
Proceedings of the The Fifth International Workshop on Emoji Understanding and Applications in Social Media, pages 69 - 74
July 14, 2022 ©2022 Association for Computational Linguistics

EmojiCloud: a Tool for Emoji Cloud Visualization

Yunhe Feng
University of Washington

yunhe@uw.edu

Cheng Guo
University of Washington

cguo3@uw.edu

Bingbing Wen
University of Washington

bingbw@uw.edu

Peng Sun
CUHK, Shenzhen

sunpengzju@gmail.com

Yufei Yue∗
Amazon.com

heurekayue@gmail.com

Dingwen Tao
Washington State University
dingwen.tao@wsu.edu

Abstract

This paper proposes EmojiCloud, an open-
source Python-based emoji cloud visualization
tool, to generate a quick and straightforward
understanding of emojis from the perspective
of frequency and importance. EmojiCloud
is flexible enough to support diverse drawing
shapes, such as rectangles, ellipses, and im-
age masked canvases. We also follow inclusive
and personalized design principles to cover the
unique emoji designs from seven emoji ven-
dors (e.g., Twitter, Apple, and Windows) and
allow users to customize plotted emojis and
background colors. We hope EmojiCloud can
benefit the whole emoji community due to its
flexibility, inclusiveness, and customizability.

1 Introduction and Background

Emojis play a significant role in social business
listening, sentiment analysis, cross-language com-
munication, and politics. People from different
language and cultural backgrounds love emojis and
use them very frequently. According to a recent
survey (Team, 2015), almost everyone online had
experience in using emojis. It is important to gen-
erate a fast and straightforward understanding of
emojis in many research and applications.

Inspired by the word cloud (Bielenberg and
Zacher, 2005; Dubinko et al., 2007), which has
be adopted as an effective way to visualize the fre-
quency and importance of words in text mining, we
thought the word cloud of emojis seemed to be a
good solution. However, as shown in Figure 1, the
word cloud will change and modify emojis’ origi-
nal and important features, such as colors (),
directionalities (), and textures (). These
inaccurate emoji representations may lead to mis-
understanding. For example, when emojis are
upside down, they turn into that conveys dif-
ferent sentiments and meanings. Also, miscolored

∗The work does not relate to his position at Amazon.

emojis such as may cause the problem of
personal identity representations.

In addition, the word cloud of emojis fails to cap-
ture the diversity of emoji appearances customized
by emoji vendors. As different emoji renderings
across viewing platforms may cause communica-
tion errors and diverse interpretations (Miller Hill-
berg et al., 2018; Miller et al., 2016), it is very
important to support vendor-wise emoji visualiza-
tion. Although several online platforms, such as
Talkwalker1, Slido2, and Poll Everywhere3, offer
emoji cloud services for various needs, they are not
open-source and fail to provide APIs or functions
for flexible usages in text mining. Moreover, these
services are just targeting one emoji cloud canvas
shape and one emoji vendor respectively.

Figure 1: Word cloud of emojis

In this paper, we design and implement Emoji-
Cloud, a counterpart of the word cloud for emoji
visualization. Instead of plotting words, Emoji-
Cloud draws emoji images in a clear and cloud-like
fashion and keeps all detailed emojis features. Emo-
jiCloud is flexible to support diverse canvases, such
as rectangles, ellipses, and image-masked shapes.
It also enables users to customize emoji clouds by
specifying emoji vendors (e.g., Twitter, Google,
and Apple) and individual self-made emoji images
when creating emoji clouds. As the first open-
source Python-based emoji cloud visualization tool
(to our best knowledge), EmojiCloud facilitates the
understanding of emojis and will bring broader im-
pacts of emojis in many domains. We believe it is

1https://www.talkwalker.com/blog/emoji-analysis-crack-
consumer-code

2https://whatsnew.slido.com/en/say-it-with-an-emoji-
3https://blog.polleverywhere.com/emoji-quiz-online/

69

a valuable and important tool to the emoji commu-
nity and even the text mining community.

2 EmojiCloud Design & Implementation

This section presents emoji image preparation,
EmojiCloud layout designs, and implementation.

2.1 Emoji Image Retrieval and Preprocessing
As emoji vendors, such as Twitter, Apple, and
Google, can implement emoji designs into their
products, emojis encoded with the same Unicode
characters may demonstrate distinct appearances
across platforms. To make EmojiCloud accurate
and inclusive, we take emoji appearance variances
across diverse vendors into consideration. Specifi-
cally, we propose an emoji image retrieval frame-
work that collects cross-vendor emoji data from
the official website of Unicode Full Emoji List4.
The framework crawls and stores the latest emoji
images provided by seven vendors (i.e., Apple,
Google, Meta, Windows, Twitter, JoyPixels, and
Samsung) automatically. Considering new emojis
are always requested by users (Feng et al., 2019)
and the Unicode Consortium releases new emojis
every year accordingly, the proposed framework
is able to check and download newly added emoji
images when an emoji image cannot be found in
local storage.

(a) Raw image (b) Bounding box (c) Unoccupied pos.

Figure 2: Preprocessing original emoji images by deter-
mining bounding boxes and marking unoccupied pixel
positions (colored as black in Figure 2(c))

The retrieved emoji images need to be prepro-
cessed to remove white-colored surrounding pixels
that may cause a sparse emoji layout in Emoji-
Cloud. As all retrieved emoji images are formatted
in PNG, all these white-colored surrounding pix-
els have an alpha value of zero, representing full
transparency. We propose a two-step transparency-
based white space removal approach to reserve
meaningful emoji pixels. First, as shown in Fig-
ure 2(b), we calculate the bounding box of an orig-
inal emoji image by removing surrounding white-

4https://unicode.org/emoji/charts/full-emoji-list.html

colored rows and columns. Second, within the
bounding box, we mark the positions of pixels that
are not part of the emoji representation (see the
black pixels in Figure 2(c)) as unoccupied. We
use E and U to represent the emoji image pixel
values and the pixel unoccupied statuses, where
Ex,y represents the emoji pixel value at the coor-
dinate (x, y) and Ux,y ∈ {0, 1} indicates whether
the pixel at (x, y) is unoccupied (Ux,y = 1) or not
(Ux,y = 0). The above two image operations help
create a compact emoji cloud layout. Note that
white-colored pixels composing emoji representa-
tions, such as the white pixels inside the cooked
rice emoji , are not touched because they have a
positive alpha value.

2.2 EmojiCloud Layout Design
This section presents how to determine emoji sizes
by frequency weights and design emoji layouts.

2.2.1 Emoji Size Calculation
We use a quintuple e = (a, b, w,E, U) to represent
an emoji, where a, b, w are the width, height, and
edge-level frequency weight of emoji e. Recall that
E and U represent pixel values and pixel unoccu-
pied statuses. Suppose we have a list of emojis e
to create an emoji cloud, where the ith emoji in e
is expressed as ei = (ai, bi, wi, E

i, U i). The im-
age sizes of all emojis have been standardized, i.e.,
ai ∗ bi = c; ∀i ∈ [1, |e|], where c is a constant and
|e| is the total count of emojis.

To ensure all emojis e can be drawn on the
canvas without overlapping, we must adjust the
weighted emoji plotting sizes with an edge rescale
ratio r. Let’s say the drawable emoji cloud canvas
size is s. The rule of thumb is that r satisfies the
following inequality.

s ≥
|e|∑

i=1

w2
i ∗ ai ∗ bi ∗ r2 =

|e|∑

i=1

w2
i ∗ c ∗ r2 (1)

where a possible maximum edge rescale ratio r can

be
√
s/(c ∗∑|e|i=1w

2
i). Thus, the rescaled width

and height of emoji ei are expressed as a′i = ai ∗
wi ∗ r and b′i = bi ∗wi ∗ r. The edge rescale ratio r
decays at a rate of 0.9 if there is not enough room
to plot all emojis on the canvas (see Line 36 in
Algorithm 1).

2.2.2 Emoji Layout
Suppose we have a canvas with a m ∗ n rectangle
bounding box in pixel. We use C and V to repre-

70

Algorithm 1: EmojiCloud Layout
1 Input: e: a list of emojis; (m,n, s, C, V): a canvas with width m, height n, drawable size s, pixel values C, and pixel

painting eligibility V on the canvas; c: the standardized size of emoji images;
2 Output: C: an emoji cloud image;
3 e← sort the emoji list e by emoji weights w = [w1, w2, .., w|e|] in reverse order;

4 r ←
√

s/(c ∗∑|e|i=1 w
2
i) ; // rescale ratio in Equation 1

5 for x = 1→ m do // x coordinate of canvas
6 for y = 1→ n do // y coordinate of canvas
7 if Vx,y = 1 then // canvas pixel is eligible for painting
8 append (x, y) into the canvas pixel coordinate list pc; // build pc

9 pc ← sort pc by the Euclidean distance between (x, y) ∈ pc and the canvas center (m/2, n/2);
10 count← 0; // count of plotted emojis
11 while count < |e| do // not all emoji have been plotted
12 count← 0 ; // no emoji has been plotted
13 for i = 1→ |e| do // iterate the emojis sorted by weights in reverse order
14 (ai, bi, wi, E

i, U i)← ei ; // parse ei into its quintuple representation
15 a′i ← ai ∗ wi ∗ r; b′i ← bi ∗ wi ∗ r ; // rescale width and height of ei

16 Ei′ , U i′ ← update Ei, U i based on r ; // rescale Ei, U i based on r
17 for (x, y) ∈ pc do // (x, y) is where the center of ei to be located
18 flag ← True ; // indicate the possibility of plotting ei
19 pt ← [] ; // a list of canvas temporal coordinates to plot ei
20 for x′ = 1→ a do // x coordinate of emoji image
21 for y′ = 1→ b do // y coordinate of emoji image

22 if U i′
x′,y′ = 0 then // emoji pixel (x′, y′) is not unoccupied

23 xo ← x′ − a′i/2; yo ← y′ − b′i/2 ; // the offsets to ei center
24 xt ← x+ xo; yt ← y + yo ; // canvas temporal coordinate for ei
25 append (xt, yt) to pt;
26 if Vxt,yt = 0 then // canvas pixel is not eligible for painting
27 flag ← False; // no room to plot ei at (x, y)
28 break; // iterate the next (x, y) ∈ pc

29 if flag = True then // the emoji ei can be plot at (x, y)
30 for (xt, yt) ∈ pt do // iterate temporal pixel coordinates

31 Cxt,xt ← Ei′
xt−x+a′

i/2,yt−y+b′i/2
; // plot emoji ei

32 Vxt,yt → 0; // set painting eligibility as negative
33 remove (xt, yt) from pc; // delete (xt, yt) for computing efficiency

34 count← count+ 1; // increase the number of plotted emoji by 1
35 break;

36 r ← r ∗ 0.9; // decay the edge rescale ratio by 0.9

37 return C

sent pixel values and the pixel painting eligibility
on the canvas. To be more specific, Cx,y represents
canvas pixel values at the coordinate (x, y) and
Vx,y ∈ {0, 1} indicates the painting eligibility of
(x, y), where x ∈ [1,m] and y ∈ [1, n]. The design
of V controls the drawable shape (e.g., a circle or
an ellipse) on the canvas (see section 2.3 for de-
tails). As it is possible that not all pixel coordinates
are eligible for painting, the drawable canvas size s
in Equation 1 does not always equal tom∗n. Thus,
a canvas can be expressed as (m,n, s, C, V).

For aesthetic purposes, we arrange an emoji
with a larger weight (indicting more importance)
closer to the canvas center, where more atten-
tion is usually given. First, we sort the emoji

list e based on their corresponding weights in re-
verse order (see Line 3 in Algorithm 1). Then,
we sort pc, a list of canvas pixel coordinates
(x, y) that are eligible for painting emojis (i.e.,
Vx,y = 1), by their Euclidean distances to the
canvas center (m/2, n/2). For each sorted emoji
ei ∈ e, we rescale its original representation
(ai, bi, wi, E

i, U i) into (a′i, b
′
i, w
′
i, E

i′ , U i′) using
the edge rescale ratio r.

Next, we attempt to draw emoji e starting from
the canvas pixel coordinate (x, y) ∈ pc that is
closest to the center of the canvas. As the center
(a′i/2, b

′
i/2) of emoji e will be mapped at (x, y) on

the canvas, the rest emoji pixel coordinate (x′, y′)
will be mapped at (xt = x+xo, yt = y+yo), where

71

xo and yo are offsets of x′ − a′i/2 and y′ − b′i/2. If
any occupied emoji pixel coordinate (x′, y′) (i.e.,
U i′
x′,y′ = 0) fails to be mapped to the canvas co-

ordinate (xt, yt) (i.e., Vxt,yt = 0), we continue to
check the next canvas pixel coordinate that is the
second most closest to the center of canvas (see
Line 17-28 in Algorithm 1).

When emoji ei can be plotted successfully on
the canvas (flag = True), we copy and paste each
pixel value in Ei′ into the canvas C. In addition,
the painting eligibilities of the involved pixel coor-
dinates on the canvas are set as 0. For computing
efficiency, we delete corresponding pixel coordi-
nates from the sorted pc and increase the count of
plotted emojis (see Line 29-35 in Algorithm 1).

2.3 Canvas Design

The proposed EmojiCloud is flexible to support di-
verse drawable canvas shapes, including rectangle,
ellipse, image-masked, and arbitrary canvases.

2.3.1 Default Canvas
We set the default canvas shape as an m ∗ n rectan-
gle, and all pixel coordinates within the rectangle
are eligible to draw emojis. The painting eligibility
Vx,y is set as 1 for all x ∈ [1,m] and y ∈ [1, n].

2.3.2 Ellipse Canvas
Suppose we have a drawable ellipse area within
an m ∗ n rectangle bounding box for plotting emo-
jis. The semi-major and semi-minor axes’ lengths
are expressed as m/2 and n/2. The center pixel
coordinate is expressed as (m/2, n/2). If pixel
coordinate (x, y) on canvas satisfies the following
inequality, Vx,y is set as 1.

(
x− m

2
m
2

)2 + (
y − n

2
n
2

)2 ≤ 1 (2)

Otherwise, the coordinate (x, y) is outside of
the ellipse, and the corresponding Vx,y is set as 0.
When m equals n, a circle canvas is defined.

2.3.3 Masked Canvas
EmojiCloud also allows users to specify a masked
canvas based on a PNG background image. Similar
to the emoji image preprocessing in Section 2.1,
we first determine a m ∗ n bounding box of the
image by removing the surrounding transparent
pixels. Then we detect the image contour and draw
a boundary accordingly (e.g., converting into

). To be more specific, we scan the alpha values
of pixels in the preprocessed image by row and by

column respectively. Recall that the alpha chan-
nel in PNG controls pixel transparency. During
the scanning, we identify pixels that cause a alpha
value change greater than a threshold θ (by default
θ = 10) as boundary pixels. After all boundary
pixels are determined, they will be colored by spec-
ified colors. If one pixel coordinate (x, y) is inside
the boundary, the corresponding Vx,y is set as 1.

2.3.4 Arbitrary Canvas
Users are allowed to specify arbitrary canvas draw-
able shapes by configuring the painting eligibility
Vx,y for pixel coordinate (x, y) on the canvas.

2.4 EmojiCloud Inclusive Design
EmojiCloud is flexible and inclusive to handle
emoji images designed by seven vendors (i.e., Ap-
ple, Google, Meta, Windows, Twitter, JoyPixels,
and Samsung.) We provide an option for users to
specify the vendor of interest. In addition, users
can customize and combine emojis based on their
requirements. For example, a red apple emoji
(U+1F34E) can be replaced by for market-
ing campaigns. The sauropod (U+1F995) and
T-Rex emoji (U+1F996) can be combined as
if it is not necessary to distinguish dinosaur species.

2.5 Implementation and Open Source
We develop open-source EmojiCloud in Python,
one of the most popular programming languages
for natural language processing and text mining.
EmojiCloud has been packaged as a Python li-
brary and published through Python Package In-
dex (PyPI). Users can run pip install EmojiCloud
to install the EmojiCloud package and use
from EmojiCloud import EmojiCloud to call for

EmojiCloud functions in Python scripts. An Emo-
jiCloud tutorial is available at https://pypi.
org/project/EmojiCloud/.

3 EmojiCloud Evaluation

In this section, we demonstrate that EmojiCloud
is able to support diverse canvas shapes, different
emoji vendors, and customized emoji images.

3.1 Visualization on Different Canvases
EmojiCloud allows users to select the drawable
canvas shapes to generate emoji cloud images. As
shown in Figure 3, we plot an identical list of emo-
jis (with the same weights) on rectangle, ellipse,
and image masked canvases. Emojis with large
weights are placed as close to the canvas center as

72

https://pypi.org/project/EmojiCloud/
https://pypi.org/project/EmojiCloud/

possible. To make the emoji cloud image compact,
emojis with small weights can also be placed near
the canvas center if there is enough room.

(a) Rectangle (b) Ellipse (c) Mask

Figure 3: EmojiCloud on different canvases

3.2 Visualization for Different Emoji Vendors
EmojiCloud is flexible to cover seven different
emoji vendors. Users can specify the vendor when
creating EmojiCloud images. Figure 4 shows the
generated EmojiCloud images of the same emoji
list for Twitter, Apple, Google, Windows, JoyPix-
els, Meta, and Samsung. Although vendors demon-
strate different layout patterns, heavy-weight emo-
jis are always placed in the center zone, where
people usually pay more attention.

(a) Twitter (b) Apple (c) Google (d) Windows

(e) JoyPixels (f) Meta (g) Samsung

Figure 4: EmojiCloud for different vendors

3.3 Visualization of Customized Emojis
Besides the above seven vendors, EmojiCloud sup-
ports arbitrary emoji representations designed and
specified by users. Figure 5 demonstrates an Emo-
jiCloud case of FIFA World Cup, where the default
trophy (U+1F3C6) is customized by . Also,
EmojiCloud allows users to customize the canvas
background (see the color of grass on soccer fields
in Figure 5). Customized emojis make EmojiCloud
more appropriate and accurate to depict the investi-
gated case studies.

3.4 Running Time Evaluation
The running time of EmojiCloud depends on how
many emojis are plotted and the emoji cloud canvas

(a) Original (b) Customized

Figure 5: EmojiCloud for FIFA World Cup Trophy

size. We measured the running time of EmojiCloud
on a laptop with an AMD Ryzen 7 4800HS pro-
cessor and 16 GB RAM. We evaluated the emoji
count from 25 to 60 with an increasing step of 5 on
canvases of 300*300, 400*400, and 500*500 pix-
els. EmojiCloud with the same setting ran 10 times
to ensure the running time was accurate. As shown
in Figure 6, the running time generally increases as
emoji counts and canvas sizes increase. An emoji
cloud (containing up to 60 emojis) on a 300*300
pixels canvas can be generated within 5 seconds.

30 40 50 60
Count of emojis

5

10

15

Ru
nn

in
g

ti
m

e
(s

)

300*300
400*400
500*500

Figure 6: Running time of EmojiCloud

4 Conclusion and Future Work

We propose and develop open-source EmojiCloud
to visualize a cluster of emojis according to as-
sociated frequency weights. EmojiCloud enables
a novel and informative way to investigate emo-
jis in natural language processing and text mining.
We think EmojiCloud will benefit the whole emoji
community due to its flexibility, inclusiveness, and
customizability.

In the future, we will keep updating the open-
source EmojiCloud based on the users’ feedback,
such as adding new functions and covering more
emoji vendors. To further improve the flexi-
bility and convenience of EmojiCloud, we will
provide an online EmojiCloud service via www.
emojicloud.org. In addition, we will explore
the possibility of merging words and emojis in a
unified word-emoji cloud.

73

www.emojicloud.org
www.emojicloud.org

References
Kai Bielenberg and Marc Zacher. 2005. Groups in so-

cial software: Utilizing tagging to integrate individ-
ual contexts for social navigation. Digital Media.
Bremen, Germeny, University Bremen. Master of Sci-
ence in Digital Media, 120.

Micah Dubinko, Ravi Kumar, Joseph Magnani, Jas-
mine Novak, Prabhakar Raghavan, and Andrew
Tomkins. 2007. Visualizing tags over time. ACM
Transactions on the Web (TWEB), 1(2):7–es.

Yunhe Feng, Wenjun Zhou, Zheng Lu, Zhibo Wang,
and Qing Cao. 2019. The world wants mangoes and
kangaroos: A study of new emoji requests based on
thirty million tweets. In The World Wide Web Con-
ference, pages 2722–2728.

Hannah Jean Miller, Jacob Thebault-Spieker, Shuo
Chang, Isaac Johnson, Loren Terveen, and Brent
Hecht. 2016. “blissfully happy” or “ready tofight”:
Varying interpretations of emoji. In Tenth interna-
tional AAAI conference on web and social media.

Hannah Miller Hillberg, Zachary Levonian, Daniel
Kluver, Loren Terveen, and Brent Hecht. 2018.
What i see is what you don’t get: The effects of (not)
seeing emoji rendering differences across platforms.
Proceedings of the ACM on Human-Computer Inter-
action, 2(CSCW):1–24.

Emogi Research Team. 2015. Emoji Report.

74

