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Abstract
Neural machine translation, as other natural
language deep learning applications, is hun-
gry for data. As research evolves, the data
pipelines supporting that research evolve too,
oftentimes re-implementing the same core com-
ponents. Despite the potential of modular code-
bases, researchers have but little time to put
code structure and reusability first. Unfor-
tunately, this makes it very hard to publish
clean, reproducible code to benefit a wider au-
dience. In this paper, we motivate and describe
stopes , a framework that addresses these
issues while empowering scalability and versa-
tility for research use cases. This library was
a key enabler of the No Language Left Behind
project, establishing new state of the art perfor-
mance for a multilingual machine translation
model covering 200 languages. stopes and
the pipelines described are released under
the MIT license at https://github.com/
facebookresearch/stopes.

1 Introduction

Machine translation (MT) aims at removing lan-
guage barriers in our connected society. The cur-
rent trend in the MT research field is moving to-
wards using deep machine learning models training
either many bi-lingual models, translating between
a single pair of languoids, or multi-lingual models
that handle many languoids at once. Training data
usually comes from open aligned data sources such
as Barrault et al. (2020), Schwenk et al. (2021) or
raw web corpora like CommonCrawl (CC). Re-
cently, initiatives like (Bapna et al., 2022) and the
No Language Left Behind project (NLLB Team
et al., 2022) strive to extend the scope of supported
languoids by training on large scale datasets, reach-
ing over 18 and 25 billion sentence pairs respec-
tively.

The end-to-end process of developing and iter-
ating on a neural machine translation model in-
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volves a lot of large scale steps. Getting large
amounts of data prepared for translation training
usually starts with raw monolingual data composed
of unaligned sentences for each languoid of inter-
est. This web data is usually processed, cleaned,
and finally "mined" to be aligned in pairs of trans-
lated sentences (see 5.2). It is then tokenized and
transformed into a format that can be used for train-
ing. Once trained, the machine translation model
is evaluated using benchmark datasets, on which
the exact same pre-processing has to be applied.
Large translation models are often later distilled
to produce smaller models suitable for practical
production usecases (see 5.3).

In research use cases, the main focus is on get-
ting results fast. We have observed that the path
of predilection is to build ad-hoc solutions to solve
the problem directly at hand, often adapting older
scripts or copying snippets of code that colleagues
have found to work. This enables quick iteration
on research ideas but it causes a lot of problems on
the long term:

1. Scaling and data processing throughput is of-
ten an after-though.

2. Ad-hoc scripts are built with the idiosyn-
crasies of each users and experiment, making
it hard to share research pipelines or adapt to
different hardware setups.

3. Open-sourcing research and making it repro-
ducible by third parties becomes a task of it-
self, ensuring scripts will run properly in dif-
ferent environment and without failed experi-
mental code/setup (Pineau et al., 2021; Ulmer
et al., 2022).

4. When working with disjoint scripts, re-
searchers spend a lot of time "baby sitting"
execution, making sure one script runs prop-
erly and waiting for it to finish before moving
to the next step in their pipeline.
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We present a new framework, stopes , that
was developed to solve some of the problems
discussed in the scope of the No Language
Left Behind (NLLB) (NLLB Team et al., 2022)
machine translation project to process billions
of sentences in over 200 languages. The goal
of the framework is to ensure a good separation
between the hardware setup and the core logic of
the data processing by proposing a clean API for
sharing commonly used processing steps, while
enforcing consistent and shareable configurations
of experiments. stopes can scale to a research
project like NLLB, but is built to be versatile
and can be applied to other research use cases,
https://facebookresearch.github.
io/stopes/docs/quickstart provides
an example of running this on a smaller dataset.
In section 3, we introduce the design of this
python library, with concrete examples in section 4.
Section 5 discusses applications within the NLLB
where stopes is used.

2 Related Work

While large scale data processing architectures
already exist, they are often optimized for pro-
duction use cases. Spark (Spark), ray (Ray) or
beam (Beam) are a few leading examples. These
frameworks have a steep learning curve and do
not always map easily to research clusters’ setup
or researchers’ work habits. They can also prove
very challenging to use with nascent research ideas
and tools, whose codebases are not yet stable or
production-ready. Bitextor (Bitextor) provides a
bitext mining pipeline built in python, but it lacks
modularity and requires learning the complex APIs
of snakemake.

With stopes , we are aiming for a “minimal
API surface” without sacrificing features, provid-
ing a clean yet versatile API that can be used as
if writing standard python scripts (see Section ref-
sec:example). This simple API has its drawbacks,
but it makes it easier to pick up for researchers than
complex graph planning systems like Luigi (Luigi)
and AirFlow (AirFlow), These industry standards
are better suited for production pipelines that do
not change often and are maintainted by production
teams. Spacy (Spacy) provides research oriented
NLP pipelines, but is less flexible than stopes as
our framework is more geared towards describing
sometimes pipelines in pure python.

3 Framework

The general architecture of stopes is geared to-
wards pipelines that can be run as separate, some-
times interdependent, jobs on a cluster or in mul-
tiprocessing. The idea being that a pipeline can
be divided in a set of separate steps that can be
expressed as processing units. Jobs can be sent
to a job scheduler, like SLURM (Slurm), which
is widespread on academic compute clusters or
FBLearner (Dunn, 2016), which Meta uses for dis-
tributed machine learning pipelines; or run locally
on a single computer depending on the data scale.

The idea behind the stopes framework is to
make it easy to build reproducible pipelines. This
is done though modules, a module is just a python
class with a run function that executes something.
A module can then be scheduled with the stopes ’
launcher, this will decide where the code gets exe-
cuted (locally or on a cluster) and then wait for the
results to be ready.

3.1 Concepts

module: Encapsulate a reusable single step of a
neural network pipeline and its requirements. The
step is assumed to be able to execute on its own
given some inputs and eventually generates an out-
put. Modules will most often be executed as an iso-
lated job, so should not depend on anything other
than its own configuration (e.g. no global variables
or odd i/o dependencies). This ensures that each
module can be ran separately, or in parallel if pos-
sible. A module’s configuration serves the purpose
of defining a clear API of the step.

pipeline: A python function which connects
stopes modules together for some end-to-end
purpose. Pipelines may contain non-module
logic to help with intermediate functionality, and
are primarily structured like functions as op-
posed to stopes modules which resemble python
callables. In some cases, pipelines may also call
other pipelines in intermediate steps.

launcher: The orchestrator of your pipeline.
The power of stopes comes from the launcher
that will manage the execution of the modules, find
the correct machines with matching requirements
(if executing on a cluster), and deal with memoiza-
tion (see below). The launcher abstracts the exe-
cution/scheduling of modules as it looks like any
asyncio function and can be called like a python
function and utilized in conjunction with regular
python code.
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3.2 Configuration

When running experiments in machine translation,
we often change how the data is processed or what
data we ingest. For instance, we might want to
change the vocabulary size, which would require re-
training a tokenization model (e.g. sentence-piece1

or BPE (Sennrich et al., 2016)). To keep track of
experiments and ensure reproducibility, all parame-
ters that can influence the results need to be stored
in configuration files that can easily be shared with
other researchers.
stopes makes it easy to keep track of con-

figurations as it leverages the hydra configuration
system (Yadan, 2019) as inputs for modules and
pipelines. This guarantees proper tracking of con-
figurations through the execution of a pipeline, but
also brings extra technical benefits to the end user:

1. New configurations can be composed from
existing configuration files, allowing for better
organization of all steps within a pipeline.

2. Any part of a configuration can be overrid-
den at runtime and across multiple runs. This
makes it easy, for example, to change what
cluster the code is running on, what model
architecture is used for training, or what tok-
enization approach is used.

3.3 Caching/Memoization

As we can see in Section 5, machine translation
research pipelines are complex and involve a lot
of steps. When repeating these steps over many
languoids, some of the jobs executing the pipeline
are bound to fail. Failure is common when exe-
cuting large pipelines over long periods of time,
jobs might timeout in the cluster queue, disk might
fail because of IO pressure and machines might go
down for maintenance.

It is therefore very important to be able to re-
run a pipeline over and over and not have to start
from the scratch. To avoid this, stopes memo-
izes the output of each module runs based on its
input configuration. If the module is re-run with
the same configuration, stopes will recover the
results from disk instead of re-running. This can be
seen as a cache of the results, indexed on the input
configuration of each module. The exact cache in-
validation logic can be manually tuned by the user
to accommodate more complex situations.

1https://github.com/google/
sentencepiece

This is also very practical when iterating on con-
figuration driven experiments as stopes will fig-
ure out automatically what steps of the pipeline
needs to be re-run when the configuration changes,
keeping track of identical steps in the pipeline that
were not affected by the experimental configuration
change and re-using cached results.

4 Example Code

Figure 1 shows a sample usage of the stopes li-
brary2 to build a FAISS index3. FAISS (Johnson
et al., 2019) is a tool that can be used to build
large scale indexes and perform nearest neighbor
searches on them; FAISS has become a keystone
to machine translation research as it allows for
efficient alignment of multilingual text when us-
ing language-agnostics embeddings like Feng et al.
(2020) or Heffernan et al. (2022) (e.g. Khandelwal
et al. (2021) or Section 5.2). It takes tensors as in-
put, but first the index has to be trained, usually on
a sample of the data we want to store in the index.

Line 5: We initialize the launcher to be able
to schedule modules for execution. The launcher
is managed by a configuration, so we can easily
change where the code is executed (SLURM clus-
ter, aws, locally) and other constraints of the exe-
cution. Every call to ‘launcher.schedule‘ will be
managed by the designated ‘launcher‘, sent to the
cluster once, or in multiple jobs if necessary, or just
retrieved from the cache if the config permits.

Line 7: We initialize an encoding mod-
ule, which takes in raw text and embeds it.
stopes provides code to embed text with
LASER2 and LASER3 as well as with Hugging-
Face sentence-transformers (Reimers
and Gurevych, 2019). To keep the code short, we
only show the pipeline glue and not each module
implementation.

Line 12: We create a sample from the embedded
text files. Here, update(config.sample,
input_embeddings=embedded) takes the
module configuration from the Hydra configura-
tion and inserts the references to the output files
from the previous pipeline step. This pattern can
also be seen in the other steps of this pipeline where
each step is connected to the previous through in-
termediate output results.

2Modules referred to in the sample code can be found in
the stopes open source repository.

3We have omitted the imports from the sample to keep it
short.
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# ... imports omitted
async def pipeline(config):

# setup a launcher to connect jobs together
launcher = hydra.utils.instantiate(config.launcher)
# encode all shards
embedded = await

launcher.schedule(PreprocessEncodeModule(config=config.embed_text))
# extract a sample of the embeddings
train_sample = await launcher.schedule(

SampleEmbeddingModule(config=update(config.sample, input_embeddings=embedded))
)
# train the faiss index on the sample
trained_index = await launcher.schedule(

TrainFAISSIndexModule(
config=update(config.train_index, input_embeddings=train_sample)

)
)
# fill the index with content
populated_index = await launcher.schedule(

PopulateFAISSIndexModule(
config=update(

config.populate_index,
index=trained_index,
input_embeddings=embedded,

)
)

)
print(f"Indexes are populated in: {populated_index}")

# setup main with Hydra
@hydra.main(config_path="conf", config_name="config")
def main(config: DictConfig) -> None:

asyncio.run(pipeline(config))

Figure 1: Sample pipeline to build a FAISS Index with stopes

Lines 17 and 22: These lines use very similar
logic to call different modules. As noted above,
we can see the use of the configurations passed by
Hydra extended with the results from the previous
steps.
From this, we see that stopes pipeline code
reads as normal python code where functions are
called and pass results to each other. The core of
stopes hides the complexity of memoization and
cluster scheduling inside the simple API call to
launcher.schedule. This makes the pipeline
easy to understand and allows researcher to focus
on building data processing and stay close to their
research goals instead of getting bogged down in
boilerplate APIs or in optimization/scaling issues.

5 Applications

The stopes library was used to build the major
data processing pipelines that are used to build the
NLLB large multilingual translation models as well
as its distilled version (NLLB Team et al., 2022).
These pipelines were battle tested on petabytes

of data and are open-sourced at https://github.
com/facebookresearch/stopes. In this section
we discuss some of the pipelines and show how
they can reuse the same modules. Source code can
be found in the above github repository.

5.1 Language Identification

The production of large amount of monolingual
data starts with a strong language identification
(LID) model (see NLLB Team et al., 2022). The
pipeline for training an LID model is a recurring
archetype used commonly in neural network train-
ing pipelines for machine translation. LASER3
distillation (Heffernan et al., 2022), training NMT
models for evaluation, etc., all use a similar
pipeline.

The pipeline is illustrated in Figure 2 and uses
the following steps:

SPM Training: Eventually, we will use a
sentence-piece model (SPM) to tokenize input data
for neural network training. To be able to do this
tokenization, the SPM itself must be first trained
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Figure 2: LID Model Training Pipeline

on a sample of data.
SPM Encoding: Once we have a trained SPM,

we can apply it over all the sentences in the in-
put data to tokenize the raw text to prepare it for
training.

Sharding: This step is used to split the data into
manageable shards that help distribute the pipeline
work over multiple jobs, and also at the training
phase to be able to fit the training data in the mem-
ory available on each training machine.

Binarization: The SPM tokenization process
creates tokenized text, but the model training loop
requires numerical tensors to do the neural network
training. The binarization process takes each token
and the SPM vocabulary to create binary tensors
from the tokenized text.

Model Training: We use fairseq (Ott et al.,
2019) and fastText (Joulin et al., 2017) to train LID
models and other NMT models.

5.2 Bitext Mining

The bitext mining pipeline follows the idea intro-
duced by Schwenk et al. (2021). The pipeline can
mine pairs of sentences between two languoids
given monolingual data and evaluate the mining
quality. It follows the following major steps:

Monolingual Data: The base data comes from a
mix of existing “clean” data (Barrault et al., 2020)
and noisy web data. Most of this data is not aligned
in language pairs, and often not tagged with a par-
ticular languoid. The monolingual pipeline runs
a language identification (LID) model, splits text
into sentences, and then cleans the text. The LID
model itself is trained as discussed in Section 5.1

FAISS Indexing: FAISS (Johnson et al., 2019)
is a tool to build large indexes for similarity
searches. Section 4 shows a sample pipeline to
build such an index. In bi-text mining, the FAISS
index serves as the core tool to find similar sen-
tences between two languoids. This works by

filling the index with sentences embedded with
LASER3 (Heffernan et al., 2022), which encodes
sentences from different languages into the same
space, so they can be clustered by FAISS. The min-
ing pipeline then builds a separate index for each
languoid, embedding all the sentences identified
in the monolingual data, sampling them to train
a FAISS index (i.e. to learn the clustering), and
then populating the index with all the embedded
sentences for that langoid.

Mining for Aligned Sentences: To align sen-
tences between two languoids, we go over all
embedded sentences from one languoid and use
the cosine distances of the k-nearest neighbors
in the other languoid index compute above and
output alignments using a margin-based scoring
measure (Artetxe and Schwenk, 2019). Once
we’ve built indexes and embeddings for a few lan-
guages, we can run this step in parallel quite easily.
stopes makes this trivial as it will pickup the
embeddings and indexes from its cache and jump
straight to the last step of the mining pipeline, with-
out the user having to figure out what has already
been pre-computed.

Evaluating Translation: There is no direct eval-
uation procedure to gauge mining quality. There-
fore, the best way to evaluate the mining perfor-
mance is to use the aligned bitext it produces to
train a neural machine translation model. We focus
on training bi-lingual translation models as they are
faster to train and evaluate. We can then track the
change in BLEU score (Papineni et al., 2002) for
a given model and languoids pair to evaluate the
specialized encoders and mining parameters.

Figure 3 illustrates the high level process of mining
for two languoids. The figure shows the process
for two languoids, but when mining for training a
large language model as the one discussed in NLLB
Team et al. (2022), we ran this stopes pipeline
over 450 pairs, aligning over a billion sentences.
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This is where the strong configuration system in-
troduced by stopes comes handy as we need
to manage different configurations for over two
thousand pairs of languoids. Being able to write
the pipeline once and scale it to many languoids
through simple configuration composition and hori-
zontal scaling on a SLURM cluster without having
to rewrite core logic greatly accelerates the speed
at which research is conducted. The pipeline that
was used by the NLLB project is available on the
stopes repository and can be run by anyone a
"small" scale to mine data with our approach4.

5.3 Large Model Distillation
The distillation pipeline is based on the sequence-
level knowledge distillation proposed by Kim and
Rush (2016), using a large pre-trained teacher
model to help train a smaller student model with
comparable or better performance, which is prac-
tical for inference efficiency. An overview of the
steps are visualized in Figure 4 and described be-
low:

Monolingual Data: Our monolingual source
data comes from Wikipedia corpus dumps5. The
monolingual pipeline is the same as the one de-
scribed in Section 5.2.

Sampling: We sample with replacement from
the monolingual dataset to ensure that we have
enough target sentences for each languoid, given a
fixed-size monolingual source dataset.

Generation: We use the FairseqGenerate
module to generate translations of each shard of

4See the quickstart at https://facebookresearch.
github.io/stopes/docs/quickstart

5https://dumps.wikimedia.org/other/
cirrussearch/current/

monolingual data by running beam search using
the teacher model.

Bitext Filtering: We filter the teacher-generated
bitext data to make sure the training data is high
quality. We use LID and sentence length filtering
to ensure that the generated data matches the target
languoid and that the sentence lengths are similar.

SPM Encoding: We use a pre-trained SPM to
tokenize the raw text.

Binarization: We binarize the bitext data into
the format required for training in fairseq as
described in Section 5.2.

Training: Using the binarized bitext data, we
use the module TrainFairseqModule to train
a multilingual distilled model, the final product of
our pipeline.

6 Conclusion

The stopes framework provides a clean API to
describe research pipelines for machine translation.
We have shown that this is useful for developing
large scale machine translation datasets and models
for the No Language Left Behind project (NLLB
Team et al., 2022). We believe that this framework
and its reference implementations of common steps
in NLP pipelines is versatile and can be used to help
researchers in the field. The stopes framework
documentation and sources can be found under
the MIT license at https://facebookresearch.
github.io/stopes/ and has been tested to not
require a complex cluster setup. We therefore hope
that it will help other researchers focus on their
research goals, and avoid time-consuming technical
details not unique to their specific task.
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7 Screencast Video

The demo screencast can be found at
https://fb.sharepoint.com/:
f:/s/PublicContent/EsuaUW_
_krBJo57yDgbbbysBw5yN5txcRsjw4eY
lYRFIFQ?e=tAlkVQ.

References
Airflow. https://github.com/apache/
airflow. Accessed: 2022-07-19.

Beam. https://beam.apache.org/. Ac-
cessed: 2022-07-19.

Bitextor. https://github.com/bitextor/
bitextor. Accessed: 2022-07-19.

Common crawl. https://commoncrawl.org/.
Accessed: 2022-07-19.

Luigi. https://github.com/spotify/
luigi. Accessed: 2022-07-19.

Ray. https://www.ray.io/. Accessed: 2022-
07-19.

Slurm. https://slurm.schedmd.com/. Ac-
cessed: 2022-07-19.

Spacy. https://spacy.io/. Accessed: 2022-07-
19.

Spark. https://spark.apache.org/. Ac-
cessed: 2022-07-19.

Mikel Artetxe and Holger Schwenk. 2019. Margin-
based parallel corpus mining with multilingual sen-
tence embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3197–3203, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
rat, Daan van Esch, Aditya Siddhant, Mengmeng Niu,
Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey,
Theresa Breiner, Vera Axelrod, Jason Riesa, Yuan
Cao, Mia Xu Chen, Klaus Macherey, Maxim Krikun,
Pidong Wang, Alexander Gutkin, Apurva Shah, Yan-
ping Huang, Zhifeng Chen, Yonghui Wu, and Mac-
duff Hughes. 2022. Building machine translation
systems for the next thousand languages.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
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