on the STS evaluation for seman-
tic similarity models could be risky when there
is no sufficient correlation between the evaluation
of STS and application-oriented tasks. We inves-
tigates the evaluation gap between STS and two
tasks, such as MT evaluation and PR, to identify
vulnerabilities in the STS evaluation in the real
world.

Validity of NLP evaluation protocol. Recently,
the validity of evaluation protocols, such as bench-
mark datasets (Bowman and Dahl, 2021) or met-
rics (Mathur et al., 2020; Durmus et al., 2022) has
been questioned on various NLP tasks. Many stud-
ies have identified the bias or lack of certain factors
in the evaluation protocol. Søgaard et al. (2021);
Varis and Bojar (2021) investigated the effects of
differences in the sentence length distribution be-
tween train and test sets. Additionally, a difference
in vocabulary distribution (domain mismatch) is
also often mentioned as an important factor affect-
ing the evaluation (Zhang et al., 2020b; Wang et al.,
2022). In terms of an STS-specific factor, Reimers
et al. (2016) highlighted the difference in the gran-
ularity of similarity between STS and downstream
tasks. They focus on appropriate task-intrinsic eval-
uation metrics for STS-based models, considering
different downstream tasks; however, their thought
is also based on the assumption that the STS-based
models are useful for the downstream tasks. In our
study, we question this assumption. Based on these
previous studies, we analyze the effects of three
factors, sentence length, vocabulary, and similar-
ity granularity, contributing to the evaluation gap
between STS and the application-oriented tasks.

Discussion of the problems of STS benchmark.
While many models have been proposed using the
STS evaluation, some studies have also questioned
the STS or conducted an additional evaluation for
specific factors that are not captured by the STS
evaluation. Wang et al. (2021) argue that previ-
ous studies rely on the STS evaluation and argues
that STS lacks domain adaptability. Futhermore,
Liu et al. (2021) did not adopt the STS evalua-
tion because of the lack of domain coverage and
lack of consideration for context, so they created
a new contextual dialog domain STS dataset. In
addition, Wieting et al. (2020) extracted a more
difficult subset which contains the examples with
low word overlap by focusing on a specific factor
such as word overlap. Wang et al. (2022) focused
on the discrepancy between the evaluation of STS
and single-sentence downstream tasks in SentEval,
highlighting the problems of domain mismatch and
ambiguous annotations. In comparison, we investi-
gated whether STS satisfies the original motivation
for application-oriented tasks practically using se-
mantic similarity (Agirre et al., 2012; Cer et al.,
2017).

In summary, we shed the light on the specific
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Figure 1: Correlation between evaluation using STS and
that using task-specific datasets, such as MT Metrics
(MTM) and Passage Retrieval (PR).

factors such as sentence length, vocabulary, and
similarity granularity to make the relationship to
the evaluation gap explicit. We provided the first
evidence that STS has a considerable evaluation
gap even from two tasks, such as MT evaluation
and PR that have been considered representative
application tasks since the inception of STS.

3 Is there a gap between evaluation using
STS and that using individual tasks?

STS dataset (Agirre et al., 2012; Cer et al., 2017)
was proposed as a semantic similarity benchmark
that can be directly applied to several NLP tasks
and is currently the de-facto standard for evaluat-
ing semantic similarity models. In this study, to
validate the STS benchmark, we conducted com-
prehensive experiments to examine whether there
is a sufficient correlation between the evaluation
results on STS and that on two specific application-
oriented task datasets.

3.1 Tasks and datasets

General settings. We present the definitions of
three tasks—STS and two application-oriented
tasks—that must capture the semantic similarity
addressed in this study. The main structure of all
three tasks is comparing a sentence pair (s, s′) and
predicting the semantic similarity score between
the two sentences. We selected two application-
oriented tasks, MTM and PR, on which the STS
motivation is focused. The two tasks are identical
in that they require considering the semantic simi-
larity, but they are very different in nature. MTM
compares relatively similar sentence pairs and pro-
vides a gradation score as the gold standard. PR
compares sentence pairs with large differences in
sentence length and provides a binary label (related
or not) as the gold standard. We examine the eval-

uation gap between these two different tasks and
STS to test the adaptability of the STS evaluation
to different tasks.

STS (STS-b). STS (Agirre et al., 2012) is a task
that compares a sentence pair (s1, s2) and predicts
a similarity score between the two sentences. The
gold-standard similarity score is provided in the
range of 0-5. Model prediction scores are evalu-
ated using Pearson or Spearman correlations with
the gold standard. In this study, we used Pear-
son correlation. We used the STS-b dataset (Cer
et al., 2017) with image captions, news articles,
and forum domain data over a 5-year pilot task
(STS12-17).

MT Metrics (WMT17). MT Metrics (MTM) is a
task that compares a (model hypothesis, reference)
pair and predicts the adequacy scores of the model
hypothesis relative to the reference. In this study,
we use the segment-level Direct Assessment dataset
(to-English) in WMT17 (Bojar et al., 2017).1 We
selected this because of the reliability of the manual
scores (Zhang et al., 2020a; Sellam et al., 2020).
The gold standard score is the normalized value of
scores manually evaluated with 100 scales to the
pair (model hypothesis, reference). The Pearson
or Kendall correlation between the gold standard
and the model prediction score is usually used in
the evaluation. In this study, we used the Pearson
correlation.

Passage Retrieval (MS-MARCO). Passage Re-
trieval (PR) is an important subtask of question-
answering that is required to improve the per-
formance of search systems used by many
users. We use passage re-ranking data from MS-
MARCO (Bajaj et al., 2018) as a dataset for PR.
MS-MARCO is a highly competitive dataset that
has been used as a PR benchmark in several stud-
ies (Gao et al., 2021a; Qu et al., 2021). Passage
re-ranking must re-rank 1,000 candidate passages
for a query in the order of their relevance to the
query. Generally, the model predicts the relevance
of each candidate sentence to the (query, passage)
pair and extracts the sentence with the highest rel-
evance score. Models are usually evaluated using
Mean Reciprocal Rank (MRR), which determines
whether passages with a gold-standard related la-
bels appear at the top after re-ranking.

1We use cs–en, de–en, fi–en, lv–en, ru–en, tr–en and zh–en
datasets, which are sourced from news domain texts. https:
//www.statmt.org/wmt17/results.html
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3.2 Semantic similarity prediction model

A semantic similarity prediction model usually in-
volves the following two steps: (i) obtaining a sen-
tence representation and (ii) calculating the similar-
ity between two representations.

To determine whether there is an evaluation gap
between various models, we measured the cor-
relation between the evaluation results on STS
and those on the two application tasks. In this
study, we used the following 23 semantic similar-
ity prediction models: BoW-{raw, TFIDF}-sum,
BoV-{Word2vec*, Glove, Fasttext}-{mean, max},
USE-{normal, large}, Avg. of BERT-{BERT-base-
uncased (bbu), RoBERTa-large (rl)}, BERTScore
(BScore)-{BERT-base-uncased, RoBERTa-large}-
{precision, recall, F1-score}, Sentence-BERT
(SBERT)-{bertbase-NLI-mean, MiniLM, mpnet},
and SimCSE-{supervised, unsupervised}.2

3.3 Experimental procedure and results

Fig. 2 compares the evaluation for each semantic
similarity prediction model on STS and the two
application tasks, MTM and PR. The x-axis rep-
resents the semantic similarity prediction models,
which are ordered by decreasing the performance
on STS from left to right. Compared with STS, the
performance of each model differs largely in both
MTM and PR. For the STS evaluation, SBERT (mp-
net: 0.86) outperforms BScore (RoBERTa-large,
F1-score: 0.55); however, in the MT evaluation
task (MTM), those performances are inverse as
SBERT (0.66) < BScore (0.76). By comparing
STS and PR, the performances of the SBERT-bb-
NLI, the original model in (Reimers and Gurevych,
2019), and BoW models are much lower with PR
than with STS. Both STS and MTM, both correla-
tion measures have a similar trend for model rank-
ing in each task (Fig. 2), thus we used the Pearson
correlation in each task’s evaluation. In addition,
we calculated Spearman correlation coefficients be-
tween the performance on STS and that on each
task to precisely visualize these performance gaps
(Fig. 1). Here, we define these correlation coeffi-
cients as the value of the evaluation gap. A lower
correlation value indicated a larger evaluation gap.
In Sec. 4, we examine changes in the evaluation
gap when the explanatory variables (e.g., sentence
length, vocabulary coverage, similarity granularity)
are changed.

2* We remove Word2vec models due to computational
order in PR.

(a) STS

(b) MT Metrics

(c) Passage Retrieval

Figure 2: Performance of semantic similarity models on
STS and task-specific datasets (MT Metrics and Passage
Retrieval).

4 What factors cause the evaluation gap?

As mentioned in Sec. 3, there is a large gap be-
tween the specific application-oriented tasks and
STS used as frameworks for evaluating the sen-
tence similarity prediction models. In this section,
we discuss three potential factors contributing to
the gap between evaluation frameworks, as well as
the dataset features that should considered to when
using STS for evaluation.
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Figure 3: Histogram of sentence length in STS and two
application-oriented datasets (MT Metrics: MTM and
Passage Retrieval: PR).

4.1 Factor 1: difference in sentence length
In the following, we discuss the sentence length
(i.e., the number of words in a sentence). Words are
commonly used as the basic unit in NLP models.
This is also true when making predictions of seman-
tic similarity measures. We focused on the large
variance in the number of words (i.e., sentence
length) in the target text for similarity measure-
ment. For example, in PR, the model should handle
very short search snippets (queries) or very long
documents (passages). Some studies reported that
differences in the sentence length distributions pro-
duce different scores on different test sets (Søgaard
et al., 2021; Varis and Bojar, 2021). Therefore, we
hypothesize that differences in the distribution of
sentence lengths by task may result in an evaluation
gap.

4.1.1 Short sentence length in STS benchmark
Here, we demonstrate that the STS dataset has
shorter sentence lengths than the datasets for other
specific tasks, such as MTM and PR. Histograms
of the sentence length distribution for each dataset
are presented in Fig. 3. Note that the PR queries
contain many short nonsentences, such as “define
preventive.” Compared with the sentence length
distribution of the application-oriented task, STS
has a biased sentence length distribution consisting
of short sentences.

4.1.2 Does the sentence length gap cause the
evaluation gap?

There is a difference in the sentence length distribu-
tion between STS and the application-oriented task
datasets. Here, we investigate whether eliminating
the difference in sentence length between the STS
and the application tasks alleviates the evaluation
gap.

Settings. We created subsets of the application-
oriented datasets (MTM and PR) to match or dif-
fer the STS sentence length distribution, and then,
compared the correlations between the STS eval-
uation result and each subset’s result for the dif-
ferent models. The subset [x, y) was drawn from
a range of sentence lengths [x, y) according to
the STS distribution. In MTM, the subsets were
split based on the average sentence length of the
sentence pairs. In PR, the split was based on the
length of the passage because of a large-sentence
length difference between the query and passage.
Histograms of the created subsets according to sen-
tence length distribution are shown in Fig. 4. We
created MTM subsets from [0, 40) to [30, 70) and
PR subsets from [10, 50) to [40, 80). The shorter
MTM subsets, such as [0, 40) and [5, 45), had
nearly the same distribution as the STS set. Note
that we could not create a subset of PR with the
same distribution as STS because the original sen-
tence length distributions were very different. We
investigated whether correlations were lower in the
task-specific datasets (i.e., the evaluation gap was
amplified) when their sentence length distribution
was more different from that of STS.

Results. Figs. 5(a) and (b) present the Spearman
correlations between the performance of the mod-
els on STS and those on the MTM and PR subsets
with adjusted sentence length distributions, respec-
tively. For MTM, the greater the difference in the
sentence length distribution, the lower the correla-
tion (i.e., the larger the evaluation gap). In com-
parison, no trend was observed for PR. This result
indicates that the difference in the sentence length
distribution contributes to the evaluation gap be-
tween STS and MTM.

Analysis: In-domain vs. Out-of-domain. The
STS dataset is sourced from three different domains
(news, image captions, and forum), and the sen-
tence length distribution actually differs for each
domain. We conducted additional experiments for
three sub-domain sets following the same proce-
dure using subsets, and found that the similar trends
that the evaluation gap increases with the larger sen-
tence length subset (See Appendix for details).

4.2 Factor 2: difference in vocabulary
coverage

Beyond sentence length, there are still other factors
that may contribute to the evaluation gap between
STS and the application-oriented tasks. Here, we
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Figure 4: Histogram of subsets extracted from two application tasks (MT Metrics and Passage Retrieval) according
to sentence length.

(a) MT Metrics (b) Passage Retrieval

Figure 5: Spearman correlations between performance
with STS and that with the subsets split according to
sentence length with specific tasks (MT Metrics: MTM
and Passage Retrieval: PR). The darker color represents
the lower correlation (= the larger evaluation gap). [x,
y) means that the subsets consist of the examples of the
sentence length from x to y.

discuss the vocabulary coverage of the application-
oriented tasks using STS. One reason for focusing
on this factor is that the text domains represented
in the datasets are distinct. Some studies have high-
lighted the strong dependence of the STS-based
models on domains (Zhang et al., 2020b), as well
as mismatch with a dialog domain (Liu et al., 2021).
Therefore, we hypothesize that differences in vo-
cabulary coverage due to domain differences may
influence the evaluation gap.

4.2.1 Low vocabulary coverage with STS for
vocabulary in the applications

Here, we demonstrate that the STS vocabulary does
not adequately cover task vocabulary (MTM, PR).

0.4 0.6 0.8 1.0
Vocabulary coverage with STS for (s,s')

0

1

2

3

4

5 MTM
PR

Figure 6: Histogram of the ratio of the vocabulary cov-
ered with the vocabulary of STS in the application tasks
(MT Metrics: MTM and Passage Retrieval: PR) for
each sentence pair.

For each sentence pair, we calculate the vocabu-
lary coverage, which is the recall of vocabulary in
STS (Vsts) to the vocabulary in the sentences in the
specific task (s, s′), as follows:

Recall(s, s′) =
|(s ∪ s′) ∩ VSTS|
|s ∪ s′| (1)

Fig. 6 shows the histograms of Recall(s, s′) for
each sentence pair in MTM and PR. In both tasks,
most sentence pairs have a vocabulary coverage
of less than 1, i.e., they contain vocabulary not
covered by STS. Thus, STS vocabulary does not
sufficiently cover the vocabulary of the other tasks.

4.2.2 Does the vocabulary distribution gap
cause an evaluation gap?

We investigate whether the low vocabulary cover-
age with STS examined in Sec. 4.2.1 is indeed a
factor contributing to the evaluation gap.

Settings. For the MTM and PR datasets, we
extract the top and bottom 100 pairs as the
Recall(s, s′)-High and Recall(s, s′)-Low subsets,
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respectively. The MTM Recall(s, s′)-High subset
contains all sentence pairs composed of STS vo-
cabulary. Furthermore, the average of the PR High
subset is 0.988 ± 0.011, which is almost all the
pairs composed of STS vocabulary. In this experi-
ment, we examine whether higher lexical coverage
with the STS vocabulary for the subsets resulted in
a higher correlation.

Results. Table 1 presents the Spearman correla-
tion between the performance on STS and those on
the Recall(s, s′)-High and Low subsets in MTM
and PR, respectively. The PR High subset corre-
lated better than the Low subset, as hypothesized.
However, no such trend was observed in MTM. A
reason for the MTM result is that STS is a mix of
three different domains (news, image captions, and
forum). In contrast, MTM is a single news domain
dataset, which might have caused a divergence in
the evaluation of sentence pairs from the same or
different domains.

Analysis: In-domain vs. Out-of-domain. To
confirm the influence of STS inner domains, we per-
formed an additional analysis. We created vocabu-
lary coverage subsets for the three STS sub-domain
sets (news, image captions, and forum) in the same
way as for the entire STS, and calculated the corre-
lation between the three STS sub-domain sets and
MTM High/Low subsets. For an in-domain setting,
the MTM subset with High vocabulary coverage us-
ing STS-news correlated better than that with Low
vocabulary coverage (0.438 > 0.373), as hypothe-
sized. For out-of-domain settings, the STS-forum
set also showed that the High subset has a better
correlation than the Low subset (0.779 > 0.458);
however, in the image caption set, the correlation
of the Low subset (0.177) is better than that of
High subset (0.046). For the image caption do-
main, the correlation values are extremely low for
both the subsets, indicating that the STS image
caption set did not play a good role in the evalu-
ation of application-oriented tasks such as MTM.
In summary, these results indicate that the vocabu-
lary coverage contributes to evaluating gap between
STS and the two application-oriented tasks, such
as MTM and PR.

4.3 Factor 3: difference in granularity of
gold-standard scores

Below, we consider the granularity gap of the
gold-standard similarity scores between STS and

Recall(s, s′)-Low Recall(s, s′)-High

MTM 0.276 > 0.272
PR 0.673 < 0.851

Table 1: Spearman correlations between the perfor-
mance with STS and that with the subsets split accord-
ing to higher vocabulary coverage (Recall(s, s′)-High)
and lower one (Recall(s, s′)-Low) with STS of specific
tasks (MT Metrics: MTM and Passage Retrieval: PR).

MTM. 3

We suspect that the granularity of the similar-
ity that was considered in each task varies. The
distinction between better or worse hypotheses for
high-similarity sentence pairs is an arresting chal-
lenge in MTM (Ma et al., 2019). More concretely,
the current semantic evaluation model for MTM
is unable to finely discriminate the better outputs
in highly competitive language pairs such as to-
English because of high quality of recent MT out-
put for highly competitive language pairs. Con-
sidering this application, we hypothesize that the
similarity granularity of STS is insufficient to eval-
uate such MTM problems.

4.3.1 The discrepancy of the similarity
granularity between STS and MTM

The difference in the similarity score between STS
and MTM can be seen in some real examples. The
actual examples in STS and MTM are illustrated in
Table 2. STS provides give relatively high scores
for the difference between the past and present
progressive tenses, and the difference in including
proper nouns such as cholera, as long as they gen-
erally share some elements. However, in MTM,
the first example is given a relatively higher score
(0.49) for the different actions between continues
to take and is already given, whereas the second
example (Fresh fruit ...) is assigned a lower score
(-0.83), sharing almost similar elements but the hy-
pothesis is somewhat difficult to understand. Can
this similarity granularity gap cause the evaluation
gap?

4.3.2 Does the gap in the granularity of
similarity cause an evaluation gap?

Here, we investigate whether the difference in the
similarity granularity mentioned in Sec. 4.3.1 re-
sults in the evaluation gap.

3In this section, we omit considering PR because the prop-
erty of PR is different from the other tasks in terms of binary
labels.
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source s1 (ref) s2 (hyp) gold BScore SimCSE

STS (i) A man is riding a mechanical bull. A man rode a mechanical bull. 4 0.98 0.96
(ii) A total of 17 cases have been con-

firmed in the southern city of Basra,
the Organization said.

A total of 17 confirmed cases of
cholera were reported yesterday by
the World Health Organisation in
the southern Iraqi city of Basra.

3.6 0.93 0.74

MTM (i) This drug continues to take 12
months after a heart attack, which
can reduce the risk of a stroke or
heart attack.

The drug is already given for 12
months after a heart attack, reducing
the risk of a stroke or another attack.

0.49 0.94 0.90

(ii) Fresh fruit was replaced with
cheaper dried fruit.

Fresh fruit is cheap dried fruit in-
stead.

-0.83 0.94 0.82

Table 2: Actual examples of STS and MT Metrics (MTM). The gold scores of MTM are normalized in the range
(-1.81, 1.44) from with manually evaluated 100-scale scores. “BScore” and “SimCSE” mean prediction scores with
BERTScore (RoBERTa-large, F1-score) and SimCSE (supervised), respectively.

Settings. For the STS and MTM datasets, we cre-
ate subsets according to the similarity scores for
a sentence pair. We divide the STS dataset into
five subsets by considering six labels from 0 to
5. For the MTM dataset, we separated four sub-
sets (Sim-{Low, MidLow, MidHigh and High}) by
quartiles for human-rated golden scores. We deter-
mined the gap between the evaluations using STS
and MTM subsets to confirm which range of the
similarity granularity impacts the gap in the evalu-
ation. Specifically, the correlation might be higher
between the narrower range of the similarity band
of STS and the wider range of that of MTM. We an-
ticipate that the higher similarity band in STS only
correlates with the MTM dataset, to consider the
demand of the MTM that must distinguish higher
similarity pairs.

Results. Fig. 7 shows the Spearman correlations
between the similarity granularity subsets of STS
and that of the MTM. As hypothesized, only the
high-similarity subsets of STS, STS-(3,4] and STS-
(4,5], were highly correlated with all the MTM
subsets. These results significantly show that STS
is unable to evaluate discrimination performance
in the fine-grained higher similarity bands.

In Fig. 8, we describe one interpretation of the
above result. We suspect that STS cannot capture
fine-grained granularity at higher similarity bands,
as discussed (Sec 4.3.1). Not only is the evaluation
of the high-similarity band of STS is higher cor-
related with that of MTM, but the low-similarity
band of STS and MTM are nearly uncorrelated or
inversely correlated (Fig. 7). We should consider in-
troducing finer granularity in high similarity bands
for STS, while also considering exclusion exam-
ples in ineffective low similarity bands as a widely

Figure 7: Spearman correlations between performance
on subsets according to gold-standard similarity scores
of STS and MT Metrics (MTM). The darker color repre-
sents the lower correlation (= the larger evaluation gap).

STS

MT
Metrics

Gold-standard scores
0 1 2 3 4 5

0 100…gap

Figure 8: The relationship of the granularity of similar-
ity scores between STS and MT Metrics.

applicable benchmark.

Analysis: Tendency for each domain. As in the
previous analyses, we investigated the difference in
the tendencies for each domain. The correlations
between subsets and MTM similarity subsets in
each STS sub-domain sets are shown in Fig. 11.
For the in-domain setting (STS-news ↔ MTM),
only the middle similarity band showed a strong
negative correlation with the MTM evaluation. For
the two domains in the out-of-domain setting, the
image caption set showed no correlation with MTM
at lower similarity levels, whereas the forum do-
main set showed correlation only at very high or
low similarity levels. One of the possible reasons
for this strange phenomenon is the ambiguity of
STS annotations due to label definition and am-
ateur annotator discussed in (Wang et al., 2022).
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(a) news

(b) image captions

(c) forum

Figure 9: Spearman correlations between performance on subsets divided according to gold-standard similarity
scores of each STS domain (news, forum, image captions) and MT Metrics (MTM). The darker color represents the
lower correlation (= the larger evaluation gap).

Particularly, there is a large gap between the defini-
tions of 2 (not equivalent but share some details)
and 3 (roughly equivalent) in terms of semantic
equivalence, which can be attributed to this result.

5 Discussion and conclusions

We have investigated the gap between evaluation
scores on the STS benchmark dataset and those on
the evaluation datasets for MT evaluation (MTM)
and Passage Retrieval (PR). We identified three fac-
tors contributing to this evaluation gap; namely, (i)
sentence length distribution, (ii) vocabulary cov-
erage ratio, and (iii) similarity granularity. These
factors actually contributed to the evaluation gap,
indicating that STS is not currently a directly appli-
cable benchmark for evaluating semantic similarity
at present. Future work could include checking
for causal effects and controlling for covariates to
rigorously identify factors, as well as investigate
evaluation gaps in other tasks and domains.

Therefore, what should we do? The evaluation of
semantic similarity alone must continue to be stud-
ied because of the significant demand for predicting
semantic similarity (Sec. 1). One feasible approach
is to evaluate and validate the model performance

on multiple datasets that engage real-world tasks,
rather than just STS. Wang et al. (2021) argued
that the evaluation of existing semantic similarity
models is biased toward STS and reported eval-
uation results on several datasets, including STS.
Additionally, there have also been attempts to cre-
ate a union of evaluation datasets from multiple
task data and use it as a basis for evaluation in
neighboring fields, such as PASCAL-RTE (Dagan
et al., 2006) or SentEval (Conneau and Kiela, 2018).
While these attempts have been achieved, there is
an assumption that there are substantial costs are
involved in regularly maintaining the infrastruc-
ture in each of these areas. To proceed with this
approach, including STS, we should address the
problem of STS shown in this study, and pursue
what it should be as a benchmark for semantic sim-
ilarity evaluation. Whatever approach we take, we
must consider each of these factors contributing
to the evaluation gap described in this study and
refine them stably.
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A Appendix

A.1 Limitation: Experiments on only English
STS

We would like to investigate other languages in
this paper, but we are only concerned with the orig-
inal English STS. Other languages than English
also have benchmark datasets of the semantic sim-
ilarity but are generally based on the STS frame-
work. Since the GLUE (Wang et al., 2019), in-
cluding STS, is facilitating model development for
each task, a language-specific GLUE-like bench-
mark set (Le et al., 2020; Park et al., 2021) or
cross-lingual benchmark set (Liang et al., 2020;
Hu et al., 2020) are constructed. The benchmarks
of the semantic similarity for each language are cre-
ated in two methods: re-constriction by automatic
translation or new construction by each language’s
expert following the original method. Crucially,
the former method is likely to fundamentally face
the same biases such as vocabulary distribution
as those in the English benchmarks, albeit includ-
ing the issue of translation quality. Regarding the
latter, dataset creators may improve the original
dataset creation method. For example, in the Ko-
rean GLUE (KLUE; Park et al., 2021), they added
more detailed instructions on label definition when
annotating the similarity by non-expert. Thus, it is
necessary to re-consider the requirements for an ap-
propriate benchmarks before straightforwardly fol-
lowing the original method when creating datasets.

A.2 Statistics of datasets and subsets in the
experiments

Satistics of datasets. Table 3 shows statistics of
three datasets (STS, MTM and PR) employed in
this paper. The dataset size of STS is larger than
that of MTM, whereas the total word counts are
comparable between STS and MTM. The sentence
length distribution (the number of of words / {s,s’})
shows that STS has very few words per sentence
compared to the application-oriented tasks. As for
the STS sub-domain sets, the three sets have differ-
ent sentence length distributions. We additionally
describe the histograms of the sentence length dis-
tributions for the three STS sub-domain sets in
Fig. 10. As illustrated here, the average sentence
length of the image-caption domain is particularly
highly biased for shorter sentence lengths.

Statistics of subsets used in the experiment.
Statistics of the subset of sentence length, vocabu-
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Figure 10: Histograms of sentence length in the STS
sub-domain (news, image captions, forum) sets.

lary coverage, and the granularity of similarity are
shown in Table 4, 6, and 7, respectively.

A.3 In-domain vs. Out-of-domain analysis in
sentence length factor

Settings. We create subsets from the MTM
dataset to match the sentence length distribution
for each of three STS sub-domain sets. Notably,
the forum and image caption domains have rela-
tively small sentence length distributions (in Fig. 5,
we thus reduced the range of the subsets from [0,
40) to [20, 60). Statistics of the subset of sentence
length are shown in Table 5.

Results. Fig. 11 shows the correlation with MTM
when sentence length subsets are created separately
for each domain. We observed a similar tendency
for all sub-domain sets that the evaluation gap in-
creases for subsets of longer sentence lengths. This
suggests that the evaluation results differ due to dif-
ferent sentence length distribution even within the
same domain, which is consistent with a previous
study’s report in a different benchmark (Søgaard
et al., 2021).

A.4 Extended Vocabulary analysis

STS has easier vocabulary STS contains more
familiar words than that appear in the application
tasks. As quantitative indicators of word famil-
iarity, word frequency (Yimam et al., 2018) and
word length (Kincaid et al., 1975) are often used
mainly in the text simplification task. Intuitively,
the higher the word frequency or the shorter the
word length, the more familiar the word. In this
case, we use “word frequency (wordfreq)” and
“zipf frequency (zipffreq)” scale in wordfreq mod-
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STS (s1, s2) MTM (hyp, ref) PR (query, passage)

#sentence pairs 8,628 3,793 6,668,967
#sentences ({s, s’}) 15,487 4,261 13,337,934

#words 186,134 170,565 472,778,794
#words / {s, s’} 11.443±6.143 23.381±11.215 35.908±35.266

#words / s 11.450±6.188 23.296±11.290 6.176± 2.642
#words / s’ 11.437±6.099 23.467±11.138 65.640±26.692

STS-news (s1, s2) STS-forum (s1, s2) STS-image-captions (s1, s2)

#sentence pairs 4,299 1,079 3,250
#sentences 8,268 1,913 5,306

#words 107,957 25,456 52,721
#words / {s, s’} 12.927±7.506 12.642±4.978 9.0823±2.910

#words / s 12.949±7.564 12.677±5.007 9.0585±2.906
#words / s’ 12.905±7.448 12.608±4.949 9.1062±2.914

Table 3: Stats. of sentences and words and average of sentence length for STS (all and sub-domain sets) and
application datasets (MT Metrics: MTM, Passage Retrieval: PR).

(a) news (b) image captions (c) forum

Figure 11: Spearman correlations between performance on sentence length subsets of STS-news, image captions,
forum and MT Metrics (MTM) . The darker color indicates the lower correlation (= the larger evaluation gap).

MTM PR
size avg. sent len size avg. sent len

[0, 40) 481 11.610±5.794 - -
[5, 45) 481 11.790±5.979 - -
[10, 50) 1225 16.841±5.747 67 16.045±4.420
[15, 55) 1484 21.086±5.015 119 19.849±3.759
[20, 60) 1112 24.722±4.286 199 23.704±3.285
[25, 65) 715 28.260±3.733 262 28.000±2.980
[30, 70) 465 33.184±4.462 561 34.526±3.855
[35, 75) - - 690 38.323±3.549
[40, 80) - - 932 46.987±1.390

Table 4: Stats. of sentence length subsets for MTM and
PR. The “size” means the number of sentence pairs and
the “avg. sent len” means the average of sentence length
for each subset.

ule (Speer et al., 2018).4 Wordfreq is the normal-
4A tool to obtain word frequencies from 7 different cor-

pora (Wikipedia, Subtitles, News, Books, Web text, Twitter,
Reddit). https://pypi.org/project/wordfreq/

ized frequency in the corpora, and zipffreq is the
logarithmically scale of wordfreq. The word length
is the number of characters in each word. We use
nltk.word_tokenize() as word split and filtered
out URLs and those with more than 50 characters.

Table 8 shows the average word frequency with
the wordfreq module and word length for each
dataset. In zipffreq, the average of STS is shorter
than that of both the application tasks. Also in word
length, we could observe that the average of STS
is higher than that of MTM and PR. Thus, in both
the indicators, word familiarity distribution in STS
is higher than in the two application tasks.

Additionally, by comparing between “general”
word frequencies (wordfreq) in the wordfreq mod-
ule and actual word frequencies in the corpus
(corpus-freq), we can identify words that appear
particular high-frequently in the corpus. The words
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MTM

(STS-news-based) (STS-forum-based) (STS-image-captions-based)
size avg. sent len. size avg. sent len. size avg. sent len.

[0, 40) 503 12.898±6.971 400 9.491±3.183 816 12.348±4.347
[5, 45) 506 13.238±7.259 398 9.521±3.162 867 13.106±4.855
[10, 50) 2150 19.356±6.201 676 13.024±2.620 1229 15.444±3.879
[15, 55) 1902 22.082±5.192 778 17.648±2.457 911 18.337±3.013
[20, 60) 1185 24.935±4.332 650 22.185±2.548 658 22.251±2.620
[25, 65) 715 28.260±3.733 - - - -
[30, 70) 465 33.184±4.462 - - - -

Table 5: Stats. of sentence length subsets for MTM according the sentence length distribution of STS sub-domain
sets. The “size” means the number of sentence pairs and the “avg. sent len” means the average of sentence length
(the average of {s, s’}) for each subset.

MTM

(STS-all-based) (STS-news-based) (STS-forum-based) (STS-image-captions-based)
size avg. Recall size avg. Recall size avg. Recall size avg. Recall

(all) 3,793 0.882±0.084 4,299 0.854±0.093 1,079 0.715±0.120 3,250 0.523±0.112
High 100 1.000±0.000 100 1.000±0.000 100 0.980±0.024 100 0.787±0.042
Low 100 0.631±0.060 100 0.588±0.058 100 0.418±0.063 100 0.252±0.062

PR

size avg. Recall

all 6,614 0.835±0.079
High 100 0.988±0.011
Low 100 0.572±0.051

Table 6: Stats. of vocabulary subsets for MTM and PR.

STS

(all) (news) (forum) (image captions)
size avg. similarity size avg. similarity size avg. similarity size avg. similarity

[0, 1] 1182 0.655±0.280 594 0.522±0.393 275 0.472±0.420 931 0.360±0.353
(1, 2] 1348 1.631±0.285 640 1.631±0.283 248 1.687±0.286 460 1.601±0.283
(2, 3] 1672 2.653±0.291 876 2.678±0.291 232 2.656±0.292 564 2.615±0.286
(3, 4] 2317 3.614±0.287 1378 3.599±0.280 189 3.692±0.303 750 3.622±0.292
(4, 5] 1491 4.619±0.304 811 4.613±0.301 135 4.686±0.311 545 4.612±0.306

MTM

size avg. similarity

Sim-Low: [-2, -0.47] 950 -0.820±0.266
Sim-MidLow: (-0.47, -0.03] 948 -0.240±0.126
Sim-MidHigh: (-0.03, 0.42] 943 0.193±0.127
Sim-High: (0.42, 1.5] 952 0.683±0.183

Table 7: Dataset size (#sentence pairs) and average & standard derivation of gold-standard similarity scores on STS
and MTM subsets.

belongs to “corpus-freq − wordfreq > 0.001” for
STS, MTM, and PR were 43, 18, and 26 words,
respectively (if excluding stopwords and punctu-
ation, 28, 3, and 6 words, respectively). Exam-
ples of higher frequent words in each dataset are
shown in Table 9. As shown in this, some domain-
specific words (STS: image captions, MTM: news,
PR: question answering) are particularly frequent

in each corpus. STS seems to be biased toward cer-
tain words (e.g., colors, present progressive forms,
relatively abstract nouns such as man and dog). The
results indicate that the STS has a relatively “easier”
vocabulary (particularly sourced from the image-
caption domain) than the application-oriented task.

Gap of proper noun in word representation dis-
tribution In actual semantic similarity predic-
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STS MTM PR

zipffreq (↑) 3.59±1.24 3.45±1.54 1.29±1.74
length (↓) 6.97±2.76 7.34±2.83 10.1±4.83

Table 8: Average of word frequency and word length
in STS, MT Metrics: MTM, Passage Retrieval: PR.
The higher (↑) the average for zipffreq (zipf scale of
normalized word frequency) or the lower (↓) the average
for word length, the higher the word familiarity can be
considered.

tion models, words are embedded into a multi-
dimensional space and treated as a soft distributed
representation. Does the STS vocabulary still
diverge from the vocabulary of the application-
oriented tasks in the soft representations? To obtain
an intuition for this, we plot word distribution in
each dataset by t-SNE using the fasttext model.
In the t-SNE setting, we use random initialization
and set learning rate to 200 (scikit-learn), random
state to 0. Fig. 12 shows the results of t-SNE
plotting the top-frequency 5,000 words in each
dataset. The areas surrounded with red lines are
non-overlapping clusters between STS (blue) and
the application tasks (MTM: orange, PR: green).
Additionally, we enlarge some non-overlapping
clusters in Fig. 13. These clusters mostly includes
several proper nouns such as Columbus, Carolina,
and Robin in all the datasets. In addition, to cap-
ture the quantitative distance between word dis-
tributions, we measured the Word Mover’s Dis-
tance (WMD) (Kusner et al., 2015) with the above
t-SNE representations. We use uniform distribu-
tion as the WMD weight and sqeuqlidian distance
as the distance metric. The larger the value, the
less STS covers the vocabulary of each applica-
tion task. The distance between STS and MTM
was 189.44 and the distance between STS and PR
was 89.893. Thus, The vocabulary distribution gap
between STS and the application-oriented tasks is
caused by mainly the distribution of proper nouns.

A.5 NLI analysis

Various studies have found that pre-trained models
of NLI dataset lead to improved performance on
STS (Conneau et al., 2017; Reimers and Gurevych,
2019; Gao et al., 2021b). Gao et al. (2021b) tried
several NLI and paraphrase identification datasets
for model pre-training, indicating that NLI exam-
ples with the lowest lexical overlap have been the
most effective. In this section, we show that the
sentence length and soft lexical distribution of the

NLI dataset are nearly STS-like. We suspect that
the coincidence of these distributions is respon-
sible for the improved performance of the NLI-
supervised model on STS.

Sentence length analysis. Fig. 15 shows his-
tograms of sentence length distribution for each
dataset including NLI. As shown in this, NLI
datasets have a relatively shorter sentence length
distribution, similar to that of STS. Although MNLI
contains relatively longer sentences than SNLI,
there are still fewer examples of longer sentences
compared to the application-oriented datasets such
as MTM and PR.

Vocaburaly coverage analysis. In following, we
see the vocabulary distribution on the NLI datasets.
The statistics on NLI’s vocabulary distribution are
shown in Table 10. The Herdan’s C of NLI is lower
than that of STS; however, TTR of NLI close to
that of MT Metrics. As the word familiarity distri-
bution of NLI, the average of zipffreq shows that
more high-frequency words appear in both SNLI
and MNLI than in STS. However, the average of
word length of NLI is close to that of MT Metrics.
These results indicate that the words which appear
in NLI are a fairly high frequent but those lengths
are longer compared to STS. The visualization of
the soft word distribution including NLI is shown
in Fig. 14. As illustrated in this, the word distri-
bution of NLI is similar for STS compared to the
other datasets. This trend might contribute to the
improvement of performances of NLI-supervised
models such as SentenceBERT on STS.

A.6 Model description
Table 11 shows the descriptions of the models used
in this paper.
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STS man, woman, playing, running, sitting, standing, guitar, white, black, red, dog, cat, horse, grass…
MTM said, police, olympic(, was, will, which, who,…)
PR name, definition, meaning, number, average(, what, your,…)

Table 9: Examples of higher frequency words for STS, MT Metrics: MTM, Passage Retrieval: PR (stopwords in
parentheses).

Figure 12: Word distribution of fasttext model in three datasets, STS (blue), MT Metrics (orange) and Passage
Retrieval (green).

(a1) STS (a2) STS

(b) Metrics (c) Passage Retrieval

Figure 13: Expanded areas in the visualization of word distribution (Fig. 12).
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Figure 14: Word distribution of fasttext model in three datasets, STS (blue), MT Metrics (MTM: orange), Passage
Retrieval (PR: green) and NLI (purple).

0 25 50 75 100 125 150
0.00

0.02

0.04

0.06

0.08

0.10
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MTM
PR (query)
PR (passage)
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MNLI

Figure 15: Histgrams of sentence length in the datasets
includes NLI.

SNLI MNLI

#sentence pairs 570,152 402,703
#words 11,731,474 12,864,145
#types of words 37,179 85,789
TTR 0.0032 0.0067
Herdan’s C 0.6465 0.6939

avg. zipffreq 2.871±1.488 2.685±1.448
avg. word len 7.544±2.613 8.206±3.313

Table 10: Statistics of vocabulary distribution on NLI
datasets.
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Abstract

In this paper, we describe the development
of a communication support system that de-
tects erroneous translations to facilitate cross-
lingual communications due to the limita-
tions of current machine chat translation meth-
ods. We trained an error detector as the
baseline of the system and constructed a
new Japanese–English bilingual chat corpus,
BPersona-chat, which comprises multi-turn
colloquial chats augmented with crowdsourced
quality ratings. The error detector can serve as
an encouraging foundation for more advanced
erroneous translation detection systems.

1 Introduction

With the expansion of internationalization, there is
an increasing demand for cross-lingual communi-
cation. However, while machine translation tech-
nologies have demonstrated sound performance in
translating documents (Barrault et al., 2019, 2020;
Nakazawa et al., 2019), current methods are not
always suitable for translating chat (Läubli et al.,
2018; Toral et al., 2018; Farajian et al., 2020; Liang
et al., 2021). When a translation system generates
erroneous translations, the user may be unable to
identify such errors, which can lead to confusion
or misunderstanding. Thus, in this study, we de-
veloped a cross-lingual chat assistance system that
reduces potential miscommunications by detecting
translation errors and notifying the users of their
occurrences. As a critical component of such a
system, we propose the erroneous chat translation
detection task and conduct an empirical study to
model error detection. An illustration of the base-
line task is shown in Figure 1. When the translation
system generates a translation that is suspected to
be incorrect or not well-connected to the context,
we prompt users on the source language side that
the translation may be incorrect. The warning mes-
sage is expected to encourage users to modify their
text into a better translatable form. Simultaneously,

Figure 1: Illustration of the error detector predicting
erroneous translations. The detector evaluates whether
translation ja2 is accurate and coherent in the chat.

users on the target language side receive the same
warning message to indicate that unusual words or
passages are likely translation errors.

To support this line of research, we created a new
parallel chat corpus, BPersona-chat1, which com-
prises multi-turn colloquial chats augmented with
manually produced gold translations and machine-
generated translations with crowdsourced quality
labels (correct or erroneous). In an experiment, we
trained an error detection model that classifies a
given translation in a bilingual two-utterance chat
as either correct or erroneous (Figure 1) and evalu-
ated its performance on the BPersona-chat dataset.
Our primary contributions are summarized as fol-
lows. (1) We propose the erroneous chat translation
detection task. (2) We construct that BPersona-chat
parallel chat corpus. (3) We trained the error detec-
tor, thereby providing a foundation to develop more
sophisticated communication support systems.

2 Task Definition

As the baseline task, we define a chat as a two-
utterance colloquial dialog between two humans
using different languages. Here, we focus on pre-
dicting whether the second utterance, i.e., the re-
sponse, was translated correctly. The preceding
context, the translation of the context, the response,
and the translated response are input to the error

1https://github.com/cl-tohoku/
BPersona-chat
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detector. Then, the detector predicts the translated
response using the other utterances as reference
data. The detector then outputs whether the trans-
lated response is erroneous.

Figure 1 shows an example target task of evaluat-
ing the Japanese translation of an English utterance.
Here, the Japanese speaker’s initial utterance ja1
is translated into en1, and the English speaker’s re-
sponse en2 is translated into ja2. In this example,
the detector is assessing the utterance “ありがと
う。 (Thanks.),” which is not an accurate transla-
tion of the utterance “I agree.” The detector is given
the preceding context (ja1, en1, and en2) as refer-
ence data to predict whether the translation is both
accurate and coherent. If the detector is predicting
the translation en2 of response ja2, the reference
data include en1, ja1, and ja2 in the opposite.

3 Related Work

Translation quality estimation task Our tar-
get task is a new setting compared to quality esti-
mation tasks (Specia et al., 2020; Fonseca et al.,
2019), which primarily focus on written text, e.g.,
Wikipedia articles and Amazon reviews. In con-
trast, the target task attempts to detect errors in chat
translation systems; thus, we must understand the
contexts of casual conversational settings.

Parallel dialog corpus There are bilingual dia-
log corpora, e.g., Business Scene Dialog (Rikters
et al., 2019), which includes business negotiation
scenes in both Japanese and English. However, our
task requires data that include cross-lingual collo-
quial chats with both appropriate and erroneous
translations. To the best of our knowledge, no such
dataset exists; thus, we must prepare a new evalua-
tion dataset to evaluate the proposed task.

4 Evaluation Dataset

To mitigate the construction time and cost, we took
advantage of existing chat corpora as a starting
point. We first filtered out inappropriate chats, then
asked professional translators to perform utterance-
by-utterance translations in consideration of the
contexts to acquire correct translation candidates.
In addition, we prepared utterance-by-utterance
machine translations, without considering chat con-
texts to acquire incorrect translation candidates.
Finally, we evaluated the translations to see if they
were acceptable chat translations. The details of
each process are described in the following.

Speaker Utterance

person 1 I do not like carrots. I throw them away.
person 2 really. I can sing pitch perfect. (incoherent:

carrots → sing)
person 1 I also cook, and I ride my bike to work. (in-

coherent: sing → ride)
person 2 great! I had won an award for spelling bee.

(incoherent: ride → spelling)

Table 1: Example of incoherent chat from Persona-chat.

4.1 Base Datasets

We constructed Japanese–English bidirectional
chat translation datasets. Specifically, we focused
on Persona-chat (Zhang et al., 2018) and JPersona-
chat (Sugiyama et al., 2021) as our base datasets.
These datasets contain multiturn chat data in En-
glish and Japanese, respectively2. Each chat was
performed between two crowd workers assuming
artificial personas. The speakers discuss a given
personality trait, including but not limited to self-
introduction, hobby, and others.

4.2 Filtering Incoherent Data

A preliminary manual review of the Persona-chat
dataset revealed occasionally incoherent chats, e.g.,
unnatural topic changes or misunderstandings (Ta-
ble 1). We removed such examples from the dataset
by asking crowd workers to flag passages they
deemed incoherent. Here, we defined “incoherence”
as questions being ignored, the presence of unnatu-
ral topic changes, one speaker not addressing what
the other speaker said, responses appearing to be
out of order or generally difficult to follow.

We scored each chat according to the workers’
answers and selected the top 200 among 1, 500
chats3. The selected 200 chats were marked as
accurate and coherent by at least seven of the 10
workers.

4.3 Bilingual Chats with Human Translations

To construct a parallel Japanese–English chat cor-
pus, we combined the selected top 200 top chats
(2, 940 utterances in total) from the Persona-chat
dataset and 250 chats (2, 740 utterances in total)
from the JPersona-chat dataset. We then trans-
lated them into their respective target languages4.

2Persona-chat and JPersona-chat are not translations of
each other.

3See Appendix C for additional details about the crowd-
sourcing process.

4We sought consent to translate JPersona-chat with the
authors.
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Speaker Original utterance in Perosona-chat (en) Translation by professional translators (ja)

person 1 Good evening, how has your day been? こんばんは、今日はどうだった？
person 2 It was good I met up with some friends to larp よかったよ、ライブRPGで友達と集まった。
person 1 I wish I had time for that, working 40 hours in a

bank is killing me.
そんな時間があればなあ、銀行で４０時間勤
務は死にそうだよ。

person 2 ... ... ... ...

Table 2: Example of the top 200 coherent chats from the Persona-chat dataset as rated by crowdsourcing workers
and translated to Japanese by professional translators.

Here, we commissioned professional translators
proficient in Japanese and English to ensure high-
quality translations. We asked the translators to
consider both the accuracy of the translation and
the coherence of the dialog. The translators were
given information about the personas to help adjust
the speaking styles. As a result, we obtained a par-
allel corpus of 450 dialogs (5, 680 utterances) and
their translations, which we refer to as the Bilin-
gual Persona-chat (BPersona-chat) corpus. Table 2
shows a sample from the BPersona-chat corpus.

4.4 Bilingual Chats with Neural Machine
Translation Translations

The task of the error detector is to distinguish be-
tween accurate and poor (potentially harmful) trans-
lations. The BPersona-chat corpus provides exam-
ples of the former. Given professionally-translated
bilingual chats, we also prepared low-quality al-
ternative translations generated using a machine
translation model. Here, we trained a Transformer-
based neural machine translation (NMT) model A
on OpenSubtitles2018 (Lison et al., 2018), achiev-
ing a BLEU score (Papineni et al., 2002) of 4.9 on
the BPersona-chat corpus5. Note that this BLEU
score is relatively low because domain mismatch
is possible between OpenSubtitles2018 and the
BPersona-chat corpus. However, it was a prefer-
able setting because we required poor translations
to construct our dataset. In addition, we pre-
pared better translations with a translation model
B, which achieved a BLEU score of 26.4.

4.5 Human Evaluation of Translations

To confirm that the alternative translations gen-
erated by NMT model A were erroneous to the
crowds, we asked crowd workers proficient in both
English and Japanese to rate each translation in the
chat as either good or bad. We qualified the work-
ers to ensure they could reach the level of native

5Refer to Appendix A for additional details about training
NMT model A.

Japanese, and the level of business and academic
English.

The workers rated 5, 088 of NMT model A’s
5, 680 (89.58%) translations, 1, 718 of NMT
model B’s 5, 680 (30.25%) translations, and 597
of the 5, 680 (10.51%) human translations as bad6.
Then, each utterance-translation pair was marked
as erroneous or correct based on human evalua-
tions.

According to our task settings, an utterance can-
not be used as the referenced preceding context
if none of it is correct. Thus, we deleted the 159
utterances whose human translations, model A’s
translations, and model B’s translations were all
erroneous. As a result, we obtained 2, 674 En-
glish utterances with 8, 022 corresponding labeled
Japanese translations, where 3, 406 of the transla-
tions were labeled as erroneous, and the remaining
4, 616 translations were labeled as correct. In addi-
tion, we obtained 2, 397 Japanese utterances with
7, 190 corresponding labeled English translations,
where 3, 096 translations were labeled as erroneous,
and 4, 094 were labeled as correct. These labeled
data were used to evaluate the error detector in our
subsequent experiments.

5 Baseline Error Detecting Classifier

As a baseline approach, we trained and evalu-
ated a binary BERT-based (Devlin et al., 2019;
Wolf et al., 2020) classifier as the error de-
tector7. Here, the input was structured as
“ja1[SEP]en1[SEP]en2[SEP]ja2” to predict
the Japanese translation ja2 of the corresponding
source utterance en2. The input was structured
as “en1[SEP]ja1[SEP]ja2[SEP]en2” to pre-
dict the translation en2 of the corresponding source
utterance ja2 in the opposite translating direction8.

6Refer to AppendixC for additional details about the
crowdsourcing process.

7Refer to AppendixB for additional details about training
this classification model.

8[SEP] was used to indicate different utterances, [CLS]
was used to indicate the beginning of the data and [PAD] was
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ja→en en→ja

Majority class 56.94 57.54
Minority class 43.06 42.46
Error detector 76.27 77.06

Table 3: Accuracy of the majority class classifier, mi-
nority class classifier, and error detector.

Similar to the original experimental settings for
BERT, we applied the SoftMax function to the clas-
sification result to obtain the final prediction.

We used the OpenSubtitles2018 dataset for train-
ing with approximately one million utterances.
Here, we generated negative samples with the low-
quality translation model A (Section 4.4), and we
fine-tuned the multilingual BERT model provided
by HuggingFace9 to construct the error detector
for both the English-to-Japanese and Japanese-to-
English directions.

6 Experiments

In this section, we report on our trial of the chat
translation error detection task (Section 2) using
the model described in Section 5. The task was
evaluated with the dataset described in Section 4.

6.1 Evaluation Metrics
Majority class and minority class classifiers To
confirm that the error detector is not simply making
lucky guesses, we calculated the accuracy of the
majority class classifier, the minority class classi-
fier, and the error detector. Note that the majority
class of the data is the correct translation, and the
minority class is the erroneous translation.

F-score, precision and recall We evaluated the
performance of the error detector according to the
F-score (F). We also show the precision (Pre) and
recall (Rec) values for reference. The truth (T) is
set as the erroneous translation, and the positive
case (P) is detecting the erroneous translation.

Confusion matrix To evaluated the performance
of the error detector on different types of transla-
tions, we provide confusion matrices according to
whether the translation was translated by the human
translator, NMT model A, or NMT model B.

6.2 Results
The results demonstrate that the error detector is
capable for classifying erroneous translations in

used as the padding token.
9https://huggingface.co/

ja → en en → ja
F (Pre Rec) F (Pre Rec)

Error detector 73.30 (71.10 75.65) 75.03 (69.75 81.18)

Table 4: F-score, precision, and recall of the error detec-
tor on BPersona-chat dataset.

chats. According to the accuracy values given in
Table 3, we conclude that the error detector gained
higher performance compared to the majority and
minority classifiers. The results suggest that the
current method can solve the task without relying
on lucky guesses. According to the F-score, preci-
sion, and recall values shown in Table 4, the error
detector could identify erroneous translations in the
BPersona-chat dataset.

However, although the detector could distinguish
translations with terrible translation or coherence
issues, it could not successfully identify errors that
were not obvious. The confusion matrix of the re-
sults is shown in Table 5, where the row headers
are the actual annotations, and the column headers
are the labels predicted by the detector. As can be
seen, the error detector did not perform well when
attempting to predict the translations generated by
the high-quality NMT model B. Here, the detector
labeled more than half of the erroneous translations
generated by NMT model B as correct. One possi-
ble reason for this is that the detector was trained
on a dataset whose erroneous examples were gen-
erated by model A, which generated low-quality
translations.

To compare the error detector with the traditional
BLEU calculation, we calculated the sentence-
BLEU score of each utterance in the BPersona-chat
dataset using the method provided by NLTK (Bird
et al., 2009). The results demonstrate that the de-
tector can help distinguish an erroneous translation
even when the translation has a high BLEU score.
Table 6 shows an example of a translation en2 with
a high sentence-BLEU score but incorrectly trans-
lated the Japanese word “米” into “America” rather
than “rice”. We found that the detector helped dis-
tinguish this case as erroneous, as was expected.

6.3 Quality of the Evaluation Dataset

The reason a considerably high score was obtained
on the NMT model A’s translations is not entirely
straightforward. Note that we trained the classi-
fication model on OpenSubtitles2018, which has
a different distribution from BPersona-chat. This
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ja→en

Human NMT model A (low-quality) NMT model B (high-quality)

Correct Erroneous Correct Erroneous Correct Erroneous
Correct 1879 207 Correct 11 155 Correct 1252 590

Erroneous 290 21 Erroneous 90 2140 Erroneous 374 181

en→ja

Human NMT model A (low-quality) NMT model B (high-quality)

Correct Erroneous Correct Erroneous Correct Erroneous
Correct 2406 176 Correct 6 265 Correct 1005 758

Erroneous 83 9 Erroneous 53 2350 Erroneous 505 406

Table 5: Confusion matrix of the error detector on BPersona-chat data (row headers are the actual annotations, and
column headers are the prediction made by the detector).

en1 (context) What did you have for dinner?
ja1 晩ご飯に何を食べましたか？
ja2 (source) 晩ご飯に米を食べました。
en2 (translation) I had America as my dinner.
(reference) (I had rice as my dinner.)

sentence-BLEU 72.7 (compared to the reference)
classifier’s prediction erroneous

Table 6: Example where the error detector successfully
predicted the erroneous translation en2 even though it
had a high sentence-BLEU score.

means that the training was performed using out-
of-domain data. One potential reason for the high
performance may be attributed to the nature of the
automatically generated translations. As with the
experimental results described in Section 6.2, it
was difficult for the detector to distinguish the good
translations generated using the high-quality NMT
model B. To improve performance, it is important
to clarify the exact issue with the erroneous trans-
lation.

7 Discussions and Future Work

In this paper, we have proposed the chat translation
error detection task to assist cross-lingual commu-
nication. For this purpose, we constructed a parallel
Japanese–English chat corpus as the backbone for
evaluation, including high-quality and low-quality
translations augmented with crowdsourced quality
ratings. We trained the error detector to identify
erroneous translations, and the detector could help
detect the erroneous translations in chat.

While this is the first trial to realize a cross-
lingual chat assistance system, we hope to promote
research to complete the chat translation assistance
system in the future, and we aim to advance the de-
tector’s ability to indicate the translation’s critical

error possibility. This will allow speakers to focus
on translations with high error rates. In addition,
we hope to identify specific errors in the transla-
tions for users. To achieve this goal, we would like
to refine the BPersona-chat dataset with multiple
labels corresponding to different translation errors.
The binary classification model would also be im-
proved into multi-label, which would enable the
error detector to analyze concrete problems. Thus,
we would be able to identify the exact error in the
current speech for revisions. We will also consider
providing translation suggestions as reference in-
formation to help users modify.

When both parties cannot understand each
other’s language, the advanced error detecting sys-
tem is expected to alert them of possible errors and
guide them to modify their texts, thereby reducing
translation problems in multilingual chats. Find-
ing a balance between coherence and accuracy is
always difficult in chat translation. However, we
believe that advancing and refining the error de-
tector and the corresponding dataset will help us
identify and solve specific problems in chat transla-
tion systems.
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Architecture 2-to-2 Transformer (Vaswani
et al., 2017; Tiedemann and
Scherrer, 2017)

Enc-Dec layers 6
Attention heads 8
Word-embedding dimension 512
Feed-forward dimension 2,048
Share all embeddings True
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1 × 10−8) (Kingma
and Ba, 2015)

Learning rate schedule Inverse square root decay
Warmup steps 4,000
Max learning rate 0.001
Initial Learning Rate 1e-07
Dropout 0.3 (Srivastava et al., 2014)
Label smoothing ϵls = 0.1 (Szegedy et al., 2016)
Mini-batch size 8,000 tokens (Ott et al., 2018)
Number of epochs 20
Averaging Save checkpoint for every 5000

iterations and take an average of
last five checkpoints

Beam size 6 with length normalization (Wu
et al., 2016)

Implementation fairseq (Ott et al., 2019)

Table 7: List of hyper-parameters for training the NMT
model A

Architecture BERT (base) (Devlin et al.,
2019)

Optimizer Adam (β1 = 0.9, β2 =
0.98, ϵ = 1 × 10−8, weight
decay=0.01) (Kingma and Ba,
2015)

Learning rate schedule Inverse square root decay
Max learning rate 0.001
Mini-batch size 16 samples
Number of epochs 1
Implementation transformers (Wolf et al.,

2020)

Table 8: List of hyper-parameters for training the classi-
fication model

A Settings of Machine Translation Model

This section describes the details of the training
neural machine translation model. Firstly, we to-
kenized the corpus into subwords with BPE (Sen-
nrich et al., 2016). We set the vocabulary size to
32,000. Then we trained the 2-to-2 Transformer-
based NMT model A (Tiedemann and Scherrer,
2017), which outputs two consecutive given two
input sentences to consider larger contexts. Table 7
shows the list of hyper-parameters.

B Settings of Classification Model

This section describes the details of the training
classification model. Table 8 shows the list of
hyper-parameters.

C Details of Crowd-sourcing Tasks

C.1 Filtering Persona-chat
We asked crowd workers on Amazon Mechanical
Turk (https://requester.mturk.com/)
to filter out incoherent data in Persona-chat. Here,
we defined a chat as “incoherent” if:

• questions being ignored;

• the presence of unnatural topic changes;

• one is not addressing what the other said;

• responses seeming out of order;

• or being hard to follow in general.

Workers were instructed to disregard minor issues
such as typos and focus on the general flow.

In the full round, we selected 1, 500 chats from
Persona-chat. Each crowd worker was tasked to
rate 5 chats at a time, and each chat was rated by 10
different workers. Eligible workers were selected
with a preliminary qualification round.

C.2 Rating Translations
We asked crowd workers on Crowdworks (https:
//crowdworks.jp/) to label the human trans-
lation and the NMT translation in BPersona-chat as
low-quality or high-quality. In the task, we defined
a translation as bad if:

• the translation is incorrect;

• parts of the source chat are lost;

• there are serious grammatical or spelling er-
rors that interfere with understanding;

• the person’s speaking style changes from the
past utterance;

• the translation is meaningless or incomprehen-
sible;

• or the translation is terrible in general.

Workers worked on files in which one file included
one complete chat; therefore, they could check the
context and rate each utterance of the conversation.

To the limited number of workers, in the full
round, crowd workers were tasked to rate around 50
to 300 chats in two weeks. Eligible workers were
selected with a preliminary qualification round.
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Abstract

Transformer-based language models are often
trained on structured text where non-lexical
markers of sentence and discourse structure
(e.g., punctuation and casing) are present and
used consistently. Transformers encode these
markers and arguably benefit from the infor-
mation they convey. Yet, a systematic evalua-
tions of the contribution of non-lexical markers
to model performance, and of whether mod-
els’ behavior changes significantly in their ab-
sence, is currently lacking. This knowledge
is both relevant from a theoretical standpoint,
but also important to understand how well pre-
trained models may perform in common appli-
cation scenarios where casing and punctuation
are absent or inconsistent. Here, we analyze
GPT-2’s language modeling behavior in paral-
lel corpora that differ in the presence vs. ab-
sence of consistent punctuation and casing. We
compute GPT-2’s precision and uncertainty in
next-token prediction for multiple context sizes,
and compare the resulting performance distri-
butions across corpora. We find that absence
of non-lexical markers, especially punctuation,
increases model uncertainty, and it affects (but
does not catastrophically disrupt) GPT-2’s pre-
cision in next-token prediction. Interestingly,
the absence of non-lexical markers prevents the
model from benefiting from larger contexts in
order to reduce the uncertainty of its predic-
tions. Future work will extend this paradigm
to a wider range of models and systematically
investigate how features of training text affect
both language modeling and downstream pre-
dictive performance.

1 Introduction

The advent of Transformer-based language models
(Vaswani et al., 2017) and their availability through
high-quality easy-to-use libraries such as hugging-
face’s transformers (Wolf et al., 2020) has widely
democratized the use of state-of-the-art models

beyond the NLP community. Transformers’ lan-
guage modeling capabilities can be leveraged off-
the-shelf — with no further training and only mini-
mal programming required — for a large variety of
applications, ranging from neuroscientific investi-
gations of human language processing (Merkx and
Frank, 2020; Schrimpf et al., 2021) to interactive
and improvisational storytelling (Austin, 2019).

Transformers (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020) are often trained on
large corpora including highly structured text (e.g.,
BooksCorpus, (Zhu et al., 2015), or the English
Wikipedia), where non-lexical sentence structure
and discourse markers (punctuation and casing)
are present and used consistently. Tokenization
preserves these markers: punctuation is encoded
through dedicated tokens and (for some models)
casing is preserved through case-sensitive vocabu-
laries.

Punctuation and casing encode rich information
about sentence boundaries, internal sentence struc-
ture, and discourse (Steinhauer, 2003), which trans-
formers’ language modeling capabilities arguably
benefit from. Yet, systematic investigations of
whether this is the case, and how sparse or inconsis-
tent use of these markers affects models’ predictive
performance, is lacking1.

This knowledge would not only be informative
from a theoretical standpoint (clarifying the con-
tribution of non-lexical structure and discourse
markers to transformers’ language modeling ca-
pabilities) but also to understand whether popular
pretrained models’ capabilities generalize to com-
mon real-world application scenarios where non-
lexical markers are absent or used inconsistently
(e.g., social media text, or speech-to-text transcrip-
tion). Discrepancies in performance could in fact
be addressed by fine-tuning models on unstructured

1With the exception of studies on punctuation restoration
(Courtland et al., 2020; Vāravs and Salimbajevs, 2018) and
dialogue act recognition (Żelasko et al., 2021).
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baseline no punctuation
the date: September eighteenth. He slides over
a dirty martini, and

the date September eighteenth He slides over
a dirty martini glass

and ‘cheapest’ therapist. Before long, he un-
derstood that, knowing nothing about the sub-
ject, it was hard to figure out which therapist

and cheapest therapist Before long he under-
stood that knowing nothing about the subject
it was hard to figure out which one

cups are too big to serve wine. "You didn’t get
half the things on my cup

cups are too big to serve wine You didn’t get
half the things on my list

is now going to introduce Watson to Sherlock
in hopes that, um, Sherlock and, or, you

is now going to introduce Watson to Sherlock
in hopes that um Sherlock and or Watson

Table 1: Examples of model input and predictions (blue if predicted token = true token, red otherwise).

text, but in many scenarios resource- or technical
limitations make this unfeasible.

In this paper, we start addressing these questions
by analyzing the language modeling behavior of
OpenAI’s GPT-2 (Radford et al., 2019) using a
corpus of narratives available both as manually
curated transcriptions and as noisier force-aligned
transcripts. These manipulations make it possible
to evaluate the impact of punctuation and casing
removal on GPT-2’s language modeling precision
and uncertainty with very minimal preprocessing of
the input text. By comparing next-token predictive
accuracy and entropy across: a) parallel version
of the corpus and b) multiple context sizes, we
analyze how absence of these structural markers
affects the model’s ability to integrate information
over longer text spans in order to formulate precise
next-token predictions and reduce uncertainty.

2 Methods

2.1 Dataset

We evaluated GPT-2’s language modeling behav-
ior on next-token prediction using transcripts from
the Narratives dataset (Nastase et al., 2021). The
Narratives dataset, originally intended as a neu-
ral benchmark for models of language processing,
includes transcripts from 27 thematically diverse
audio narratives, and functional imaging (fMRI)
data from participants listening to those narratives
2. Transcripts are made available in three parallel
versions: a manual transcript, cased and includ-
ing punctuation (henceforth referred to as "base-
line"); a cased, punctuation-stripped transcript; an
uncased punctuation-stripped transcript produced
by a force-aligned algorithm. Overall, each par-

2Both can be accessed through DataLad (Halchenko
et al., 2021) at http://datasets.datalad.org/
?dir=/labs/hasson/narratives

allel version includes 42,989 words, and 1,440 of
these are marked as "unknown" in the force-aligned
transcript (the words not recognized by the force-
alignment algorithm). These parallel versions of
the corpus provide incremental manipulations of
the presence of punctuation and casing (and an
additional manipulation introducing lexical noise),
while lexical content stays the same. To disen-
tangle the effects of casing and lexical noise, we
generated one more version of the transcripts, iden-
tical to the force-aligned transcription except for
unknown tokens being replaced with lower-cased
original tokens.

2.2 Procedure

For each transcript type, we evaluated GPT-2 be-
havior in next-token prediction in a sliding window
fashion, using a 1-word stride and different win-
dow sizes (5, 10, 15, 20, 25, 30, 50 words — where
words are defined by whitespace boundaries). The
manipulation in window size makes it possible to
assess whether and how the model’s ability to inte-
grate information over longer contexts to produce
more precise next-token predictions is affected by
ablation of punctuation, casing, or addition of lex-
ical noise. For each narrative and window size,
the model iterates through corresponding chunks
of text across all parallel corpora: at each itera-
tion t, input to the model will include the same
lexical context for all four corpora (with the excep-
tion of corrupted tokens). For a given window size
s, words wt, wt+1, ..., wt+s−1 are joined through
whitespaces, tokenized, and fed to the corpus. wt+s

is tokenized, and the first of the resulting token is
treated as true next token to compute performance
metrics.

For each iteration t and each corpus, we extract
a few predictive performance and uncertainty met-
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Figure 1: Proportion of cases (top: absolute values, bottom: difference from baseline) where the true word is
assigned top probability (left), is among the tokens with the 5 highest probability scores (middle) or is among
the tokens with the 10 highest probability scores (right), for each text type and context size. Error bars are 95%
confidence intervals across narratives in the corpus.

rics. For performance, we focus on the model’s
precision in retrieving the true token (a more inter-
pretable metric than cross-entropy loss). To quan-
tify performance, we compute: a) a binary score
quantifying whether the token with highest pre-
dicted probability is the true token (top 1 precision);
b) a binary score quantifying whether predicted
probability for the true token is one of the 5 highest
predicted probability values (top 5 precision); c) a
binary score quantifying whether predicted prob-
ability for the true token is among the 10 highest
predicted probability values (top 10 precision). For
uncertainty, we extract the entropy of the predicted
probability distribution. To summarize the overall
impact of punctuation, casing and lexical noise on
the model’s behavior, for each of these metrics we
also compute correlations between values for the
baseline transcript and values for each of the three
manipulated versions.

3 Results

3.1 Precision

Overall, ablation of punctuation and casing and
addition of lexical noise incrementally degrade pre-
cision.

Removal of punctuation contributes the most
to a loss in precision (up to 4%, up to 6.5% and
up to 8% for top 1, top 5 and top 10 precision
respectively), while incremental casing and noise
removal contribute to a smaller extent (up to 1%

each for top 1 precision, and up to 2% each top 5
and top 10 precision). Overall, the model retains
considerably good precision across manipulations
(16-22% top 1, 35-45% top 5, and 42-53% top 10).

For all text types, precision systematically in-
crease as context size increases, suggesting that
absence of punctuation and casing does not hinder
the models’ ability to benefit from additional long-
range information to refine its predictions. Qual-
itative inspection of model predictions suggests
that, even when punctuation or casing are removed,
the model generally produces plausible next-token
predictions. Note that, for corresponding input se-
quences, predicted next tokens are often different
across text types: the predicted token is the same
across baseline and manipulated texts less than 10%
of the time.

3.2 Uncertainty

All manipulations increase model uncertainty rel-
ative to the baseline, with punctuation having by
far the largest effect. Interestingly, the effect of ma-
nipulations here interact with context size. When
punctuation is available, the model benefits from
the larger context to reduce its uncertainty. In ab-
sence of punctuation, however, entropy remains
roughly constant across context sizes larger than
10 words (see Figure 2).

This effect is clarified by closer inspection of the
predicted probability distribution (see Figure 4). In
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the baseline, adding context increases probability
mass in the head of the distribution, which reduces
entropy. In absence of punctuation, as context size
increases, probabilities remain roughly the same
for the highest probability token (top left panel),
and they decreases for its immediate competitors
(top middle panel) and for highly implausible op-
tions (bottom right panel), but the countervailing
increase in probability mass in the middle of the dis-
tribution (top right to bottom center panel) causes
overall model uncertainty not to decrease.

Figure 2: Entropy of the predicted probability distribu-
tion across text types and context sizes.

3.3 Overall similarity

Both next-token predictive performance metrics
and entropy display medium to high correlations
between baseline text and manipulated texts. Corre-
lations range between .78 and .83 when punctuation
is removed, between .72 and .77 when casing is
removed, and between .69 and .73 when corrupted
lexical tokens are added.

Figure 3: Correlations between baseline text and manip-
ulated texts for both entropy and precision metrics.

4 Conclusions

We evaluated how manipulations of non-lexical
markers (specifically, punctuation and casing) af-
fects GPT-2’s language modeling behavior. Ab-
sence of punctuation and casing increase uncer-
tainty, and they decrease, but do not disrupt,
model’s ability to yield plausible language mod-
eling predictions. Crucially, we observe that in ab-
sence of punctuation, GPT-2’s precision increases
when longer contexts are available, but — contrary
to what observed for baseline text — longer con-
texts do not reduce uncertainty.

5 Limitations and future work

Our study provides a first contribution to under-
standing how transformers leverage structural and
discourse information conveyed by non-lexical
markers to perform language modeling predictions.

This study focuses uniquely on GPT-2, and the
patterns observed in the present work may not gen-
eralize to other models. There are a number of
factors that may modulate whether and how model
behavior is significantly affected by the absence (or
an inconsistent use) of non-lexical markers. Char-
acteristics of the training corpus are one such ex-
ample, with models trained on corpora including
a larger proportion of unstructured text potentially
being more robust than models trained mainly on
highly structured text. Other relevant factors may
include the mono- vs. multi-lingual nature of the
model. Use of punctuation and casing is, in fact,
far from consistent across languages. Multilingual
models may therefore rely on non-lexical mark-
ers to a smaller extent compared to monolingual
models. In a follow-up to this study, we are ap-
plying out evaluation pipeline to a wider range of
pretrained models, including both models trained
on forward language modeling and on masked lan-
guage modeling, and including both monolingual
and multilingual models.

The current study only evaluates the impact of
non-lexical markers on language modeling perfor-
mance. Yet, in most application scenarios, pre-
trained models are deployed in the context of down-
stream tasks (e.g., classification). Future iterations
of this work will combine an evaluation of the ef-
fect of removing non-lexical markers on language
modeling behavior with an evaluation of its impact
on common downstream tasks.

Finally, this study compares GPT-2’s behavior
across scenarios where non-lexical markers are ei-
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Figure 4: Average probability for the top value in the distribution (top left), 2nd to 5th top values (top middle), 5th

to 10th top values (top right), 10th to 100th top values (bottom left), 100th to 1000th top values (bottom centre) and
bottom 1000 values (bottom right).

ther present and used consistently or fully absent,
but there are several (and perhaps more realistic)
scenarios in between. Future work will also target
these intermediate scenarios, using a more varied
set of corpora or probabilistic text augmentation.
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Piotr Żelasko, Raghavendra Pappagari, and Najim De-
hak. 2021. What Helps Transformers Recognize
Conversational Structure? Importance of Context,
Punctuation, and Labels in Dialog Act Recognition.
Transactions of the Association for Computational
Linguistics, 9:1163–1179.

101

https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.1016/S0093-934X(02)00542-4
https://doi.org/10.1016/S0093-934X(02)00542-4
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/978-3-030-00810-9_9
https://doi.org/10.1007/978-3-030-00810-9_9
https://doi.org/10.1007/978-3-030-00810-9_9
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
https://doi.org/10.1162/tacl_a_00420
https://doi.org/10.1162/tacl_a_00420
https://doi.org/10.1162/tacl_a_00420


A Appendix

original transcript. Jerry and George strolled through the airport with their suitcases. George walked
quickly, grimacing as he scanned the signs to figure out which way to go. A man passing by sneezed in
his direction, causing him to recoil backwards and then frantically squirt Purell onto his hands.
- punctuation. Jerry and George strolled through the airport with their suitcases George walked quickly
grimacing as he scanned the signs to figure out which way to go A man passing by sneezed in his direction
causing him to recoil backwards and then frantically squirt Purell onto his hands
- casing jerry and george strolled through the airport with their suitcases george walked quickly grimacing
as he scanned the signs to figure out which way to go a man passing by sneezed in his direction causing
him to recoil backwards and then frantically squirt purell onto his hands
- casing noised jerry and george strolled through the airport with their suitcases george walked quickly
<unk> as he scanned the signs to figure out which way to go a man passing by sneezed in his direction
causing him to <unk> backwards and then frantically squirt <unk> onto his hands jerry <unk> up

Table 2: Sample excerpts from different transcript types

text type input next word true token predicted
manual transcript their suitcases. George walked quickly,

grimacing as he scanned the signs to
figure out which way to go. A man

passing pass in

- punctuation their suitcases George walked quickly
grimacing as he scanned the signs to
figure out which way to go A man

passing pass in

- casing their suitcases george walked quickly
grimacing as he scanned the signs to
figure out which way to go a man

passing pass in

- casing noised their suitcases george walked quickly
<unk> as he scanned the signs to figure
out which way to go a man

passing pass was

Table 3: inputs to the model, next word, true token, and model predictions for window size 20.
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Abstract

Previous work on Neural Referring Expression
Generation (REG) all uses WebNLG, an English
dataset that has been shown to reflect a very lim-
ited range of referring expression (RE) use. To
tackle this issue, we build a dataset based on
the OntoNotes corpus that contains a broader
range of RE use in both English and Chinese
(a language that uses zero pronouns). We build
neural Referential Form Selection (RFS) mod-
els accordingly, assess them on the dataset and
conduct probing experiments. The experiments
suggest that, compared to WebNLG, OntoNotes
is better for assessing REG/RFS models. We
compare English and Chinese RFS and confirm
that in both languages BERT has the highest
performance. Also, our results suggest that in
line with linguistic theories, Chinese RFS de-
pends more on discourse context than English.

1 Introduction

Referring Expression Generation (REG) In Context
is a key task in the classic Natural Language Gen-
eration pipeline (Reiter and Dale, 2000; Gatt and
Krahmer, 2018). Given a discourse whose refer-
ring expressions (REs) have yet to be realised and
given their intended referents, it aims to develop an
algorithm that generates all these REs.

Traditionally, REG In Context (hereafter REG)
is a two-step process. In the first step, the Refer-
ential Form (RF) is determined, e.g. whether to
use a proper name, a description, a demonstrative
or a pronoun. This step is the focus of this work
and will be hereafter called Referential Form Se-
lection (RFS). In the second step, the content of
the RE is determined. For example, to refer to Joe
Biden, one needs to choose from options such as
“the president”, “the 46th president of US”.

In recent years, many works on REG have started
to use neural networks. For example, Castro Fer-
reira et al. (2018a); Cao and Cheung (2019); Cunha
et al. (2020) have proposed to generate REs in

an End2End manner, i.e., to tackle the selection
of form and content simultaneously. Chen et al.
(2021) used BERT (Devlin et al., 2019) to perform
RFS. One commonality between these studies is
that they were all tested on a benchmark dataset,
namely WebNLG (Gardent et al., 2017; Castro Fer-
reira et al., 2018b).

However, Chen et al. (2021) and Same et al.
(2022) found that WebNLG is not ideal for assess-
ing REG/RFS algorithms because (1) it consists
of rather formal texts that may not reflect every-
day RE use; (2) its texts are very short and have
a simple syntactic structure; and (3) most of its
REs are first-mentions. These limitations led to
some unexpected results when they tested their
RFS models on WebNLG. For example, advanced
pre-trained models (i.e., BERT) performed worse
than simpler models (i.e., single-layer GRU (Cho
et al., 2014)) without any pre-training. By prob-
ing1 various RFS models, they found that though
BERT encodes more linguistic information, which
is crucial for RFS, it still performs worse than GRU.
In this study, we are interested in how well each
RFS model performs when tested on a dataset that
addresses the above limitations – in what follows,
we call this a “realistic" dataset, for short.

Additionally, all the above studies were con-
ducted on English only. It has been pointed out
that speakers of East Asian languages (e.g. Chi-
nese and Japanese) use REs differently from speak-
ers of Western European languages (e.g. English
and Dutch; Newnham (1971)). Theoretical lin-
guists (Huang, 1984) have suggested that East
Asian languages rely more heavily on context than
Western European languages (see Chen (2022) for
empirical testing and computational modelling).
As a result, speakers of East Asian languages fre-
quently use Zero Pronouns (ZPs), i.e. REs that
contain no words and are resolved based merely

1Probing is an established method to analyse whether the
latent representations of a model encode certain information.
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Text: Amatriciana sauce is made with Tomato. It is a
traditional Italian sauce. Amatriciana is a sauce contain-
ing Tomato that comes from Italy.

Delexicialised Text: Amatriciana_sauce is made with
Tomato. Amatriciana_sauce is a traditional Italy sauce.
Amatriciana_sauce is a sauce containing Tomato that
comes from Italy.

Table 1: An example data from the WebNLG corpus. In
the delexicalised text, every entity is
hlhighlighted.

on their context.2 This poses two challenges for
REG/RFS models: (1) they need to be better able
to encode contextual information; (2) they need to
account for an additional RF (i.e. ZP). Therefore,
we are curious to see how well each RFS model
performs when tested on a language that has more
RFs and relies more on context than English.

To answer the research questions above, we con-
struct a “realistic" multilingual dataset of English
and Chinese and try different model architectures,
such as models with/without pre-trained word em-
beddings, and models incorporating BERT. We re-
port the results and compare model behaviours on
English and Chinese subsets. The code used in this
study is available at: https://github.com/
a-quei/probe-neuralreg.

2 Referential Form Selection (RFS)

Using WebNLG, Castro Ferreira et al. (2018a) re-
defined the REG task in order to accommodate
deep learning techniques. Subsequently, Chen et al.
(2021) adapted the definition to fit the RFS task.
The first step is to remove from each RE all in-
formation about the RF of that RE. Concretely, as
shown in Table 1, Castro Ferreira et al. (2018a) first
“delexicalised" each text in WebNLG by assigning a
general entity tag to each entity and replacing all
REs referring to that entity with that tag. In most
cases, a tag is assigned to an entity by replacing
whitespaces in its proper name with underscores,
e.g. “Amatriciana sauce” to “Amatriciana_sauce”.

For a target referent x(r) (e.g. the second “Am-
atriciana_sauce” in Table 1), given the referent,
its pre-context in the discourse x(pre) (e.g. “Am-
atriciana_sauce is made with Tomato.”) and its
post-context x(post) (e.g. “is a traditional Italy

2For example, consider the question in Chinese: “你看见
比尔了吗？” (Have you see Bill?). A Chinese speaker can
reply “∅看见∅了。” (∅ saw ∅.) where the two ∅ are ZPs that
refer to the speaker himself/herself and “Bill” respectively.

EN
4-Way Demonstrative, Description, Proper

Name, Pronoun
3-Way Description, Proper Name, Pronoun
2-Way Non-pronominal, Pronominal

ZH

5-Way Demonstrative, Description, Proper
Name, Pronoun, ZP

4-Way Description, Proper Name, Pronoun, ZP
3-Way Non-pronominal, Pronoun, ZP
2-Way Overt Referring Expression, ZP

Table 2: Types of RF classification and possible classes.
Demonstratives are grouped with descriptions in 3-way
EN and 4-way ZH classifications under the category
Description. The category Non-pronominal contains
proper names, descriptions, and demonstratives.

sauce. Amatriciana_sauce is a sauce containing
Tomato that comes from Italy.”), the RFS task is to
decide the proper RF f̂ (e.g., pronoun).

3 Dataset Construction

To construct a realistic multilingual REG/RFS
dataset, we used the Chinese and English por-
tions of the OntoNotes dataset3 whose contents
come from six sources, namely broadcast news,
newswires, broadcast conversations, telephone con-
versations, web blogs, and magazines. We call the
resulting Chinese subset OntoNotes-ZH and the En-
glish subset OntoNotes-EN. In the following, we
describe the construction process.

First, for each RE in OntoNotes, we used the
3 previous sentences as the pre-context and the 3
subsequent sentences as the post-context. Similar
to Chen et al. (2021), we are interested in different
RF classification tasks. For Chinese, for exam-
ple, we not only have a 2-way classification task
where models have to decide whether to use a ZP
or an overt RE, but also a 5-way task where mod-
els have to choose from a more fine-grained list of
possible RFs. Table 2 lists all categories in both
OntoNotes-EN and OntoNotes-ZH. Using the con-
stituency syntax tree of the sentence containing
the target referent and the surface form of the tar-
get, we automatically annotated each RE with its
RF category. For example, an RE is considered a
demonstrative if it is annotated in the syntax tree
as a noun phrase and its surface form contains a
demonstrative determiner.

Second, we excluded all coreferential chains con-
sisting only of pronouns and ZPs. The pronominal

3OntoNotes is licensed under the Linguistic Data
Consortium: https://catalog.ldc.upenn.edu/
LDC2013T19.
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WebNLG O-EN O-ZH

Percentage of First Mentions 85% 43% 43%
Percentage of Proper Names 71% 21% 15%
Average Number of Tokens 18.62 106.44 139.55

Table 3: Statistics of WebNLG and OntoNotes. O-EN and
O-ZH stand for OntoNotes-EN and OntoNotes-ZH.

chains consist mainly of first/second-person ref-
erents, and we do not expect much variation in
referential form in these cases. In other words, we
only included the chains that have at least one overt
non-pronominal RE.

Third, we delexicalised the corpus following
Castro Ferreira et al. (2018a). Additionally, since
we used the Chinese BERT as one of our RFS mod-
els and it only accepts input shorter than 512 char-
acters, we removed all samples in OntoNotes-ZH

whose total length (calculated by removing all un-
derscores introduced during delexicalisation and
summing the length of pre-contexts, post-contexts,
and target referents) is longer than 512 characters.
Experiments with models other than BERT on the
original OntoNotes-ZH show that this does not bias
the conclusions of this study (see Appendix A).

Last, we split the whole dataset into a training
set and a test set in accordance with the CoNLL
2012 Shared Task (Pradhan et al., 2012). Since ZPs
in Chinese are only annotated in the training and
development sets, following Chen and Ng (2016),
Chen et al. (2018), and Yin et al. (2018), we used
the development set as the test set and sampled 10%
of the documents from the training set as the de-
velopment data. Thus, we obtained OntoNotes-EN,
where the training, development, and test sets con-
tain 71667, 8149, and 7619 samples, respectively,
and OntoNotes-ZH, where the training, develop-
ment, and test sets contain 70428, 9217, and 11607
samples, respectively.

OntoNotes vs. WebNLG. Based on the nature
of OntoNotes and the statistics in Table 3, we ob-
serve that: (1) the WebNLG data is all from DBPe-
dia, while the OntoNotes data is multi-genre; (2)
OntoNotes has a much smaller proportion of first
mentions and proper names; and (3) the documents
in OntoNotes are on average much longer than those
in WebNLG.

Another difference between WebNLG and
OntoNotes is in the ratio of seen and unseen en-
tities in their test sets. Castro Ferreira et al. (2018b)
divided the documents in the WebNLG’s test set

into seen (where all the data come from the same
domains as the training data) and unseen (where
all the data come from different domains than the
training data). Almost all referents from the seen
test set appear in the training set (9580 out of 9644),
while only a few referents from the unseen test set
appear in the training set (688 out of 9644). 4 In
OntoNotes, 38.44% and 41.45% of the referents in
the test sets of OntoNotes-EN and OntoNotes-ZH

also appear in the training sets.
Having said this, OntoNotes largely mitigates the

problems of WebNLG discussed in §1. If OntoNotes
is a “better” and more “representative" corpus for
assessing REG/RFS models, we can expect more
“expected” results: models with pre-training out-
perform those without, and models that learn more
useful linguistic information outperform those that
learn less. We will detail our expectations in §5.

4 Modelling RFS

We introduce how we represent entities and how
we adapt the RFS models of Chen et al. (2021).

4.1 Entity Representation
Unlike WebNLG, whose 99.34% of referents in
the test set appear in the training set, the majority
of referents in OntoNotes do not appear in both
training and test sets. This means that RFS mod-
els should be able to handle unseen referents, but
mapping each entity to a general entity tag with
underscores would prevent the models from doing
so (Cao and Cheung, 2019; Cunha et al., 2020) be-
cause entity tags of unseen entities are usually out-
of-vocabulary (OOV) words. Additionally, when
incorporating pre-trained word embeddings and
language models, using entity tags prevents en-
tity representations from benefiting from these pre-
trained models (again since the entity tags of un-
seen entities are usually OOV words).

Similar to Cunha et al. (2020), we replaced
underscores in general entity tags (e.g. “Amatri-
ciana_sauce”) with whitespaces (henceforth, lex-
ical tags, e.g. “Amatriciana sauce”). Arguably,
there is a trade-off between using entity tags and
using lexical tags. In contrast to lexical tags, the
use of entity tags helps models identify mentions
of the same entity in discourse, which has been
shown to be a crucial feature for RFS. However, us-
ing entity tags prevents models from dealing with

4Chen et al. (2021) used only seen entities because the size
of the underlying triples of the unseen test set differs from
both the training set and seen test set.
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unseen entities and reduces the benefit of using pre-
trained language models. In §6.3, we compare the
performance of using entity tags and lexical tags.

4.2 RFS Models
To build the RFS models, we use the two neu-
ral models from Chen et al. (2021): c-RNN and
ConATT. Given the task definition in §2, mod-
els take pre-context x(pre), target referent x(r),
and post-context x(post) as inputs. As a result
of using lexical tags, each target referent is no
longer a single tag, but a sequence of tokens.
In other words, instead of being {wi}, x(r) is
{wi, wi+1, ..., wj}. The other two inputs are pre-
context x(pre) = {w1, w2, ..., wi−1} and post-
context x(post) = {wj+1, wj+1, ..., wn}. The ar-
chitectures of the models are as follows:

c-RNN. c-RNN concatenates x(pre), x(r) and
x(post), and uses a single bidirectional GRU
to encode them all. Formally, we obtain a
sequence of hidden representations by h =
BiGRU([x(pre), x(r), x(post)]). We then use the
summation of the hidden representations at the be-
ginning and the end of the target referent (i.e., i
and j) for calculating the final representation:

R = ReLU(Wf [hi + hj ]), (1)

where Wf is the weight in the feed-forward layer.
R is then used for predicting the RF:

P (f̂ |x(pre), x(r), x(post)) = Softmax(WcR),
(2)

where Wc is the weight in the output layer. x can
be initialised randomly or initialised by pre-trained
word embeddings or language models. We tested
both the vanilla c-RNN and c-RNN, whose input
layer is initialised by pre-trained word embeddings
or by BERT.

ConATT. ConATT first encodes x(pre), x(r) and
x(post) separately using three bidirectional GRUs
and three self-attention modules (Yang et al., 2016).
For each input x(k), we first obtain h(k) using a Bi-
GRU: h(k) = BiGRU(x(k)). Subsequently, given
the total M steps in h(k), we first calculate the
attention weight α(k)

j at each step j by:

α
(k)
j =

exp(e
(k)
j )

∑M
m=1 exp(e

(k)
m )

, (3)

where e(k)j = v
(k)T
a tanh(W (k)

a h
(k)
j ), va is the atten-

tion vector and Wa is the weight in the attention

layer. The context representation of x(k) is then the
weighted sum of h(k): c(k) =

∑N
j=1 α

(k)
j h(k).

After obtaining c(pre), c(r) and c(post), we con-
catenate them with the target entity embedding x(r),
and pass it through a feed forward network to ob-
tain the final representation:

R = ReLU(Wf [c
(pre), c(r), c(post)]), (4)

where [·, ·] represents a concatenation operation.
The prediction is made using Equation 2. The input
layer of ConATT is initialised either randomly or
by pre-trained word embeddings.

5 Hypotheses

OntoNotes reflects a broader range of RE use and is,
therefore, more appropriate as a source of insights
into the human use of REs. Thus, it is plausible
to expect that the “unexpected results” of §1 will
not occur when assessing RFS models (see §4) on
OntoNotes. More specifically, we expect:

H1 models that incorporate pre-training (i.e., pre-
trained word embeddings and BERT, which
has been proved to be effective in many NLP
tasks) work better than those that do not;

H2 ConATT, which has been shown to perform
well on both REG (Castro Ferreira et al.,
2018a) and co-reference resolution (Yin et al.,
2018), works better than c-RNN;

H3 models that learn more useful linguistic infor-
mation (confirmed by probing experiments)
perform better than those that learn less.

Comparing Chinese and English, we can see in
Table 2 that Chinese has an additional category
compared to English, namely ZP. Given the theory
that Chinese speakers process ZPs in the same way
as pronouns (Yang et al., 1999), we expect:

H4 RFS models that work well in English would
also work well in Chinese.

Additionally, since Chinese relies more on context
than English (see §1), it is plausible to expect:

H5 Chinese RFS models would benefit more from
the use of contextual representations (i.e.,
BERT) than English RFS models.
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4-way 3-way 2-way

Model P R F P R F P R F

XGBoost 48.96 49.69 49.12 67.78 65.78 66.44 79.11 78.01 78.42

c-RNN 65.45 60.59 62.38 68.19 69.19 68.55 76.66 75.23 75.70
+Glove 66.06 63.39 64.56 69.94 70.14 70.01 77.61 76.31 76.67
+BERT 73.57 75.94 74.59 80.53 81.81 81.03 87.21 86.97 87.08

(+19.57%) (+18.21%) (+15.03%)
ConATT 61.29 62.21 61.58 66.34 65.87 66.01 73.19 73.21 73.19
+Glove 63.71 61.70 62.51 67.18 66.88 67.00 75.17 74.48 74.75

Table 4: Evaluation results of the English RFS systems on OntoNotes-EN with lexical tags. Best results are
boldfaced, whereas the second best results are underlined. “P”, “R” and “F” stand for macro-averaged precision,
recall and F1 score. Each percentage below the F-score of BERT indicates how much c-RNN gains from using
BERT compared to not using BERT.

5-way 4-way 3-way 2-way

Model P R F P R F P R F P R F

XGBoost 38.17 40.06 34.59 46.16 44.12 41.29 56.19 54.64 51.98 64.5 79.56 63.67

c-RNN 52.42 48.49 49.62 54.60 54.65 54.19 56.78 53.50 54.68 67.66 62.89 64.59
+SGNS 54.54 51.27 51.56 57.78 56.75 57.16 59.57 56.19 57.46 67.74 65.33 66.37
+BERT 64.99 63.60 63.85 68.22 69.48 68.17 70.36 68.60 69.13 78.35 73.51 75.59

(+28.68%) (+25.80%) (+26.43%) (+17.03%)
ConATT 51.78 48.28 49.25 54.27 53.08 52.98 53.67 49.47 50.79 63.25 56.92 58.28
+SGNS 55.44 52.13 53.09 55.88 54.94 54.18 55.01 53.06 53.87 64.98 61.38 62.69

Table 5: Evaluation results of the Chinese RFS systems on OntoNotes-ZH.

6 Experiments

In what follows, we first provide an overview of the
implementation details of the RFS models. To un-
derstand what linguistic information can be learnt
by each model, we introduce a series of probing
experiments. We then discuss the performance of
these models and answer the hypotheses.

6.1 Baseline and Implementation Details

Following Chen et al. (2021), we used a feature-
based model, XGBoost (Chen et al., 2015), as our
baseline. For pre-trained word embeddings, we
used Glove (Pennington et al., 2014) for English
and SGNS (Li et al., 2018) for Chinese; for BERT,
we used “bert-base-cased” for English and “bert-
base-chinese” for Chinese.5 Since Chinese BERT
is a character-based model, we use all Chinese

5(1) English Glove: https://nlp.
stanford.edu/projects/glove/; (2) Chi-
nese SGNS: https://github.com/Embedding/
Chinese-Word-Vectors; (3) English BERT:
huggingface.co/bert-base-cased; and
(4) Chinese BERT: https://huggingface.co/
bert-base-chinese.

models character-based. The results of the word-
based models can be found in Appendix B.

We tuned the hyper-parameters of each of our
neural models on the development set and chose
the setting with the best macro F1 score. For train-
ing, we used a single Tesla V100. For the baseline
XGBoost models, we set the learning rate to 0.05,
the minimum split loss to 0.01, the maximum depth
of a tree to 5, and the sub-sample ratio of the train-
ing instances to 0.5. We report macro-averaged
precision, recall, and F1 on the test set. We run
each model 5x and report the average performance.

6.2 Probing RFS Models
To test the hypotheses in §5 (especially H3), we
probed each RFS model using probing classifiers.
Specifically, after training an RFS model, we ex-
tracted its hidden representations and used them to
train a probing classifier for a particular linguistic
feature. The performance of the probing classifier
indicates how well the RFS model learns the fea-
ture (Belinkov et al., 2017; Giulianelli et al., 2018).

Probing Tasks. We used the probing tasks de-
fined in Chen et al. (2021). These tasks pertain
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Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random - 49.99
(49.77)

33.06
(32.27)

50.10
(50.10)

25.17
(23.75)

33.09
(32.40)

49.94
(48.21)

50.38
(49.53)

Majority - 55.95
(35.88)

44.05
(20.39)

50.14
(33.39)

44.05
(15.29)

44.05
(20.39)

68.08
(40.50)

63.08
(38.68)

c-RNN
4-way 64.73

(63.39)
54.41

(50.76)
74.73

(74.67)
51.66

(36.31)
50.52

(44.81)
74.57

(67.86)
63.89

(50.32)

3-way 64.24
(63.30)

53.94
(50.45)

75.57
(75.55)

52.02
(36.78)

49.76
(42.83)

74.96
(68.26)

64.00
(49.71)

2-way 64.45
(63.31)

53.55
(49.72)

73.90
(73.82)

51.55
(35.75)

49.67
(43.03)

73.50
(65.72)

63.39
(45.76)

c-RNN
+GloVe

4-way 65.00
(64.24)

54.40
(51.39)

76.75
(76.75)

51.95
(37.09)

50.65
(44.94)

74.25
(67.26)

64.14
(51.44)

3-way 65.17
(64.44)

55.14
(52.69)

78.06
(78.06)

52.81
(37.55)

50.73
(45.89)

75.46
(70.66)

64.67
(53.28)

2-way 65.07
(64.26)

53.55
(49.34)

75.22
(75.06)

51.20
(35.87)

50.78
(45.04)

73.91
(67.22)

63.26
(47.49)

c-RNN
+BERT

4-way 86.00
(85.67)

72.17
(69.46)

79.83
(79.73)

66.53
(50.36)

69.85
(65.99)

82.32
(80.08)

68.47
(60.06)

3-way 83.74
(83.42)

71.56
(68.90)

81.17
(81.15)

65.35
(49.10)

68.03
(63.62)

85.05
(82.38)

67.82
(61.93)

2-way 81.82
(81.12)

69.33
(67.07)

78.05
(77.89)

63.46
(47.97)

65.11
(62.06)

81.85
(77.45)

66.35
(53.37)

ConATT
4-way 64.37

(62.95)
52.20

(46.63)
73.37

(73.34)
49.74

(33.33)
49.55

(43.52)
74.04

(66.30)
63.57

(48.89)

3-way 64.28
(61.87)

51.96
(45.92)

74.79
(74.76)

49.25
(31.91)

49.21
(41.64)

73.89
(67.51)

63.25
(48.61)

2-way 62.07
(59.46)

49.45
(41.73)

64.44
(63.72)

48.05
(30.18)

47.85
(40.85)

71.24
(59.96)

63.32
(47.51)

ConATT
+GloVe

4-way 65.39
(63.41)

53.51
(50.49)

79.96
(79.95)

51.51
(36.03)

50.52
(43.17)

76.05
(70.27)

63.79
(49.86)

3-way 63.72
(61.79)

52.13
(45.39)

79.03
(79.00)

49.48
(33.03)

49.43
(41.53)

74.86
(68.46)

63.31
(48.97)

2-way 63.77
(61.56)

50.73
(44.35)

74.20
(73.97)

48.77
(31.53)

49.24
(42.81)

72.31
(63.31)

63.15
(48.39)

Table 6: Results of the English RFS models on each probing task on the OntoNotes-EN dataset. A in A(B) is the
accuracy and B is the macro F1.

to four classes of features, namely referential sta-
tus (DisStat and SenStat), syntactic position (Syn),
recency (DistAnt and IntRef), and discourse struc-
ture prominence (LocPro, GloPro). These fea-
tures have been shown to matter for RFS in lin-
guistic literature (Ariel, 1990; Gundel et al., 1993;
Arnold, 2010; von Heusinger and Schumacher,
2019). The definition of each probing task is as
follows: (1) DisStat: This feature has 2 values: (a)
discourse-old (the entity appeared in the pre-
vious context), and (b) discourse-new (it did
not); (2) SenStat: The sentence-level referential
status feature has 3 values: (a) sentence-new
(the RE is the first mention of the entity in the
sentence), (b) sentence-old (the RE is not the
first mention of the entity in the sentence), and (c)
first-mention (the RE is the first mention of
the entity in the discourse); (3) Syn: The syntax
probing task is a binary classification task with val-

ues (a) subject and (b) object; (4) DistAnt:
It contains four values: the entity and its antecedent
are (a) in same sentence, (b) one sentence apart,
(c) more than one sentence apart, and (d) the
entity is a first-mention (to distinguish first
mentions from subsequent mentions); (5) IntRef:
This feature asks whether there is an intervening
referent between the target RE and its nearest an-
tecedent. There are 3 possible values: (a) the tar-
get entity is a first-mention, (b) the previous
RE refers to the same entity, and (c) the pre-
vious RE refers to a different entity; (6)
LocPro: is a hybrid of DisStat and Syn. It has 2
values: (a) locally prominent, and (b) not
locally prominent. An entity is said to be
locally prominent if it is both “discourse- old" and
“realised as a subject"; (7) GloPro: This is a bi-
nary feature with two possible values: (a) globally
prominent, and (b) not globally prominent. The
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Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random - 50.20
(49.93)

33.18
(32.70)

50.11
(49.79)

25.02
(23.81)

33.56
(33.01)

50.12
(46.44)

50.00
(44.27)

Majority - 57.30
(36.43)

42.70
(19.95)

57.79
(36.62)

42.70
(14.96)

42.70
(19.95)

76.27
(43.27)

81.13
(45.09)

c-RNN
5-way 65.14

(62.80)
48.85

(45.89)
76.79

(75.94)
46.50

(28.49)
48.72

(45.78)
79.12

(65.54)
82.57

(52.03)

4-way 64.60
(61.80)

48.76
(43.39)

76.30
(74.74)

45.75
(27.73)

47.84
(44.65)

79.11
(63.44)

81.97
(46.64)

3-way 63.55
(61.19)

47.52
(41.52)

77.13
(76.11)

45.69
(26.43)

46.60
(41.13)

78.11
(61.70)

82.02
(45.76)

2-way 61.32
(58.06)

46.09
(36.30)

77.95
(76.96)

45.23
(24.11)

45.71
(36.49)

77.86
(58.82)

82.11
(45.54)

c-RNN
+SGNS

5-way 65.75
(63.52)

50.24
(47.24)

78.36
(77.28)

47.48
(30.71)

49.66
(46.13)

79.33
(66.11)

82.21
(50.37)

4-way 66.07
(62.90)

50.93
(46.96)

78.41
(77.18)

47.64
(30.78)

50.57
(47.81)

80.11
(66.16)

82.24
(48.20)

3-way 64.70
(62.87)

48.24
(42.54)

79.02
(77.81)

46.27
(27.51)

47.48
(43.59)

79.35
(64.17)

82.01
(46.11)

2-way 62.48
(60.45)

46.30
(38.24)

78.50
(77.12)

45.38
(24.27)

44.82
(37.61)

77.72
(64.09)

81.93
(46.12)

c-RNN
+BERT

5-way 76.17
(75.20)

59.58
(57.07)

79.42
(78.68)

56.14
(39.54)

59.89
(57.69)

81.86
(70.93)

82.05
(55.17)

4-way 75.32
(73.96)

59.69
(57.66)

78.86
(78.15)

56.66
(37.12)

60.27
(56.90)

81.95
(69.68)

81.96
(46.60)

3-way 74.46
(73.77)

58.41
(56.29)

80.48
(79.67)

55.91
(35.77)

59.39
(55.96)

82.71
(73.24)

81.91
(45.59)

2-way 69.20
(68.10)

55.16
(52.08)

80.68
(79.84)

51.74
(29.71)

51.73
(52.36)

81.43
(71.30)

82.05
(45.07)

ConATT
5-way 65.36

(62.33)
48.50

(43.17)
75.14

(73.94)
46.44

(28.92)
48.25

(45.05)
78.90

(63.99)
82.02

(47,16)

4-way 65.07
(61.91)

48.40
(43.15)

70.38
(67.48)

45.95
(26.41)

48.16
(44.15)

77.89
(57.31)

82.22
(47.27)

3-way 62.93
(59.54)

45.14
(39.55)

70.38
(68.78)

43.85
(24.47)

45.28
(39.13)

77.34
(55.27)

82.06
(45.73)

2-way 60.55
(52.10)

44.21
(32.85)

68.33
(65.67)

43.75
(21.78)

44.36
(32.66)

76.37
(49.38)

82.07
(45.35)

ConATT
+SGNS

5-way 66.65
(63.48)

49.57
(45.60)

78.18
(77.27)

46.34
(29.77)

49.76
(46.84)

79.35
(64.16)

81.65
(50.72)

4-way 66.09
(61.97)

49.43
(44.63)

75.87
(74.65)

46.04
(28.19)

49.20
(46.61)

79.50
(64.49)

82.22
(47.27)

3-way 62.84
(58.79)

46.51
(38.78)

75.15
(74.09)

44.99
(24.66)

45.76
(38.51)

78.12
(60.19)

82.06
(45.73)

2-way 62.65
(60.09)

46.76
(39.53)

74.17
(72.90)

44.31
(22.13)

44.84
(34.88)

77.53
(61.43)

82.07
(45.35)

Table 7: Results of the Chinese RFS models on each probing task on the OntoNotes-ZH.

most frequent entity in a text is marked as globally
prominent.

Probing Classifiers. Following Chen et al.
(2021), we use a logistic regression classifier as our
probing classifier. When probing, we use R (see
Equation 1 and 4) of the models with the best RFS
performance on the development set as input rep-
resentations. We evaluate probing classifiers using
the accuracy and macro-averaged F1 scores. We
run each probing classifier 5 times and report the
averaged value. We use 2 baselines: (1) random:
it randomly assigns a label to each input; and (2)

majority: it assigns the most frequent label in
the given probing task to the inputs.

6.3 Experimental Results

Results on each Language. Table 4 and 5 show
the results of each model on OntoNotes-EN and
OntoNotes-ZH. In both languages, all neural RFS
models defeat the baseline in 4-way and 5-way clas-
sifications, while models that does not use BERT
have on-par or worse performance in 3-way and
2-way classifications. This suggests that feature-
based models with linguistically-informed features
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Figure 1: Confusion Matrix for Chinese 2-way c-RNN +BERT (left) and 5-way c-RNN +BERT (right) where ORE
is overt RE, PRO is pronoun, PN is proper name, DES is description, and DEM is demonstrative.

4-way 3-way 2-way

Model P R F P R F P R F

c-RNN 50.77 45.89 46.38 60.83 59.56 59.94 73.33 72.58 72.84
+Glove 53.47 49.49 50.44 61.72 60.66 60.98 75.06 73.96 74.32

ConATT 52.32 45.88 46.89 59.66 58.71 59.08 71.86 71.38 71.56
+Glove 54.55 47.56 48.14 59.75 60.05 59.85 73.84 72.32 72.66

Table 8: Evaluation results of RFS systems on OntoNotes-EN with entity tags.

can build remarkably good systems for RFS, but
their performance decreases dramatically as the
task becomes more fine-grained.

As for H1, word embeddings always improve
RFS performance. The RFS tasks in both lan-
guages benefit strongly from using BERT. For in-
stance, if we compare c-RNN +BERT to c-RNN
for the full RFS tasks (i.e., 5-way classification
in Chinese and 4-way classification in English),
c-RNN +BERT improves the performance (F1
score) from 62.38 to 74.59 in English and from
49.62 to 63.85 in Chinese.

In both languages, contrary to our expectation
H2, ConATT performs worse than c-RNN. Prob-
ing results presented in Tables 6 and 7 provide
some explanations: in English, ConATT learns
less information about referential status, syntactic
position, and recency than c-RNN, and in Chinese,
ConATT performs significantly worse than c-RNN
in acquiring information about syntactic position.

Meanwhile, the results of the probing experi-
ments suggest that expectation H3, that models
that learn more useful information perform better,
is true. Further evidence is provided by the obser-
vations that (1) BERT defeats all other models in
almost all probing tasks and, therefore, defeats all

other models by a large margin; and (2) pre-trained
word embeddings (GloVe and SGNS) help each
model learn significantly more information about
almost every feature except GloPro, and, therefore,
improve RFS performance.

English vs. Chinese. In line with our expecta-
tion H4, models that work well for English also
work well on modelling ZP in Chinese. However,
deciding whether to use a ZP or an overt RE is gen-
erally harder than pronominalisation. For example,
c-RNN achieves an F-score of 75.7 for the English
2-way task, while it is only 64.6 for Chinese.

Figure 1 shows the confusion matrices for the
Chinese c-RNN +BERT 2-way and 5-way classi-
fications. By comparing them, we find that fine-
grained supervision helps with the choice between
ZPs and overt REs. Focusing on 5-way classifica-
tion, ZPs are quite often confused with pronouns.
Linguistic theory suggests that attenuated forms
such as pronouns and ZPs happen when the target
referent is salient enough (Ariel, 2001). It is un-
derstandable that ZPs and pronouns are confused
because it is hard for a model to make such a fine-
grained decision about when the target referent is
salient enough for pronominalisation but not for
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pro-drop.
The results of both Chinese and English RFS

tasks improve dramatically when using the contex-
tual language model BERT. This is consistent with
the probing results: in both languages, BERT helps
a lot in acquiring all linguistic information except
GloPro. To test our last hypothesisH5, we compute
how much c-RNN gains from using BERT com-
pared to not using BERT and report the numbers in
Table 4 and 5. On average, c-RNN gains 17.60%
from using BERT in English and 24.48% in Chi-
nese. The results suggest that Chinese RFS benefits
more from using BERT than English RFS. Never-
theless, we still cannot make conclusive statements
aboutH5. Strictly speaking, these percentages are
not directly comparable and the comparison cannot
be fully controlled because for example: (1) the
data is not fully parallel, and (2) the RFS tasks de-
fined for the two languages differ from each other.
For instance, unlike English RFS, Chinese RFS
considers an extra category, namely ZP.

Lexical Tags vs. Entity Tags. To chart the bene-
fits of lexical tags, we also ran models of Chen et al.
(2021) on a version of OntoNotes-EN, in which en-
tity tags are used instead of lexical tags. The re-
sults are presented in Table 8. Comparing this table
to Table 4, we see that the performance of each
model decreases significantly when the entity tags
are used, especially in the 4-way and 3-way clas-
sifications. For example, the F-score of the 4-way
c-RNN +Glove model decreases from 64.56 to
50.44. As expected, these tags prevent the models
from handling unseen entities.

7 Conclusion

To address the problem that all previous assess-
ments of neural REG/RFS models were only tested
on WebNLG, we built a realistic multilingual (En-
glish and Chinese) dataset based on the OntoNotes
dataset, modified the RFS models accordingly and
assessed them on this dataset. Although a few out-
comes were against our expectations (e.g. ConATT
performed worse than c-RNN), we found that our
results are explainable using probing experiments.
For example, models that use BERT, which per-
forms best in the probing experiments, also beats
all other models in RFS.

We also compared the English RFS to the Chi-
nese RFS, which uses ZPs frequently and depends
more on context than English. We found that RFS
models that work for English can also model Chi-

nese ZPs. In line with the idea that Chinese re-
lies more on context than English, the results sug-
gest that Chinese RFS models benefited more from
using contextualised language model BERT than
those of English. However, as discussed, this needs
to be further verified with more controlled experi-
ments.

In future, we plan to extend our work from
the following three perspectives: (1) testing other
model explanation techniques, e.g., probing classi-
fiers with control tasks (Hewitt and Liang, 2019)
and attention analysis (Bibal et al., 2022); (2) as-
sessing and probing RFS models on other lan-
guages (such as languages that are morphologically
rich); and (3) trying more probing tasks based on
factors that influence RFS, such as animacy, com-
petition and positional attributes (see Same and van
Deemter (2020) for more details).
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A Results on the Whole OntoNotes-ZH
Dataset

The Chinese experiments in this paper were con-
ducted on a subset of the original OntoNotes, each
text of which contains less than 512 characters,
since Chinese BERT can only accept texts shorter
than 512 characters. For reference, we also tested
models other than BERT on the whole OntoNotes-
ZH dataset. In the whole OntoNotes-ZH dataset,
there are 73607, 10008, and 12096 samples in
the training, development, and test sets, respec-
tively. Table 9 shows the results of the word-based
Chinese RFS models on the whole OntoNotes-ZH

dataset.
Comparing Table 9 with Table 10, we observe

that the results are quite similar. The only exception
is that the performance of c-RNN decreases from
55.16 to 53.86 in the 3-way classification, while the
performance of ConATT does not change much.

B Results of Using Word-based Models
on OntoNotes-ZH

To conduct a fair comparison between BERT and
other models, we built all our Chinese RFS mod-
els character-based. To justify this decision, we
also test word-based models on OntoNotes-ZH. Ta-
ble 5 shows the results of the word-based Chinese
models.

Comparing the results in Table 10 and Table 5,
there are slight differences, but these differences
do not change our conclusions. For example, all
models still perform worse than c-RNN +BERT
by a large margin. ConATT can slightly defeat
c-RNN in the 3-way and 2-way classifications but
performs significantly worse in other settings.
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5-way 4-way 3-way 2-way

Model P R F P R F P R F P R F

c-RNN 52.36 47.91 48.97 54.14 52.40 53.06 55.30 52.99 53.86 64.88 62.81 63.68
+SGNS 56.67 53.82 54.30 59.38 57.40 58.23 59.58 56.66 57.78 67.75 66.28 66.91

ConATT 50.41 45.45 46.86 51.27 49.80 50.35 59.06 54.43 56.11 63.71 63.75 63.73
+SGNS 52.33 48.60 49.37 53.48 51.64 52.38 60.53 56.18 57.69 67.86 64.97 65.95

Table 9: Evaluation results of our word-based Chinese RFS systems on the whole OntoNotes-ZH dataset.

5-way 4-way 3-way 2-way

Model P R F P R F P R F P R F

c-RNN 51.13 47.14 48.63 54.70 54.02 54.18 57.63 53.79 55.16 66.19 63.22 64.40
+SGNS 53.40 53.33 53.16 57.91 59.12 58.19 60.17 57.49 58.52 70.87 65.22 67.30

ConATT 48.52 45.15 46.26 56.34 49.92 49.26 56.24 55.70 55.94 65.33 64.28 64.75
+SGNS 50.58 47.04 48.31 54.68 51.85 52.62 59.93 55.79 57.32 67.15 65.29 66.11

Table 10: Evaluation results of our word-based Chinese RFS systems on a subset of the original OntoNotes-ZH
dataset, each text of which contains less than 512 characters.
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Krubiński, Mateusz, 21

Lack, Zander, 44
Li, Yunmeng, 88
Liu, Patrick, 44

Morishita, Makoto, 88

Neal, Tempestt, 58

Oida, Yoshiaki, 1
Opitz, Juri, 32

Pecina, Pavel, 21

Rocca, Roberta, 96

Same, Fahime, 103
Sumita, Eiichiro, 1
Suzuki, Jun, 88

Tokuhisa, Ryoko, 88

Utiyama, Masao, 1

Van Deemter, Kees, 103

Wang, Zhengxiang, 51

Yokoi, Sho, 70

Zachariah, Alisha, 11
Zhou, Zachary, 11

115


	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE

