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Abstract

In the context of conversational commerce,
where training data may be limited and low
latency is critical, we demonstrate that knowl-
edge distillation can be used not only to reduce
model size, but to simultaneously adapt a con-
textual language model to a specific domain.
We use Multilingual BERT (mBERT; Devlin
et al., 2019) as a starting point and follow the
knowledge distillation approach of Sanh et al.
(2019) to train a smaller multilingual BERT
model that is adapted to the domain at hand.
We show that for in-domain tasks, the domain-
specific model shows on average 2.3% improve-
ment in F1 score, relative to a model distilled
on domain-general data. Whereas much pre-
vious work with BERT has fine-tuned the en-
coder weights during task training, we show
that the model improvements from distillation
on in-domain data persist even when the en-
coder weights are frozen during task training,
allowing a single encoder to support classifiers
for multiple tasks and languages.

1 Introduction

Encoders and language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
ELMo (Peters et al., 2017) are the backbone of
many NLP technologies. They are typically trained
on data from Wikipedia, CommonCrawl, or large
homogeneous collections of text; however, lan-
guage varies widely in real-world settings and the
type of language used in some contexts is not well
represented in the data used to train these models.
In particular, the language used in e-commerce, and
more specifically, conversational commerce, such
as conversations pertaining to customer service in
the context of online shopping or banking, exhibits
both syntactic structures and vocabulary that are

under-represented in the Wikipedia data used to
train multilingual BERT.

At the same time, these models are too large to
deploy in many industry settings, where computa-
tional resources and inference-speed are concerns.
Model size is often reduced using methods such as
quantization (Whittaker and Raj, 2001; Shen et al.,
2020), pruning (Han et al., 2015, 2016) and knowl-
edge distillation (Hinton et al., 2015; Sanh et al.,
2019). However, even leveraging these techniques,
the memory footprint of the typical encoder can
easily be three orders of magnitude greater than that
of the typical classifier, and it follows that encoding
is much more time-intensive than classification.1

In conversational commerce, a variety of classifiers
are required to model different aspects of the con-
versation. In this case, it is beneficial for efficiency,
to use a single encoder for all of the classifiers as
illustrated in Figure 1 (left), rather than using a sep-
arate encoder for each classification task (Figure 1,
right).2 Thus text can be encoded only once and
passed to any number of downstream classifiers.

Typically, domain adaptation with language
models is accomplished using back-propagation
during task training (see inter alia Devlin et al.,
2019; Liu et al., 2019; Sanh et al., 2019). However,
this approach requires a separate encoder for each
classifier. Instead, we adapt the encoder to a par-
ticular domain before classifier training. We show
that knowledge distillation, a common approach
for reducing model size, is very adept for domain
adaptation. This allows us to accomplish two goals,

1For example, a BERT encoder has hundreds of millions
of parameters (see Table 7), while a self attention classifier
like the one used in Section 8 has about 600,000.

2Houlsby et al. (2019), inter alios, have proposed similar
architectures.
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Figure 1: The difference in architecture between using one encoder for multiple tasks vs. one encoder per task

size reduction and domain adaptation, with a single
training process. Evaluating on five languages and
two domains, we show that distilling on unlabeled
data from the domain of interest results in a smaller
model that is domain-specific and outperforms the
F1-score of a model distilled on domain-general
data by 2.3% on average and the larger teacher
model by an F1 of 1.2%. The improvement in per-
formance persists even when relatively little train-
ing data is used. We show that the domain-adapted
encoder performs better than the domain-general
model both when encoder weights are fine-tuned,
as in previous work, and when they are frozen, leav-
ing them task agnostic. Furthermore, the boost in
performance from distillation on in-domain data is
greater than the improvement from fine-tuning the
encoder during task training.

We begin with an overview of previous work
in domain adaptation and knowledge distillation,
highlighting the benefit of doing both at once (§2).
This is followed by a description of the domains,
data and tasks with which we evaluate domain adap-
tation through knowledge distillation (§3). We de-
tail our approach in Section 4, investigating how
much data is necessary (§5) and examining the
impact of domain adaptation on sentence embed-
dings (§6). We evaluate on two domains and five
languages in Section 8, considering both training
scenarios where encoder weights are frozen for task
training and where they are fine-tuned.

2 Related Work

2.1 Knowledge distillation
Many state-of-the-art NLP models have achieved
high performance with increased parameters and
layers, and in doing so have become too computa-
tionally expensive for some applications. Knowl-
edge distillation addresses this problem with a
“teacher-student” training approach in which a
smaller “student” model learns to mimic a larger

“teacher” model (Sanh et al., 2019) or an ensemble
of models (Bucilǎ et al., 2006; Hinton et al., 2015).

In the context of reducing model size with BERT,
task-specific distillation has been successful (Tang
et al., 2019; Chatterjee, 2019) as has distillation of
the encoder during pre-training (Sanh et al., 2019).
Distillation of the pre-trained encoder is particu-
larly beneficial as the distilled model can be applied
to any number of downstream tasks. Sanh et al.
(2019) released a distilled version of English BERT
(DistilBERT), which is 40% smaller and 60% faster
than the original model, while retaining 97% of its
NLU capabilities. This was followed by Distilm-
BERT, distilled from mBERT using data from 104
languages, which is 24% smaller and 38% faster
than its teacher. In both cases, the same data was
used for knowledge distillation as for pre-training
the original models. We adopt this approach, limit-
ing our training data to the languages and domain
of interest to demonstrate that less data can be used
to distill a model for a specific setting.

2.2 Domain adaptation
When sufficient data is not available to train a
model from scratch, a smaller amount of data can
be used to adapt a domain-general model. In the
context of BERT, domain adaption of the encoder
through continued pre-training on in-domain data
followed by task-specific fine-tuning has improved
performance on domain-specific applications (Han
and Eisenstein, 2019; Gururangan et al., 2020; Ri-
etzler et al., 2020; Whang et al., 2020).

Previous work suggests that the teacher-student
approach used for knowledge distillation is well
suited to domain adaptation. In ASR, it has been
applied to adapt models trained on clean speech to
handle noisy speech, models for speech from head-
set mics to work for distant mics (Manohar et al.,
2018), and for speaker adaptation (Yu et al., 2013).
In neural machine translation, multidomain models
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have been distilled from single-domain specialist
models (see inter alia Currey et al. 2020; Mghabbar
and Ratnamogan 2020). In the context of senti-
ment analysis, Ruder et al. (2017) use an ensemble
of models to train a domain-adapted model on un-
labeled in-domain data and Ryu and Lee (2020)
combine distillation with adversarial domain adap-
tation to mitigate over-fitting from task fine-tuning,
rather than to reduce model size.

We show that knowledge distillation can simul-
taneously reduce the size of the model and adapt it
to a domain. While, some degree of performance
loss during distillation is typical, we show that fo-
cusing the training objective on in-domain data
can eliminate performance loss and even improve
model performance in the domain of interest. Our
training objective does not require labeled data,
and because we do this before task fine-tuning, the
resulting model can be used for any number of
in-domain tasks.

3 Use-cases and datasets

3.1 The conversational commerce use-case
Our first use case is in conversational commerce
(hereafter CC), which involves messaging between
customers and agents (human or automated) in a
commercial customer service setting. Within CC,
there are sub-domains for commercial industries,
such as retail, financial services, airlines, etc.

Unlike the Wikipedia data used to train mBERT
and DistilmBERT, CC is marked by questions, first
and second person phrases, short responses, fre-
quent typos and other textual and linguistic fea-
tures that are more common in typed conversation.
In addition to structural variation, CC data con-
tains many product and service names that may not
be common in Wikipedia data. These differences
make CC a strong candidate for domain adaptation.

Our test-case is to classify customer messages as
intentful, meaning that the message contains some
actionable request, or not intentful. In CC, this is
an important triage step that can be applied across
sub-domains before sending messages to down-
stream classifiers. Because this classification task
is applied to different sub-domains and customers
say some surprising things, this task is rather chal-
lenging. Intentful messages can vary widely from
requests for information, attempts to place orders
or change account details, and disputes or com-
plaints. Non-intentful messages include greetings,
pleasantries, slot information that relies on a previ-

Table 1: Total amount of data used to distil each domain-
adapted model in GB of uncompressed text

Data per language (GB) Total
model eng esp jap por rus (GB)
CC-Distil
-mBERT 0.95 0.60 0.44 0.35 0.00 2.34
TD-Distil
-mBERT 1.58 0.34 0.06 0.34 0.75 3.07

Table 2: # natural (N) and translated (T) messages per
split for the CC classification task

Split Data eng esp jap por
Train N 4951 1364 1810 1845

T 4306 4306 4306
Val N 1236 255 286 323

T 1020 1020 1020
Test N 10078 719 908 909

ous message for context, etc. After this triage step,
intentful messages can be sent to downstream clas-
sifiers, which are specific to the industry or com-
pany, that predict specific intents such as “check
order status” or “schedule appointment”.

3.1.1 Dataset
We use a proprietary dataset from a variety of com-
panies that use a particular conversational com-
merce platform.3,4 We distilled the encoder using
2.3GB of unlabeled text from English [ISO 639-3:
eng], Spanish [esp], Japanese [jap] and Portuguese
[por] as detailed in Table 1. This data came from 25
companies that span the retail, telecommunications,
financial and airlines sub-domains. To verify that
the encoder generalizes beyond these companies,
we sampled data for the classification task from
an additional 14 companies that were not used in
encoder training as well as 12 that were.

Annotations classification were provided by na-
tive speakers of each language, who were trained
on the task. Due to limited access to data and an-
notators for Japanese, Portuguese and Spanish, we
supplemented natural language training data with
machine-translated data from English. For evalu-
ation, we used only naturally produced data from
each language (see Table 2). The complete break-
down by class for evaluation is in Table 3.

The majority of the English, Portuguese and
Spanish data is from the Americas and the remain-
der from Australia and Europe, while the Japanese
data is primarily from Japan. Because data-use

3To be clarified after the anonymity period.
4For customer privacy, all personally identifiable informa-

tion is masked before we use the data, but even after masking
we cannot make the data or models publicly available.
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Table 3: # messages per label in the CC evaluation set

label eng esp jap por
intentful 4050 423 475 537
not intentful 6030 298 435 373

agreements and laws vary by company and country,
we could not sample evenly across regions; still, we
sampled from as diverse a range of countries and
company types as possible, in an effort to maximize
representation of different speaker communities.5

3.2 The technical discussion use-case
Because our first dataset is proprietary, we repeat
the experiments using data from online forums for
technical discussions about programming (here-
after TD). This domain is marked by technical jar-
gon, which includes many words that have non-
technical homonyms, as we describe in Section 6.
These forums also include code and urls, which can
be useful for classification but are not common in
the Wikipedia data used to train mBERT.

For evaluation we used a multi-label prediction
task to automatically label posts with the appropri-
ate tag or tags for the topic.6 Because StackOver-
flow uses hundreds of tags, the task is limited to
the ten most common, which are listed in Table 4.

3.2.1 Dataset
The data for this task comes from the anonymized
dumps for the StackOverflow topics in English
[eng], Japanese [jap], Portuguese [por], Russian
[rus] and Spanish [esp].7We created classification
datasets by sampling posts that contain one or more
of the ten tags targeted by the task. For our valida-
tion and held-out evaluation sets for English, Span-
ish, Portuguese and Russian, we sampled messages
such that each tag occurred in the set at least 100
times for a total of 1000 posts per set. As each post
can have multiple tags, tags can occur more than
100 times. The total posts per tag for evaluation
are in Table 4.8 We then randomly selected 8000
training samples that contained at least one of the
tags. Because the Japanese dump is much smaller,
we created splits of half the size (500/500/4000).

5We do not have access to demographic data for the users
who produced the data, and cannot make any claims about
how well the models generalize across speaker communities of
various ages, genders, ethnicities or socio-economic groups.

6This task comes from https://github.com/theRajeshReddy/
StackOverFlow-Classification

7https://archive.org/details/stackexchange
8The number of posts per tag for the train and validation

sets can be found in the dataset’s readme.

Table 4: # posts per label in the TD evaluation set

label eng esp jap por rus
c# 111 110 56 120 109
java 118 127 57 148 174
php 126 138 57 144 168
javascript 168 206 108 197 182
android 110 115 71 115 108
jquery 132 114 53 136 106
python 107 106 51 104 101
html 109 103 50 110 118
c++ 104 104 51 101 116
ios 110 100 53 102 102

For encoder training, we sampled data from the
remaining messages, including posts that did not
contain the tags of interest. We assembled a 3GB
training set (based on the results in Section 5) using
all of the data for Japanese (0.055GB, 2% of the to-
tal), Portuguese (0.34GB, 11%), Spanish (0.34GB,
11%) and Russian (0.75GB. 24%), and 1.58GB
(52%) for English to reach 3GB total.

4 Knowledge Distillation Method

For knowledge distillation, we use the established
and open-source approach of Sanh et al. (2019),910

which follows Liu et al. (2019)’s proposed best
practices for BERT training. These include dy-
namic masking, large batches to leverage gradient
accumulation and training on the masked language
modeling task but not next sentence prediction.

Sanh et al.’s implementation of knowledge distil-
lation trains the student model using the distillation
loss of the soft target probabilities of the teacher.
Because of this, the student model benefits from the
the teacher model’s full distribution during training.
Due to this rich input, we expect that high perfor-
mance can be achieved with less training data.

We use mBERT11 as the teacher model and our
student models have the same general architecture,
hidden-size dimension and number of word embed-
dings. We reduce the model size by removing the
token-embeddings and pooling and reducing the
number of layers from 12 to 6. This reduces the to-
tal number of parameters by 43 million or 24% and
increases the inference speed by 38% (Table 5).12

9Detailed instructions for training with Hug-
gingface’s Distil* module can be found at
https://github.com/huggingface/transformers/blob/
783d7d2629e97c5f0c5f9ef01b8c66410275c204/examples/
research_projects/distillation/README.md.

10Here we discuss the most relevant training details, but
Ibid. provides a full account of the training procedure.

11https://github.com/google-research/bert/blob/master/
multilingual.md

12The change in model size and speed is equivalent to that
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Table 5: Model size and and average inference speed on
single-thread CPU with a batch size of 1

# Params Inf time per message
Model (millions) (milliseconds)
mBERT 178 305
DistilmBERT 135 188
TD-DistilmBERT 135 189
CC-DistilmBERT 135 189

Whereas Sanh et al. (2019) used the same train-
ing data as the teacher model, we use only data
from the domain we are adapting to. Intuitively,
a model that will be deployed in a single domain
does not need to learn everything the base model
can do — it only needs to learn what it can do for
the domain at hand. This allows us to reduce the
training data and time needed for distillation.

5 Data requirements

Because knowledge distillation takes advantage of
an existing model, which was already trained on
a large amount of data, we expect that distillation
training will be relatively economical in its use of
data. Furthermore, many research objectives focus
on a single domain and do not require the breadth
of NLU capability of a domain-general model, but
instead benefit from a depth of capability in one do-
main. Here we attempt to establish how much data
is enough for knowledge distillation for a single
domain and where we reach diminishing returns.

As a case-study, we use increasing quantities
of StackOverflow English data for knowledge dis-
tillation and compare the performance of these
models to both the teacher model (mBERT) and
HuggingFace’s multilingual distilled BERT model
(DistilmBERT), which was distilled using the same
approach. To measure the impact of domain
adaptation from knowledge distillation alone, we
freeze the encoder weights during task training and
present the results in Table 6 and Figure 2.

We distilled models with English StackOverflow
data, using increments of 0.3GB. We found that a
minimum of 1.5GB was needed for convergence,
but 2.1GB was enough to outperform DistilmBERT
and perform on par with the teacher mBERT. Im-
provements stop after 3GB. We conclude that 2.1

in Sanh et al. 2019, however, that paper considers only the En-
glish BERT model, while we use multilingual BERT. Because
the multilingual model has a significantly larger vocabulary
(or number of word embeddings), which is not reduced by this
distillation process, the proportionate difference in model size
is for distilled mBERT models is less than for distilled BERT.

Table 6: Macro Precision, Recall and F1 on TD evalua-
tion task for models distilled with increasing data quan-
tities. The number in each TD model name corresponds
to the GB of uncompressed text used for training.13

Model Precision Recall F1
mBERT * 0.796 0.626 0.692
DistilmBERT * 0.796 0.602 0.679
Wiki3.0* 0.778 0.572 0.651
TD1.5 0.789 0.530 0.627
TD1.8 0.788 0.500 0.605
TD2.1 0.808 0.629 0.700
TD2.4 0.809 0.651 0.718
TD2.7 0.807 0.629 0.705
TD3.0 0.817 0.664 0.727
TD3.3 0.823 0.658 0.728
TD3.6 0.814 0.661 0.724
TD3.9 0.821 0.636 0.710
TD4.2 0.817 0.648 0.718
TD4.5 0.816 0.647 0.714

*=baseline model

1 2 3 4 5
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Sc

or
e

F1 Score
mBERT

DistilmBERT
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Figure 2: Training set size vs Macro F1 (see Table 6).

GB is sufficient and 3GB is optimal for adapta-
tion to the TD domain, while more data increases
training time without improving performance.

We contextualize this finding by considering
the data quantity used to train mBERT and Dis-
tilmBERT. While it is hard to ascertain the exact
amount of data used to train these models, we es-
timated by following the data sampling procedure
used by the creators of those models.14 By our best
estimate, roughly 222GB of uncompressed text was
used.15 In contrast, only 2.1GB of uncompressed

13Here and throughout the paper, reported results are the
mean of 10 random initializations.

14The procedure for mBERT is detailed at https://github.
com/google-research/bert/blob/master/multilingual.md and
DistilmBERT used data sampled in the same way (Sanh, pc).

15The original numbers may have been smaller as our esti-
mate is based on the wiki data dumps on Oct. 1, 2020 and the
models were trained before that time.
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text was needed to outperform DistilmBERT on our
in-domain task. Thus, for distillation for a single
domain and language, the required amount of train-
ing data is reduced by two orders of magnitude.16

In this experiment, the new data matches on both
domain and language. To test whether the language
match is responsible for the improvement, we dis-
tilled a model on 3GB of English Wikipedia data.
We sampled this data by randomly selecting 3000
1MB chunks of text from the English Wikipedia
dump. This model (Wiki3.0) under-performs the
one distilled on the same amount of StackOverflow
data, showing that the language match alone is in-
sufficient to explain the improved performance and
suggests that the domain match is more important.

6 Vector changes under domain
adaptation

To better understand the differences between an
encoder trained on domain-general data versus in-
domain data, we compare sentence embeddings
produced by the encoder that we adapted to the
technical domain (TD3.0) and the encoder dis-
tilled on the same amount of domain-general data
(Wiki3.0). The TD domain has lots of homonyms
like ‘python’ and ‘float’ that have both a technical
word-sense and a non-technical one. We expect
models trained on the TD domain to pay attention
to the dominant technical word-senses, and models
trained on Wikipedia to pay greater attention to
the non-technical word-senses. By extension, a dis-
tance function derived from a TD model is expected
to be more sensitive to technical word-senses than a
distance function derived from a Wikipedia model.
Thus we expect the distance function for ‘python’
and a non-technical synonym (i.e., ‘snake’) to be
closer when derived from a domain-general model
and the distance function between ‘python’ and
another programming language (i.e., ‘PHP’) to be
closer when derived from a model trained on tech-
nical data.

Because BERT embeddings are contextual, we
provide a context for each word pair by creating
sentences for each, such that either word may ap-
pear in the sentence. Sentences designed for tech-
nical word pairs are biased towards a technical
context, and sentences for non-technical word pairs
are biased towards a non-technical sense.17 As an
example, the technical sentences used to compare

16Training with 3 GB took < 2 days using 8 A100 GPUs.
17The full collection of sentences is in the appendix.

Java and C# are given below in list items 1 and 2
and the non-technical sentences used for java and
coffee are given in list items 3 and 4.

1. I can’t find any code or post on how to get traffic
data in Java for Windows Phone 8.

2. I can’t find any code or post on how to get traffic
data in C# for Windows Phone 8.

3. Jerry can’t start his day without a cup of java.
4. Jerry can’t start his day without a cup of coffee.

Substituting each word from a pair into the sen-
tence, we have a pair of sentences like items 1 and
2 and embed each with both the TD model and
the domain-general model. We take the mean of
the token embeddings as a representation of the
sentence18 and then take the cosine similarities be-
tween the sentence embedding produced by the TD
model and the embedding from the domain-general
model. These cosine similarities are given for both
the technical and non-technical pairs in Table 7.

We find that cosine distance is smaller for sen-
tences that capture the general word-sense when
they are encoded by the general model. Similarly,
it is smaller for sentences that capture the techni-
cal word-sense when they are encoded with the
TD model. This suggests that the TD model has
adapted its representations for these homonyms to
their technical meanings.

7 Experiments

We compare the performance of two domain-
adapted encoders that were trained using the
method described in Section 4. CC-DistilmBERT
was trained with data from four languages from the
CC domain (§3.1.1) and TD-DistilmBERT with
data from five languages from the TD domain
(§3.2.1). The amount of data used to distil each
model is summarized in Table 1 and determined
primarily based on availability, though informed
by the findings in Section 5. For each language and
domain, we used as much data as was available for
distillation (see §3 for details), except in the case
of English TD data, in which case we had more
than enough data and used only as much as was
necessary to reach approximately 3GB in total.

For classifier training, we train a structured self-
18The embedding of the <CLS> token is often used as a

sentence embedding when using BERT. However, following
(Liu et al., 2019), we distill models without using the next
sentence prediction task, so the embedding for <CLS> is less
likely to be a good representation of the sentence.

18Using Euclidean distance yielded similar results.

156



Table 7: Each word in the first column has at least one technical and non-technical sense (e.g., ‘Java’) and is paired
with two terms, one technical and one non-technical that can be used in the same context (e.g., ‘coffee’ and ‘C#’).
This table shows the cosine similarity between the embedding for a sentence containing the ambiguous word and
the same sentences containing its technical and non-technical alternatives instead, using both the general encoder
(Gen. Cosine) and domain-adapted encoder (Tech. Cosine). We show that in most cases the non-technical pairs
have a greater cosine similarity when encoded with the general model and the technical pairs have a grater cosine
similarity when encoded with the technical model.

Word General Neighbor Tech. Cosine Gen. Cosine Technical Neighbor Tech. Cosine Gen. Cosine
Java coffee 0.01453 0.02816 C# 0.01350 0.00424
Python snake 0.01008 0.04663 PHP 0.00535 0.00687
floats rafts 0.00672 0.01210 doubles 0.00830 0.00401
terminal ending 0.00527 0.00759 command line 0.01341 0.00453
classes lectures 0.01124 0.01512 objects 0.00969 0.00447
Oracle Prophet 0.01055 0.01883 DynamoDB 0.00283 0.00250

attention classifier head on each encoder used in
evaluation. 19 We conduct two experiments: in
the first, we fine-tune the encoder weights, as has
been done in previous work such as Devlin et al.
2019; Sanh et al. 2019; in the second, we freeze the
encoder weights to demonstrate that this approach
can be used in contexts where the same underly-
ing encoder is to be used by multiple classifiers,
removing the need to encode a text every time it is
classified by a different classifier.

We compare our domain-adapted, distilled mod-
els using the tasks described in Section 3 with two
baselines: the teacher model used for distillation
(mBERT) and Sanh et al.’s domain-general dis-
tilled model (DistilmBERT). In each case, we train
and evaluate separate classifiers for each language
in the dataset. We evaluate model performance
two ways, first fine-tuning the encoder weights dur-
ing task training and second freezing the encoder
weights to test the generalizability of a single en-
coder to multiple classifiers.

8 Results

The results for each language and encoder are bro-
ken down for each experiment in Table 8, where
encoder weights were fine-tuned or frozen during
task training. On average for these two tasks, the
domain-adapted model achieves an F1 score that
is 1.2% greater respective to the teacher mBERT
model (an absolute difference of 0.9 F1) and 2.3%
better respective to the domain-general Distilm-
BERT model (an absolute difference of 1.7 F1).

Performance is better for all models when the
encoder weights are fine-tuned during task train-
ing. Still, domain-adapted models perform better

19Code and data for reproduction are included in supple-
mentary materials and will be made publicly available upon
publication.

relative to the baselines in both cases. The aver-
age absolute improvement of the domain-adapted
models relative to the teacher model is 1.1% and
the relative improvement over the domain-general
distilled model is 2.1% when the encoder weights
are tuned, while these improvements are 1.3% and
2.5% when the weights are frozen. This differ-
ence between the two training scenarios may be
accounted for by the encoder undergoing some de-
gree of domain adaptation during fine-tuning. Intu-
itively, the domain-general models would benefit
from this more than the domain-adapted models,
which are already tuned to the domain. Even so,
the performance of domain-adapted models relative
to the domain-general models when the encoder
weights are fine-tuned demonstrates that domain
adaptation is still beneficial in this scenario and
contributes larger improvements in model perfor-
mance than fine-tuning during task training alone.

Each result in Table 8 represents an average over
10 iterations of training and evaluation. We calcu-
late the statistical significance of the improvement
between the domain adapted models and baselines
using the Kolmogorov-Smirnov (KS) test, as our
data is non-normal (Brownlee, 2019). We found
that the improvement in F1 score due to domain
adaptation for the CC-DistilmBERT model was
statistically significant (p < .05) compared to
both baselines on all languages except Japanese,
despite the small size of our datasets. The TD-
DistilmBERT model’s improvement in F1 over the
DistilmBERT baseline was also statistically signif-
icant on all languages except Japanese, although
the support for each class was much smaller for the
TD task.

For Japanese, in the case of the TD model, very
little data was available for domain adaptation (0.06
GB; shown in Table 1). We can speculate that this
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Table 8: Results for freezing and fine-tuning encoder weights during classifier training. F1, Precision and Recall are
for the ‘intentful’ class in the CC binary classification task and are macro averages for the TD multi label task. Each
result is an average across 10 iterations of training and evaluation. For the CC-DistilmBERT and TD-DistilmBERT
models, ⋆ indicates a statistically significant difference (p < 0.05) between that model and DistilmBERT and †

indicates a statistically significant difference (p < 0.05) between that model and mBERT.

Conversational
Commerce

Encoder Weights Model eng esp jap por
F1-Score Frozen CC-DistilmBERT 86.6⋆† 82.0⋆† 84.0 86.2⋆†

DistilmBERT 84.3 79.5 84.0 85.2
mBERT 85.4 78.7 83.6 85.2

Fine-tuned CC-DistilmBERT 88.7⋆† 82.3⋆† 84.5 87.4⋆†

DistilmBERT 85.8 79.9 83.9 85.6
mBERT 86.7 80.7 84.1 86.3

Precision Frozen CC-DistilmBERT 89.0 80.2 81.3† 86.9⋆

DistilmBERT 87.0 78.4 79.0 83.6
mBERT 87.0 78.6 77.0 85.7

Fine-tuned CC-DistilmBERT 90.2⋆† 81.4 79.9 87.3
DistilmBERT 87.6 79.6 79.9 85.8
mBERT 88.3 78.8 79.2 86.1

Recall Frozen CC-DistilmBERT 84.5 84.0 87.0⋆† 85.5
DistilmBERT 81.9 80.9 89.7 87.0
mBERT 83.9 79.0 91.6 84.8

Fine-tuned CC-DistilmBERT 87.3⋆† 83.2 89.7 87.5
DistilmBERT 84.1 80.2 88.5 85.4
mBERT 85.3 82.7 89.8 86.6

Technical
Discussion

Encoder Weights Model eng esp jap por rus
F1-Score Frozen TD-DistilmBERT 71.2⋆ 70.1⋆ 67.4 71.2⋆† 66.2⋆

DistilmBERT 68.9 68.8 65.8 68.2 64.3
mBERT 70.3 70.9 66.5 69.8 66.0

Fine-tuned TD-DistilmBERT 72.5⋆ 72.9⋆† 66.7 71.9⋆ 67.2⋆

DistilmBERT 70.6 71.5 65.9 70.4 66.0
mBERT 72.3 71.3 67.2 71.4 66.5

Precision Frozen TD-DistilmBERT 81.4⋆ 80.8 78.5⋆† 79.8 78.3⋆

DistilmBERT 79.7 78.5 75.7 78.6 75.5
mBERT 80.8 79.2 76.6 78.2 77.6

Fine-tuned TD-DistilmBERT 80.5⋆† 81.2⋆† 74.7 78.1† 76.5⋆†

DistilmBERT 77.6 77.5 73.8 76.8 72.6
mBERT 77.4 76.4 74.8 76.3 73.7

Recall Frozen TD-DistilmBERT 64.3⋆ 63.5 60.5 64.9⋆ 58.3
DistilmBERT 61.6 62.5 59.3 60.7 56.8
mBERT 63.2 65.4 59.8 63.7 58.3

Fine-tuned TD-DistilmBERT 66.9† 67.6 61.5 67.3 60.7
DistilmBERT 65.6 67.7 60.9 65.4 61.2
mBERT 68.7 68.4 62.6 67.9 61.7

lack of data made adaptation via knowledge dis-
tillation less effective. In this case, adaptation via
fine-tuning was relatively more effective than adap-
tation via knowledge distillation. For the CC model,
while somewhat more Japanese data was available
(0.44 GB), it is still less relative to English and
Spanish, so we again attribute the less significant
results for Japanese to data scarcity. We note that
for this domain, even less data was available for
Portuguese (0.35 GB) than Japanese, although for
Portuguese the domain adapted model did show
a significant improvement over mBERT. In this
case, we speculate that the domain adapted model’s
performance on Portuguese benefited from lexical
overlap with the Spanish training data.

9 Conclusion

We addressed the problem of encoder scalabil-
ity in the context of conversational commerce by
showing that knowledge distillation with domain-
specific data reduces model size, while simulta-
neously improving model performance. This ap-
proach allows for the training of an encoder that
can be used across a variety of languages, is smaller
than a state-of-the-art model like mBERT, and per-
forms better on domain-specific tasks. Because our
approach uses only training data for the domain
and languages of interest, less data is necessary for
training, reducing the time, cost and environmental
impact of training, while accommodating limited
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data availability. A key advantage of domain adap-
tation during encoder rather than classifier training
is that it allows for the deployment of a single en-
coder, which can serve multiple classifiers at run-
time. This reduces storage and maintenance cost,
and due to the much larger size of the encoders
compared with the classifiers, provides dramati-
cally better scalability in real-world, e-commerce
applications that must support multiple languages
and tasks.
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Cristian Bucilǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 535–541.

Debajyoti Chatterjee. 2019. Making neural ma-
chine reading comprehension faster. arXiv preprint
arXiv:1904.00796.

Anna Currey, Prashant Mathur, and Georgiana Dinu.
2020. Distilling multiple domains for neural machine
translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4500–4511.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. Proceedings of NAACL-HLT, pages 4171—
-4186.

Suchin Gururangan, Ana Marasović, Swabha
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A Appendix: Sentence Pairs

The sentences used to produce the embeddings
compared in Table 8 are listed below.

A.1 Non-technical Sentences
1. Jerry has had a lot of late nights recently and

can’t start his day without a cup of {Java /
coffee}.

2. I was scared to death when I saw that {Python
/ snake}.

3. The ship is outfitted with lots of safety fea-
tures, including {floats / rafts} in case of an
emergency.

4. The {terminal / ending} scene of the movie
was a big surprise!

5. Emily had to drop out of school after she
missed too many {classes / lectures}.

6. In times of uncertainty, people would take
offerings to the temple and ask the {Oracle /
Prophet} for help.

A.2 Technical Sentences
1. I can’t find any code or post on how to get

traffic data in {Java / C#} for Windows Phone
8.

2. I have {Python / PHP} code for shortening a
URL.

3. Suppose I need to parse space delimited lists
of numbers where some lists contain integers
and some lists contain {floats / doubles}.

4. I am a spark newbie and I want to run a Python
script from the {terminal / command line}.

5. fill up a div with this data with relevent
markup - divs id’s {classes / objects} suround-
ing this data.

6. So what I’m doing is reading a lot of data from
remote Nettezza database and inserting them
into another remote {Oracle / DynamoDB}
database.
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