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Abstract

We introduce VL-CheckList, a toolbox
for evaluating Vision-Language Pretrain-
ing (VLP) models, along with a benchmark
dataset for fine-grained VLP model anal-
ysis. Most existing VLP models evaluate
their performance by comparing the fine-
tuned downstream task performance. How-
ever, only average downstream task accu-
racy provides little information about the
pros and cons of each VLP method. In this
paper, we demonstrate how minor input
changes in language and vision will affect
the prediction outputs. We also provide a
guideline for the research community to uti-
lizes and contributes to this toolbox. Lastly,
a case study based on VL-CheckList is con-
ducted to analyze one of the representa-
tive VLP models. Data and code are avail-
able at https://github.com/om-ai-lab/
VL-CheckList

1 Introduction

The ability to quickly iterate various methods
and obtain insightful feedback is crucial for
successful research. For production machine
learning (ML) system, comprehensive testing
before deployment is crucial for reliable user
experience. Therefore, explainable ML evalu-
ation has emerged to complement benchmark
evaluation (Bolya et al., 2020; Ribeiro et al.,
2020; Du et al., 2022), which strives to provide
an interpretable evaluation of a ML systems
and analyze the system from a number of dis-
entangled aspects (Bolya et al., 2020).

The advantages of explainable evaluation
vs. typical benchmark evaluation include: (1)
downstream task performance only provides
a black box score and it is difficult to obtain
insights for improving a system. (2) typical
dataset is not designed to test models’ robust-
ness against extreme corner cases, which are

however crucial for many real-world tasks, e.g.
autonomous driving.

Given the importance of explainable ML
evaluation, this paper concerns about Vision-
Language Pretraining (VLP) models. VLP
models have rapidly improved (Li et al., 2020;
Radford et al., 2021; Li et al., 2021; Zhao
et al., 2022), thanks to the emergence of mul-
timodal transformers (Vaswani et al., 2017)
and the availability of large paired image-text
dataset (Sharma et al., 2018; Changpinyo et al.,
2021). Many proposed VLP models have aided
in achieving the state-of-the-art performance
of a variety of downstream multimodal tasks,
ranging from visual QA (Lu et al., 2019), mul-
timodal retrieval (Lu et al., 2021) to visual
grounding (Kamath et al., 2021) and many
others. On the other hand, the current defacto
method to evaluate a VLP model is based on
the fine-tuned downstream tasks performance,
which is insufficient due to the limitations of
benchmark evaluation.

To address this challenge, this paper intro-
duces VL-CheckList, an explainable framework
that comprehensively evaluates VLP models,
facilitates deeper understanding, and inspires
new ideas for improvement. The core princi-
ple of VL-CheckList are: (1) evaluate a VLP
model’s fundamental capabilities instead of its
performance on applications (2) disentangle
capabilities into relatively independent vari-
ables that are easier to analyze. Specifically,
we choose Image-Text-Matching (ITM) as the
main target of evaluation since it is perhaps
the most universal pretraining objective that
appear in all VLP methods (Li et al., 2019a,
2020; Radford et al., 2021; Li et al., 2021).
We then propose a taxonomy that divides the
capabilities of VLP systems into three cate-
gories: object, attribute and relation. Each
aspect is then further divided into more fine-
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grained variables, e.g. attribute is composed of
color, material, and size, etc. Then, a linguistic-
aware negative sample sampling strategy is pro-
posed to create ”hard negative” that challenges
a VLP model’s discriminative power against
small changes in the input space. Lastly, VL-
CheckList is implemented as a toolbox that
allows the research community to plug into
their evaluation pipeline.

2 Related Work

Benchmark evaluation is a common method to
compare different ML models in previous re-
search (Rajpurkar et al., 2016; Bowman et al.,
2015; Wang et al., 2018). However, researchers
have reported several limitations of the existing
VLP benchmark. 1) the objects of interest have
a biased distribution of size and location, i.e.,
tend to be large objects that appeared in the
center region. 2) benchmark evaluation returns
only a plain score instead of fine-grained details
on the taxonomy. Therefore, it is difficult to
understand the strengths and weaknesses of a
model without a comprehensive analysis. Re-
cent studies show even the state-of-the-art sys-
tems that achieved better scores than humans,
may still be insufficient in real-world applica-
tions (Ribeiro et al., 2020). Thus, researchers
have attempted to evaluate ML models with
more fine-grained details and avoid bias on the
test set.

One of the successful tools for the qualitative
analysis of natural language processing (NLP)
is CheckList (Ribeiro et al., 2020) which evalu-
ates general linguistic capabilities and revealed
weaknesses in several state-of-the-art NLP mod-
els and commercial applications. In computer
vision, the Vision CheckList was proposed to
help system designers to understand model ca-
pabilities (Du et al., 2022). They offered a
set of transformation operations to generate
diverse test samples of different test types, such
as rotation, replacing image patches, blur, and
shuffle. However, target objects in the trans-
formed images are unchanged, still center and
large.

The idea of the CheckList has also been ap-
plied other fields, e.g. evaluating Reinforce-
ment Learning (RL) agents (Lam et al., 2022),
Dynabench (Kiela et al., 2021) was proposed to
generate dynamic benchmark datasets. It over-

comes the problem that the existing benchmark
fails to cover fundamental linguistic challenges.
TIDE (Bolya et al., 2020) is a tool to analyze
the errors of object detection. It defines crit-
ical error types and shows a comprehensive
analysis.

3 VL-CheckList

An intuitive approach to evaluate multi-modal
systems is to check if a model correctly predicts
alignment between different modalities. We
choose image-text matching (ITM) to check the
alignment between vision and language for the
following reasons. Specifically, ITM is defined
as the function that outputs the probability of
an image i is matched to a sentence t.

The ITM task is used as an effective and
universal pretraining objective in almost all
VLP models (Li et al., 2020). The ITM task
is also model agnostic and applies to all multi-
modal fusion architectures. Thus, we exploit
the ITM to fairly compare the VLP models
without finetuning them on downstream tasks.

The basic principle of the VL-CheckList is
to probe the model’s robustness on the nega-
tive examples. A robust VLP model should be
able to return a higher ITM score for the posi-
tive image-text pair than the negative example
on the ITM head. We perturb the one-side
modality to manipulate them and compare the
score with original samples. LV-CheckList of-
fers both language-side and vision-side varia-
tions.

3.1 Language Variation
To provide a fine-grained analysis of the ro-
bustness of the text-side, we build evaluation
taxonomies that are selected based on common
mistakes or frequent usage. Based on the com-
mon issues in VLP models, the proposed frame-
work places the three input properties (object,
attribute, and relation) as the top layer of the
evaluation taxonomy.

Object: A strong VLP model is supposed
to recognize whether or not the objects men-
tioned in a text exist in the image. There-
fore, if we replace objects in the correct text
with some other random noun phrases, a VLP
model should give it a lower ITM score than
the original sentence. Furthermore, a strong
VLP model should be able to recognize the ex-
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istence of objects, regardless of its location and
sizes. Thus, we further evaluate the robustness
Object ITM by testing location variance (e.g.,
center, middle, and margin) and size variance
(e.g., small, large, medium), specifically:

loc(x, y)=





center if y
x ≤ 1

3
mid if 1

3 < y
x ≤ 2

3
margin otherwise

where, x is the half-length of the diagonal
of the full image x =

√
w2+h2

2 . and y is the dis-
tance between its central point and the central
point of the full image.

To get the size of an object, we use the object
area information (i.e., the bounding box of
height multiplies the width).

size(x)=





small if area ≤ S
medium if S < area ≤ M

large otherwise
where, area = w∗h, S denotes small size and

M is the medium size. We set S = 1024, M =
9216 in this paper.

Attribute: Determining specific attributes
for any object is very challenging. The at-
tribute generally contains color, material, size,
state, and action.

• Size: replace the size expression like small,
big, and medium with another (e.g., There
is a big apple vs. there is a small apple)

• Material: replace a material word in the
sentence (e.g., a metal box vs. a wood
box)

• State: replace the state expression, such
as cleanliness and newness (e.g., a man
with dry hair vs. a man with wet hair).

• Action: replace the action-related word
in the text (e.g., a standing person vs. a
sitting person).

• Color: replace the color word in the text
(e.g., A red apple is on the table vs. A
green apple is on the table)

Relation: Relation cares about the inter-
action between two objects. It covers replacing
the predicate in a triple (e.g., subject, predi-
cate, object), where the subject and object are
both objects in the image. A strong VLP ITM
head should assign a higher score to text match-
ing the pair-wise object interaction. Further,
we divide prediction into spatial and action. If

a predicate is one of the spatial prepositions
(e.g., in, on, at, etc), it is sub-categorized as
’spatial’; otherwise, it is labeled ’action.’

• Spatial: If a model can predict spatial
relation between two objects (e.g, <cat,
on, table> vs. <cat, under, table>).

• Action: If a model can predict other rela-
tion than a spatial preposition, usually ac-
tion verbs like run, jump, kick, eat, break,
cry, or smile (e.g., <cat, catch, fish> vs.
<cat, eat, fish>)

3.2 Vision Variation
A strong VLP model should be able to return
consistent scores when an image is transformed
with augmentation techniques such as rotation,
shift, flip, random brightness, etc. However,
previous augmentations are applied on the en-
tire image-level. We provide the object-level
data augmentation by combining cropped ob-
jects and image background. The generated
images are utilized to investigate the robustness
of the model outputs in various locations and
sizes of the target object. Strong VLP mod-
els should be able to return consistent scores
regardless of the location and size of target ob-
jects unless the language description is related
to location and size (e.g., an apple is the left
side of the tree, an apple is small). We allow to
input cropped objects and background images
and randomly place the target objects from
margin to center with various sizes to probe
the robustness. The goal of the LV-CheckList
on the vision-variations is to show how sim-
ple input changes such as object location and
size will affect the prediction outputs in the
VL-CheckList Demo.

4 Detailed User Guideline

This section describes a guideline for re-
searchers to use and contribute to the VL-
CheckList project.

First, users can install from GitHub1 or
from pip install vl-checklist. We further
provide a HuggingFace demo for people to try
out different VLP models2. Then the following
is a step-by-step guideline to use VL-CheckList.

1github.com/om-ai-lab/VL-CheckList
2huggingface.co/spaces/omlab/VL_checklist_demo
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Figure 1: Language Variation: negative samples are based on object, attribute and relation. Vision
Variation: a user inputs target objects and backgrounds and evaluates the various synthesized images

1) Define Corpus: a user defines a cor-
pus in the yaml config file. We provide four
initial pre-processed corpora using the semi-
structured dataset such as VG (Krishna et al.,
2017), SWiG (Pratt et al., 2020), VAW (Pham
et al., 2021) and HAKE (Li et al., 2019b). We
build a benchmark dataset for each capability
test in the proposed framework. We provide
the pre-processed datasets in the corpus folder
of our Github page. An example of the corpus
config yaml file is as follows:

ANNO_PATH: " A t t r / a c t i o n . j s o n "
IMG_ROOT: " vg / "
TYPE: " T U P L E _ J S O N "

ANNO_PATH is the specific Json file path
that includes positive and negative captions
and the specific image path.

The data type is TUPLE_JSON. We
converted the corpus into list of image path
and captions(positive and negative), in the
format of a list of [[{image_path:str,
"POS":pos_captions:list, "NEG":
neg_captions:list}] . . . ]

2) Define evaluation configuration:
Users can specify the evaluation settings in
another yaml to define evaluation in detail as
the following example:

MAX_NUM: 2 0 0 0
MODEL_NAME: " C L I P "
BATCH_SIZE: 4
TASK: " itc "
DATA:

TYPES: [ " O b j e c t / L o c a t i o n / mid " ]

TEST_DATA: [ " v g _ o b j " ]
OUTPUT:

DIR: " o u t p u t / c l i p "

The "MAX_NUM" is the maximum number
of data points and the "MODEL_NAME"
needs to be specified. Appropriate
"BATCH_SIZE" should be input based
on the GPU resources. The "TASK" can
be either "ITC" or "ITM". The "ITC" score
compares models’ scores on both positive and
negative captions. It counts as a true positive
when the score on the original is higher than
the negatively transformed one. The "ITM"
is predicting each image and a caption. It
is called the true positive when a softmax
score on a positive example on the image is
higher than the threshold of 0.5. The Data tag
consists of TYPES and TEST_DATA. The
TYPES is the storage paths of the "ymal_files".
In the top-level directory, we can divide it
into three categories: Object, Relation, and
Attribute. For Swig, Vg, etc., there are
multiple data subsets, so the data subset
type should be filled in the TEST_DATA.
We can specify the evaluation data, output
directory, and format as the example above.
After defining a config file, users can simply
start the evaluation as follows:.
from engine import Model
from vl_checklist import Evaluate
if __name__ == '__main__ ':

model = Model('model.ckpt')
eval = Evaluate("sample.yaml",

model=model)
eval.start()

33



3) Define Model: Users can import
VL-CheckList to their projects (e.g., import
vl_checklist) and need to implement one
model class that includes the essential func-
tions, "predict". The predict function should
return probabilities on each pair of images and
texts. We included several representative mod-
els for quick comparisons, such as ViLT (Kim
et al., 2021), ALBEF (Li et al., 2021), OS-
CAR (Li et al., 2020), etc as example projects.

5 Experimental Settings
In this section, we profile one of the most rep-
resentative VLP models, CLIP (Radford et al.,
2021) by testing its ability to understand an
object, attribute, and relationship between a
text prompt and a given image for language
variations.

Metric: We return the model output scores
between the text description and the generated
negative samples. If the model score on the
original text description is higher than the score
on the generated negative samples, we regard
it as positive output. We obtain the accuracy
with the following equation.

acc =
∑i<n

i=0 f(xp
i , xn

i )
N

(1)

where, f(xp
i , xn

i ) = 1 if p(xp
i |Ii) > p(xn

i |Ii),
otherwise 0. xp

i denotes a positive sample of
ith data. xn

i means a positive sample of ith

data. The N is the total number of pairs of
positive and negative samples. Ii is ith image
data.

Data: The proposed VL-CheckList focuses
on a directional expectation test, in which the
label is expected to change in a certain way.
For example, when there is a black bear in the
photo and the text description is "A black bear
is holding a stick". We can transform several
variations (e.g., <a black bear → a red bear>,
<a stick → an apple>, <holding → throw-
ing>, etc). The negative sampling strategy
is the essential step for unbiased evaluations.
To generate hard negative examples, we use
the structured text description datasets such
as Visual Genome (VG) (Krishna et al., 2017),
SWiG (Pratt et al., 2020), and Human Activity
Knowledge Engine (HAKE) (Li et al., 2019b).
The VG provides attributes, relationships, and
region graphs which can make a hard negative

sample by replacing one attribute in the rela-
tion in the image. The SWiG dataset provides
structured semantic summaries of images with
roles such as agent and tool. We generate hard
negative samples by replacing one of the roles
in the text description to mismatch with the
image. HAKE dataset provides the relation-
ship between instance activity and body part
states (e.g., "head" inspect rear view, "right
hand" hold wheel, "hip" sit on chair seat).

For the VG dataset, we first assign each at-
tribute, object, and relation to the closet type
by cosine similarity from sentence transform-
ers. For objects and relationships, we randomly
sample a corresponding instance with a co-
sine similarity threshold of 0.5. For attribute,
we randomly sample a corresponding instance
from the same attribute class with a cosine
similarity threshold of 0.5. We further conduct
manual correction on the generated to data to
fix inappropriate data.

For vision variations, we only conduct quali-
tative analysis by visualizing the output scores
via the GUI demo. (Figure 2).

6 Results and Analysis

In general, the ability of CLIP to understand
object changes is promising when the object is
center and large (see the prefix-O at Figure 3).
We hypothesize that the CLIP model pays more
attention to the central region and focus on
salient objects, similar to the perspective of
human observation. On the other hand, CLIP’s
ability on recognizing attribute and relation-
related variants is surprisingly low, especially
for Relation-spatial variations (Figure 3).

Then, We investigate whether performance
can be improved by cropping the regions of
interest (ROI) first and then encoding the
cropped ROIs via CLIP. We extract text
descriptions on each bounding box on the
VG dataset to form a new image-text pair
(Imagelocal,text), and construct new datasets
for VG: Localsubj , Localobj . Results on
Localsubj and Localobj show that Region CLIP
outperforms the original CLIP (whole image en-
coding) by 3.9% and 5.7% respectively (Table
1). This confirms our hypothesis that the origi-
nal CLIP was trained to match the entire image
to a text description, without capturing the
fine-grained alignment between image regions
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Figure 2: A comparison of CLIP’s performances of the image with a big object in the center and image
with the same small object in the corner

Figure 3: A radar chart for text variance on the
CLIP model. (The prefix O, A, and R is Object,
Attribute, and Relation respectively)

and text spans. Thus the understanding of mi-
nor objects in the image for CLIP is still chal-
lenging and explore more fine-grained region-
to-text multimodal alignment is a promising
direction (Zhong et al., 2022).

For vision variations, we synthesize images
by changing an object’s size and location. In
Figure 2, the image on the left is a big apple
in the center, while the image on the right is a
small apple in the corner. The text prompt we
input is "an apple on the grass" and "a dog on
the grass". The accuracy of the left image with
a big and center apple is nearly 1.00, while the
right image with a small and corner apple only
obtains 0.127 of accuracy. The location and

size of the object in the image can significantly
affect the judgment of the model.

Thus Experimental results indicate that the
current benchmark evaluation reveals a gap of
performance for real applications. CLIP mostly
focus on objects that appeared in the center of
the image and the size of the objects should be
large. This limits its performance if the target
objects are minor in the marginal regions for
real-world applications.

Model \ VGdata_type Subj Obj
CLIP_Global 80.7 86
CLIP_Local 84.6 91.7

Table 1: Subj and Obj are two attribute subsets
extracted from VG dataset. A new dataset is con-
structed using the bounding box tag of VG to merge
and extract the region image pointed by subj and
obj fields. The text remains the same as previous
content (Imagelocal,text). It only does the expan-
sion experiment for CLIP.

7 Conclusion
This paper introduces VL-CheckList to analyze
VLP models from language and vision varia-
tions. For language variance, we evaluated
from three aspects: object, attribute and rela-
tion. For vision variance, we generated synthe-
sized images using cropped target objects and
background. We found limitations of the CLIP
model: 1) limited understanding for small ob-
jects in the corner 2) incompetence for recogniz-
ing relations and attributes. In the future, we
plan to include more fine-grained taxonomies
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and synthesizing strategies into VL-CheckList
and also improve existing VLP methods under
the guidance of VL-CheckList report.
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